
Modified cuckoo search algorithm

for unconstrained optimization problems

Milan TUBA, Milos SUBOTIC, Nadezda STANAREVIC

Faculty of Computer Science

University Megatrend Belgrade

Bulevar umetnosti 29

SERBIA

tuba@ieee.org, milos.subotic@gmail.com, srna@stanarevic.com

Abstract: - This paper presents modified cuckoo search (CS) algorithm for unconstrained optimization

problems. Young and Deb`s cuckoo search algorithm was successfully used on some optimization problems

and there is also a corresponding code. We implemented a modified version of this algorithm where the step

size is determined from the sorted rather than only permuted fitness matrix. Our modified algorithm was tested

on eight standard benchmark functions. Comparison of the pure cuckoo search algorithm and our modified one

is presented and it shows improved results by our modification.

Key-Words: - Cuckoo Search, Metaheuristic optimization, Unconstrained optimization, Nature inspired

algorithms

1 Introduction
1Optimization has been an active area of research for

several decades. As many real-world optimization

problems become more complex, better

optimization algorithms were needed. In all

optimization problems the goal is to find the

minimum or maximum of the objective function.

Thus, unconstrained optimization problems can be

formulated as minimization or maximization of D-

dimensional function:

 Min (or max) f(x), x=(x1,x2,x3,…xD) (1)

where D is the number of parameters to be

optimized.
Many population based algorithms were

proposed for solving unconstrained optimization

problems. Genetic algorithms (GA), particle swarm

optimization (PSO), and bee algorithms (BA) are

most popular optimization algorithms which employ

a population of individuals to solve the problem on

hand. The success or failure of a population based

algorithms depends on its ability to establish proper

trade-off between exploration and exploitation. A

poor balance between exploration and exploitation

may result in a weak optimization method which

may suffer from premature convergence, trapping in

a local optima and stagnation.

1
 This research is supported by Ministry of Science,

Republic of Serbia, Project No. 44006

GA is one of the most popular evolutionary

algorithms in which a population of individuals

evolves (moves through the fitness landscape)

according to a set of rules such as selection,

crossover and mutation [1].

PSO algorithm is another example of population

based algorithms [2]. PSO is a stochastic

optimization technique which is well adapted to the

optimization of nonlinear functions in

multidimensional space and it has been applied to

several real-world problems [3].

Several metaheuristics have been proposed to

model the specific intelligent behaviour of honey

bee swarms [4], [5], [6], [7]. The bee swarm

intelligence was used in the development of

artificial systems aimed at solving complex

problems in traffic and transportation [5]. That

algorithm is called bee colony optimization

metaheuristic (BCO), which is used for solving

deterministic combinatorial problems, as well as

combinatorial problems characterized by

uncertainty. The artificial bee colony (ABC)

algorithm is relatively new population based meta-

heuristic approach based on honey bee swarm [8].

In this algorithm possible solution of the problem is

represented by food source. Quality of the solution

is indicated by the amount of nectar of a particular

food source. Exploitation process is carried by

employed and onlooker bees, while exploration is

done by scouts.

Proceedings of the European Computing Conference

ISBN: 978-960-474-297-4 263

A new metaheuristic search algorithm, called

cuckoo search (CS), based on cuckoo bird’s

behaviour has been developed by Yang and Deb [9].

In this paper, we will introduce our modified

version of CS algorithm and validate it against pure

version on eight standard unconstrained test

functions. For testing purposes, we developed our

CS software named CSapp.

2 Cuckoo search algorithm
Cuckoo birds attract attention of many scientists

around the world because of their unique behaviour.

They have many characteristics which differentiate

them from other birds, but their main distinguishing

feature is aggressive reproduction strategy. Some

species such as the Ani and Guira cuckoos lay their

eggs in communal nests, though they may remove

others’ eggs to increase the hatching probability of

their own eggs [9]. Cuckoos engage brood

parasitism. It is a type of parasitism in which a bird

(brood parasite) lays and abandons its eggs in the

nest of another species. There are three basic types

of brood parasitism: intraspecific brood parasitism,

cooperative breeding, and nest takeover [10].

Some host birds do not behave friendly against

intruders and engage in direct conflict with them. In

such situation host bird will throw those alien eggs

away. In other situations, more friendly hosts will

simply abandon its nest and build a new nest

elsewhere.

