
Object Oriented Development of an Interactive Software
for Studying of Circle using UML Diagrams

ANCA IORDAN, MANUELA PANOIU, IONEL MUSCALAGIU, RALUCA ROB

Technical University of Timişoara, Engineering Faculty of Hunedoara,
Revoluţiei 5, 331128 Hunedoara ROMANIA

anca.iordan@fih.upt.ro

Abstract: - This paper presents the necessary steps required for Object Oriented Programming of a computer
system used in the study of circle. The modelling of the system is achieved through specific UML diagrams
representing the stages of analysis, design and implementation, the system thus being described in a clear and
concise manner. The software is very useful to both students and teachers because the mathematics, especially
geometry, is difficult to understand for most students.

Key-Words: - Java, UML, Interactive Software, Euclidian Geometry.

1 Introduction
The multimedia technologies transformed the
computer into a valuable interlocutor and allowed
the students, without going out of the class, to
assist the lessons of different emeriti scientists and
professors, to communicate with persons located in
different countries, to have access to different
information [1]. By a single click of the mouse, the
student can visit an artistic gallery, read the
originals for writing a history paper or visualize
information for a narrow profile, which couldn’t be
found five-ten years ago [2].

One of the main aspects of using computer for
lessons is the development of the student’s creative
thinking. An optimal mean in this case is the
introduction in the computational training means of
the interactivity elements [3]. The „interactivity”
term means „to interact, to influence one-to-
another”. This property of the computational
technologies is absolutely unique compared with
television, lectures, books, instructive movies etc.

2 Development stages of interactive
software

2.1 Analysis stage
Using UML modelling language, computer system
analysis consists in making use case diagram and
activity diagrams. To achieve diagrams was used the
ArgoUML software [4].

The computer system is described in a clear and
concise manner as representing the use cases [5].
Each case describes the interactions between user

and system. Use case diagram representation is
shown in figure 1. Diagram presented defines the
system domain, allowing visualization of the size
and sphere of the action for the entire development
process. This includes:

 an actor - the user who is external entity with
which the system interacts;

 five use cases that describe the functionality
of the system;

 relationships between users and use cases
(association relationships), and relationships
between use cases (dependency and generalization
relationships).

For each use case presented in the previous
diagram is built an activity diagram. Each diagram
shall specify the processes or algorithms that are
behind use case analysis.

Fig. 1 The use cases diagram

Proceedings of the European Computing Conference

ISBN: 978-960-474-297-4 291

Fig. 2 Class diagram

2.2 Design stage

2.2.1 Class diagram
Conceptual modelling allows identifying the most
important concepts for the computer system [6].
Inheritance was not used only as a generalization
mechanism, which is when derived classes are
specializations of the base class.

In figure 2 are presented inheritance
relationships, realization relationships, composition
relationships and aggregation relationships. We can
observe that the SuprafataDesen2D class inherit
attributes and methods of the JFrame class, but
implements the ActionListener interface. Desen2D
class inherit attributes and methods of the JPanel
class, but implements MouseInputListener interface.

Between instances of the classes presented in
figure 2 there are especially composition and
aggregation relationships. In the composition
relationship, unlike the aggregation relationship, the
instance can not exist without the party objects.
Analyzing figure we can observe that an instance of
Segment2D type consists in two objects of Punct2D
type. Aggregation relationship is an association
where it’s specified who is integer and who is a
party. For example, an object of Segment2D type
represents a part from an object of Cerc2D type.

2.2.2 Sequence diagrams
Description of behaviour involves two aspects:
structural description of participants and description
of models of communication. The communication
model of the instance witch play one role to fulfill a
specific purpose is called interaction.

The purpose of interaction diagram is to specify
how to carry out an operation or a use case [7],
modelling the behaviour of a set of objects in a
certain context. Interaction context may be the
system (subsystem), or class operation.

Objects can be concrete things, or prototypes,
among them setting the semantic connections. There
are two forms of interaction diagrams based on the
same basic information, but each focuses on another
aspect of interaction: sequence diagrams and
collaboration diagrams.