Many studies have shown that flight behaviour

of many animals and insects has demonstrated the

typical characteristics of Lévy flights. Study

conducted by Reynolds and Frye on fruit flies shows

that fruit fly Dorsophila explores its landscape in a

quite odd manner. This fly uses a series of straight

flight paths with sudden 90
0
 turn, which leads to a

Lévy-flight-style intermittent scale free search

pattern.

Lévy-style search behaviour and random search

in general has been applied to optimization and

implemented in many search algorithms [11], [12].

One of such algorithms is CS [10]. Preliminary

results show its promising capability.

2.1 Description of the original CS algorithm

In order to simplify the description of novel Cuckoo

Search algorithm, three idealized rules can be used

[10]:

• Only one egg at a time is laid by cuckoo.

Cuckoo dumps its egg in a randomly chosen

nest.

• Only the best nests with high quality eggs will

be passed into the next generation.

• The number of available host nests is fixed. Egg

laid by a cuckoo bird is discovered by the host

bird with a probability pd  [0,1]. In this case,

the host bird has two options. It can either throw

the egg away, or it may abandon the nest.

To make the things even more simple, the last

assumption can be approximated by the fraction of

pd of n nests that are replaced by new nests with new

random solutions. Considering maximization

problem, the quality (fitness) of a solution can

simply be proportional to the value of its objective

function. Other forms of fitness can be defined in a

similar way the fitness function is defined in genetic

algorithms and other evolutionary computation

algorithms. A simple representation where one egg

in a nest represents a solution and a cuckoo egg

represent a new solution is used here. The aim is to

use the new and potentially better solutions

(cuckoos) to replace worse solutions that are in the

nests. It is clear that this algorithm can be extended

to the more complicated case where each nest has

multiple eggs representing a set of solutions.

When generating new solutions x
(t+1)

 for a

cuckoo i, a Lévy flight is performed using the

following equation:

 xi
(t+1)

 = xi
(t)

 + α ^ Lévy (λ), (2)

where α (α>0) represents a step size. This step size

should be related to the scales of problem the

algorithm is trying to solve. In most cases, α can be

set to the value of 1. The above expression is in

essence stochastic equation for a random walk

which is a Markov chain, whose next location

(status) depends on two parameters: current location

(first term in Eq. 2) and probability of transition

(second term in the same expression). The product ^

represents entry-wise multiplications. Something

similar to entry-wise product is seen in PSO

algorithm, but random walk via Lévy flight is much

more efficient in exploring the search space as its

step length is much longer in the long run [11].

The random step length is drawn from a Lévy

distribution which has an infinite variance with an

infinite mean:

 Lévy ~ u = t
-λ
 (3)

where λ  (0,3].

Here the consecutive jumps/steps of a cuckoo

essentially form a random walk process which

obeys a power-law step length distribution with a

heavy tail.

Proceedings of the European Computing Conference

ISBN: 978-960-474-297-4 264

Taking into account basic three rules described

above, pseudo code for CS algorithm is:

 Start
 Objective function f(x), x= (x1,x2…xu)T
 Generating initial population of n host nests xi

 (i=1,2,…n)
 While (t<MaxGenerations) and (! termin.condit.)
 Move a cuckoo randomly via Lévy flights
 Evaluate its fitness Fi
 Randomly choose nest among n available nests
 (for example j)
 If(Fi > Fj) Replace j by the new solution;
 Fraction pd of worse nests are abandoned and
 new nests are being built;
 Keep the best solutions or nests with quality
 solutions;
 Rank the solutions and find the current best
 End while
 Post process and visualize results
 End

2.2 Modified cuckoo search algorithm

In the real world, if a cuckoo's egg is very similar

to a host's eggs, then this cuckoo's egg is less likely

to be discovered, thus the fitness should be related

to the difference in solutions. Therefore, it is a good

idea to do a random walk in a biased way with some

random step sizes.

Both, original, and modified code use random

step sizes. Compared to the original code, we use

different function set for calculating this step size.

In the original code, step size is calculated using

following code expression:

r*nests [permute1 [i]][j]- nests [permute2 [i]][j] (4)

where r is random number in [0,1] range, nests is

matrix which contains candidate solutions along

with their parameters, permute1 and permute2 are

different rows permutation functions applied on

nests matrix.