Sequence diagram emphasizes the temporal
aspect, being suitable for real-time specifications
and complex scenarios [8]. These diagrams
determine the objects and classes involved in a
scenario and sequence of messages sent between
objects necessary to execute script functionality.
Sequence diagrams are associated with a use case.

Diagram presented in figure 3 renders the
interactions between objects that are designed to
drawing the circumcircle of a regular polygon and
the centre of this circle.

Proceedings of the European Computing Conference

ISBN: 978-960-474-297-4 292

Fig. 3 Sequence diagram for drawing the circumcircle of a regular polygon

We can observe that there are interactions

between the 7 objects, of which the objects of
Desen2D type, Vector<Element2D> type and
Graphics2D type are already created and the objects
of Poligon2D type, Cerc2D type and Punct2D type
will instantiate during interactions.

At first the execution control is taken by the
object of Desen2D type. Following an event that
interacts with the Desen2D object is transmitted the
control of the object of Vector<Element2D> type
that creates an instance of Polygon2D class.
Following is created an instance of Cerc2D class.
Control is transmitted to the object of
Vector<Element2D> type to add the object
previously created. The control will be given to the
object of Desen2D type that will destroy the object
of Polygon2D type and the object of Cerc2D type.

Through interaction with Graphics2D object will
redraw the circumcircle of a regular polygon. We
can observe that lifeline of the Cerc2D object is
interrupt, by marking an X, the message appears
bearing the stereotype <<destroy>>.

Following an event that interacts with the
Desen2D object is transmitted the control of the
object of Vector<Element2D> type that creates an
instance of Cerc2D class. Following is created an
instance of Punct2D class. Control is transmitted to
the object of Vector<Element2D> type to add the
object previously created.

The control will be given to the object of
Desen2D type that will destroy the object of Cerc2D
type and the object of Punct2D type. Through
interaction with Graphics2D object will redraw the
centre of circumcircle of a regular polygon.

Proceedings of the European Computing Conference

ISBN: 978-960-474-297-4 293

Fig. 4 Sequence diagram for drawing the incircle of a circumscribed quadrilateral and the Newton line

Diagram presented in figure 4 renders the

interactions between objects that are designed to
drawing the incircle of a circumscribed
quadrilaterals and the Newton line.

We can observe that there are interactions
between the 7 objects, of which the objects of
Desen2D type, Vector<Element2D> type and
Graphics2D type are already created and the objects
of Patrulater2D type, Cerc2D type and Dreapta2D
type will instantiate during interactions. At first the
execution control is taken by the object of Desen2D
type. Following an event that interacts with the
Desen2D object is transmitted the control of the
object of Vector<Element2D> type that creates an
instance of Patrulater2D class. Following is created
an instance of Cerc2D class. Control is transmitted
to the object of Vector<Element2D> type to add the
object previously created.

The control will be given to the object of
Desen2D type that will destroy the object of
Patrulater2D type and the object of Cerc2D type.
Through interaction with Graphics2D object will
redraw the incircle of a circumscribed quadrilateral.
We can observe that lifeline of the Cerc2D object is
interrupt, by marking an X, the message appears
bearing the stereotype <<destroy>>.

Following an event that interacts with the
Desen2D object is transmitted the control of the
object of Vector<Element2D> type that creates an
instance of Cerc2D class. Following is created an
instance of Dreapta2D class. Control is transmitted
to the object of Vector<Element2D> type to add the
object previously created.

The control will be given to the object of
Desen2D type that will destroy the object of Cerc2D
type and the object of Dreapta2D type. Through

Proceedings of the European Computing Conference

ISBN: 978-960-474-297-4 294

interaction with Graphics2D object will redraw the
Newton line of a circumscribed quadrilateral.

2.2.3 Collaboration diagrams
Collaboration diagrams describe the behaviour of a
set of objects in a certain context with an emphasis
on organizing the objects involved in the interaction
[9]. These diagrams are graphs witch has in peaks
quality, objects that participate to the interaction,
and the arcs represent links between instances.
Diagram presented in figure 5 renders the
interactions between objects that allow drawing the
incircle of a circumscribed quadrilateral and the
Newton line.