In order to calculate the step size, instead of

Equation 4, we used:

r*nests [sorted [i]][j] - nests [permute [i]][j] (5)

The difference is that instead of permute1, we

used sorted function. This function sorts nests

matrix by fitness of contained solutions. In this way,

higher fitness solutions have slight advantage over

solutions with lower fitness. This method keeps

the selection pressure (the degree to which

highly fit solutions are selected) towards better

solutions and algorithm should achieve better

results. That does not mean that high fitness

solutions will flood population and the

algorithm will stuck in local optimum.
At a first glance, it seems that there are some

similarities between CS and hill-climbing in respect

with some large scale randomization. But, these two

algorithms are in essence very different. Firstly, CS

is population-based algorithm in a way similar to

GA and PSO, but it uses some sort of elitism and/or

selection similar to that used in harmony search.

Secondly, the randomization is more efficient as the

step length is heavy-tailed, and any large step is

possible. And finally, the number of tuning

parameters is less than in GA and PSO, and thus CS

can be much easier adapted to a wider class of

optimization problems.

3 Experiments
In this section, we show experimental results which

validated our modified CS algorithm. As mentioned

above, we developed our CS software (CSapp), and

all tests were run in our testing environment. For

testing purposes, we also implemented original

version of CS algorithm. We compared results of

our modified CS algorithm with the original one.

This comparison is shown in the tables within this

section.

3.1 Benchmarks
To test the performance of a modified CS, eight well

known benchmark functions are used here for

comparison, both in terms of optimum solution after

a predefined number of iterations and the rate of

convergence to the optimum solution. These

benchmarks are widely used in evaluating

performance of population based methods but some

population based methods for unconstrained

optimization use different benchmarks [13].

In order to show how our algorithm performs, we

used the following set of functions:

 Ackley

 DixonAndPrice

 Griewank

 Penalized

 Rastrigin

 Schwefel

 Sphere

 Step

Proceedings of the European Computing Conference

ISBN: 978-960-474-297-4 265

Ackley function is a continuous, multimodal

function obtained by modulating an exponential

function with a cosine wave of moderate amplitude.

Formulation:

f(x)= - 20exp(√

∑

) –

- exp (

∑

)

The global minimum value for this function is 0

and the corresponding global optimum solution is

xopt =(x1, x2,…,xn) = (0, 0, . . . , 0).

DixonAndPrice is our second test function. The

number of parameters is not determinate for this

function. Formulation:

f(x)= + ∑

 2

Global minimum is f5 (x) = 0.

Griewank is third test function. Definition:

f(x) = ∑

 ∏

 √

The global minimum value for this function is 0

and the corresponding global optimum solution is

xopt =(x1, x2, . . . , xn) = (100, 100, . . . , 100).

Penalized function is difficult for optimization

because of its combinations of different periods of

the sine function. Definition:

yi = 1 +

 (xi + 1)

The global minimum value for this function is 0

and the corresponding global optimum solution is

xopt =(x1, x2, . . . , xn-1, xn) = (-1, -1, . . . , -1, -5).

Rastrigin function is based on Sphere function

with the addition of cosine modulation to produce

many local minima. Definition:

f(x) = 10n + ∑

The global minimum value for this function is 0

and the corresponding global optimum solution is

xopt =(x1, x2, . . . , xn) = (0, 0, . . . , 0).

Schwefel function as our sixth benchmark.

Definition:

f(x) = ∑ √

This function has a value - 418.9828 and at its

global minimum (420.9867, 420.9867,…,

420.9867). Schwefel’s function is deceptive in that

the global minimum is geometrically distant, over

the parameter space, from the next best local

minima. Therefore, the search algorithms are

potentially prone to convergence in the wrong

direction. Test area is usually restricted to

hypercube – 500 ≤ xi ≤ 500, i = 1, . . . , n.

Sphere function that is continuous, convex

and unimodal. Formulation:

f(x)=∑

Global minimum value for this function is 0 and

optimum solution is xopt =(x1, x2,…,xn) = (0, 0, .. , 0).

Finally, Step is our eighth benchmark function.

Definition:

f(x) = ∑

This function represents the problem of flat

surfaces. It is very hard for algorithms without

variable step sizes to conquer flat surfaces problems

because there is no information about which

direction can provide optimal solution.

3.2 Experimental results and algorithm’s

 settings
We tried to vary the number of host nests

(population size n) and the probability of discovery

pd. We have used different settings for n (5, 10, 15,

20, 50, 100, 150, 250, 500) and for pd. (0, 0.01, 0.05,

0.1, 0.15, 0.2, 0.25, 0.4, 0.5) . From test phase

simulations, we found that n = 25 and pd = 0.25 are

sufficient for most optimization problems. This

means that the fine parameters tuning are not needed

for any given problem. Therefore, we used fixed n =

25 and pd = 0.25 for all given problems.

We tested each benchmark function four times

with 5, 10, 50 and 100 parameters. For every test,

we carried on 30 runs with 500 cycles per each run.

We printed out best and mean results as well the

standard deviation within the set of 30 runs.

Parameter settings are in Table 1.

Parameter Value

Runtime 30

Max Cycle 500

N 25

D 5/10/50/100

Pd 0.25

Table 1: Parameter settings for benchmark

functions.

Tests were done on Intel Core2Duo T8300

mobile processor with 4GB of RAM on Windows 7

x64 Ultimate Operating System and NetBeans 6.9.1

IDE (Integrated Development Environment).

Experimental results with 5, 10, 50 and 100

parameters are shown in Tables 2, 3, 4 and 5

respectively. All tables have two columns with

results in order to make side by side comparison. In

the first column, we show results of original, and in

the second, results of modified algorithm. We

showed values for best, mean and standard dev.

Proceedings of the European Computing Conference

ISBN: 978-960-474-297-4 266

Function Original Modified

Ackley

Best

Mean

Stdev.

1.17E-12

8.52E-11

2.23E-10

0.05E-12

2.01E-11

1.12E-10

DixonAndPrice

Best

Mean

Stdev.

3.40E-1

0.057

0.097

2.32E-2

0.008

0.062

Griewank

Best

Mean

Stdev.

5.26E-25

4.35E-19

1.13E-17

1.66E-27

9.05E-20

9.31E-17

Penalized

Best

Mean

Stdev.

1.29E-6

2.04E-5

2.17E-5

5.49E-7

1.12E-5

0.11E-5

Rastrigin

Best

Mean

Stdev.

3.28E-18

1.77E-16

9.56E-16

1.03E-19

3.52E-18

5.52E-18

Schwefel

Best

Mean

Stdev

0.391

134.333

68.546

0.352

125.886

56.002

Sphere

Best

Mean

Stdev.

8.31E-26

2.50E-22

7.88E-22

4.63E-28

8.45E-24

4.23E-23

Step

Best

Mean

Stdev.

3.87E-6

3.57E-5

4.60E-5

1.23E-6

1.44E-5

1.05E-5

Table 2: Experimental results for 5 parameters

As we can see from the Table 2, modified CS

algorithm has outperformed the original algorithm

in all eight benchmark functions in tests with 5

parameters.

Function Original Modified

Ackley

Best

Mean

Stdev.

1.65E-7

1.10E-6

9.30E-7

3.56E-8

9.13E-7

0.05E-8

DixonAndPrice

Best

Mean

Stdev.

0.593

0.664

0.013

0.455

0.602

0.004

Griewank

Best

Mean

Stdev.

3.15E-18

5.03E-15

9.89E-15

5.67E-19

7.56E-16

8.92E-16

Penalized

Best

Mean

Stdev.

3.20E-4

2.19E-4

9.93E-3

8.45E-4

1.22E-3

1.02E-2

Rastrigin

Best

Mean

Stdev.

1.77E-15

4.72E-9

1.16E-8

5.03E-17

8.51E-11

5.81E-10

Schwefel

Best

Mean

Stdev.

661.309

883.518

124.294

628.205

862.334

102.004

Sphere

Best

Mean

Stdev.

4.29E-15

6.04E-13

9.66E-13

1.09E-16

2.32E-14

4.29E-14

Step

Best

Mean

Stdev.

8.12E-5

3.33E-4

7.66E-4

1.05E-5

1.23E-4

2.52E-4

Table 3: Experimental results for 10 parameters

If we compare test results with 10 and 50

parameters (see Tables 3 and 4), we can observe that

the performance is almost the same.

Function Original Modified

Ackley

Best

Mean

Stdev.

3.91E-5

5.39E-4

4.19E-4

0.72E-5

3.21E-4

2.09E-4

DixonAndPrice

Best

Mean

Stdev.

0.667

0.674

0.022

0.625

0.661

0.015

Griewank

Best

Mean

Stdev.

1.58E-9

1.60E-8

2.50E-8

9.92E-10

0.41E-8

1.02E-8

Penalized

Best

Mean

Stdev.

0.115

0.206

0.039

0.193

0.288

0.076

Rastrigin

Best

Mean

Stdev.

8.53E-8

8.01E-6

1.23E-5

2.39E-14

2.39E-10

0.03E-7

Schwefel

Best

Mean

Stdev.