Fig. 5 Collaboration diagram for drawing the

incircle of a circumscribed quadrilateral

2.3 Implementation stage
Component diagram is similar to packages diagram,
allowing visualization of how the system is divided
and the dependencies between modules [10].
Component diagram put emphasis on software
physical elements and not on the logical elements
like in case of packages.

The diagram in figure 6 describes the collection
of components that together provide system
functionality.

Central component of the diagram is
SuprafataDesen2D.class, a component obtained by
transforming by the Java compiler into executable
code of the SuprafataDesen2D.java component. As
can be seen that component interacts directly with
components Desen2D.class. This component
interacts with Element2D.class component.

3 Graphical user interface
The application was implemented in Java as
independent application [11]. The interactive system
allows to drawing circles in diverse modes, but
presents both theoretical results and certain types of
solved problems. Among the most important
operations we mention:

Fig. 6 Component diagram

 circles determined by three point;
 circles when is specified the centre and

radius;
 circles which fulfill certain conditions:

• the incircle and the three excircles for a given
triangle;
• the circumcircle of a given triangle;
• the Euler circle of a given triangle;
• the Lemoine circles for a given triangle;
• the Taylor circle of a given triangle;
• the incircle of a circumscribed quadrilateral
(figure 7);

Proceedings of the European Computing Conference

ISBN: 978-960-474-297-4 295

The diagrams were made using a new approach,
multidisciplinary of the informatics application,
encompassing both modern pedagogy methods and
discipline-specific components. The link between
teaching activities and scientific goals and
objectives was established through the development
of the new methods and the assimilation of new
ways, capable of enhancing school performance,
enabling students to acquire the knowledge and
techniques required and apply them in optimum
conditions.

• the circumcircle of a cyclic quadrilateral (figure
8);
• the circumcircle of a regular polygon.

References:
[1] C. Cucos, Pedagogy, Polirom Press, Iasi, 2002
[2] M. Panoiu, I. Muscalagiu, C. Panoiu, M. Raich,

Educational Software for the Study the
Performances of Some Known Parallel and
Sequential Algorithms, WSEAS Transactions
on Information Science and Applications, Vol.
7, 2010, pp. 1271-1283

[3] T. H. Wang, K. H. Wang, S. C. Huang,
Designing a Web-based assessment
environment for improving pre-service teacher
assessment literacy, Computers & Education,
2008, pp. 448-462

Fig. 7 The incircle of a circumscribed quadrilateral

[4] http://argouml.tigris.org
[5] M. Fowler, K. Scott, “UML Distilled: A Brief

Guide to the Standard Object Modeling
Language”, Addison Wesley, Readings MA,
USA, 2000

[6] J. Odell, “Advanced Object Oriented
Analysis& Design using UML”, Cambrige
University Press, 1998

[7] J. Rumbaugh, I. Jacobson, G. Booch, “The
Unified Modeling Language Reference
Manual”, Addison Wesley, 1999

[8] S. Bennet, S. McRobb, R. Farmer, “Object
Oriented Systems Analysis and Design”,
McGraw Hill, 1999 Fig. 8 The circumcircle of a cyclic quadrilateral

[9] G. Booch, J. Rumbaugh, I. Jacobson, “The
Unified Modeling Language User Guide”,
Addison Wesley, 1999

4 Conclusion [10] J. Cheesman, J. Daniels, UML Components: A

Simple Process for Specifying Component-
Based Software, Addison- Wesley, Mass, USA,
2000

Through the diagram representation all three
phases: analysis, design and implementation, the
educational informatics system has been described
in a clear and concise manner. The use of the UML
modelling language for the creation of the diagrams
is characterized by rigorous syntactic, rich semantic
and visual modelling support.

[11] S. Tănasă, C. Olaru, S. Andrei, “Java de la 0 la
expert”, Polirom Press, Iasi, 2007

Proceedings of the European Computing Conference

ISBN: 978-960-474-297-4 296