9781.549

10813.984

361.787

9653.209

10012.562

307.905

Sphere

Best

Mean

Stdev.

2.36E-8

4.64E-6

8.43E-6

3.02E-10

9.45E-8

9.49E-8

Step

Best

Mean

Stdev.

3.392

4.141

0.532

3.013

3.994

0.486

Table 4: Experimental results for 50 parameters

Function Original Modified

Ackley

Best

Mean

Stdev.

1.93E-4

0.035

0.005

0.31E-4

0.026

0.002

DixonAndPrice

Best

Mean

Stdev.

0.668

0.698

0.057

0.598

0.676

0.045

Griewank

Best

Mean

Stdev.

2.56E-9

2.81E-7

3.11E-7

0.61E-9

1.05E-7

1.85E-7

Penalized

Best

Mean

Stdev.

0.402

0.474

0.047

0.502

0.594

0.092

Rastrigin

Best

Mean

Stdev.

4.43E-6

1.31E-4

1.64E-4

1.91E-11

0.06E-8

1.12E-5

Schwefel

Best

Mean

Stdev.

24983.536

26902.073

664.865

24339.456

26233.125

605.009

Sphere

Best

Mean

Stdev.

3.12E-6

4.64E-5

5.28E-5

9.83E-8

7.24E-7

6.09E-6

Step

Best

Mean

Stdev.

12.905

15.647

0.847

12.302

15.133

0.701

Table 5: Experimental results for 100 parameters

In tests with 10, 50 and 100 parameters (see

Tables 3, 4 and 5 respectively), the original

algorithm outperformed modified only in tests for

penalized function.

As can be seen from presented tables, for almost

all test functions, modified CS has performed

slightly better than the original algorithm. Although

Proceedings of the European Computing Conference

ISBN: 978-960-474-297-4 267

there is no substantial improvement, presented

performance benefit should not be neglected.

Modified algorithm, as well as original,

establishes a fine balance of randomization and

intensification with small number of control

parameters. As for any metaheuristic algorithm, a

good balance of intensive local search strategy and

an efficient exploration of the whole search space

will usually lead to a more efficient algorithm [10].

On the other hand, there are only two parameters in

this algorithm, the population size n, and pd. Once n

is fixed, pd essentially controls the elitism and the

balance of the randomization and local search. Few

parameters make an algorithm less complex and

thus potentially more generic.

4 Conclusion
In this paper, we present an improved CS algorithm

for unconstrained optimization problems. The

capability of this algorithm was investigated through

the performance of several experiments on well-

known test problems. The results obtained by the

modified CS algorithm are satisfying.

As we can from the comparative analysis

between original and modified CS algorithm for

unconstrained optimization problems, new

algorithm has performed slightly better in seven of

eight benchmark functions. For only one function,

standard CS algorithm outperformed the modified

one. Future work will include investigation of the

modified CS performance in other benchmark and

real life problems.

References:

[1] Mitchell Melanie, Introduction to Genetic

Algorithms, MIT Press, 1999, pp. 158.

[2] Muhammad S. Yousuf, Hussain N. Al-

Duwaish, Zakaryia M. Al-Hamouz, PSO based

Single and Two Interconnected Area

Predictive, WSEAS Transactions on system

and control, Vol. 5, Issue 8, 2010, pp. 677-690.

[3] Angel E. Mu˜noz Zavala, Arturo H. Aguirre,

Enrique R. Villa Diharce, Constrained

Optimization via Particle Evolutionary Swarm

Optimization Algorithm (PESO), Proceedings

of the 2005 conference on Genetic and

evolutionary computation, Article in Press,

2005, doi:10.1145/1068009.1068041, pp. 209-

216.

[4] Reza A., Alireza M., Koorush Z., A novel bee

swarm optimization algorithm for numerical

function optimization, Communications in

Nonlinear Science and Numerical Simulation,

Vol. 15, Issue 10, 2009, pp. 3142-3155.

[5] Teodorovic, D., Dell’Orco M., Bee colony

optimization-a cooperative learning approach

to complex transportation problems,

Proceedings of the 16th Mini - EURO

Conference and 10th Meeting of EWGT -

Advanced OR and AI Methods in

Transportation, 2005, pp. 51-60.

[6] Drias, H., Sadeg, S., Yahi, S, Cooperative bees

swarm for solving the maximum weighted

satisfiability problem, Lecture notes in

computer science, Volume 3512, 2005, pp. 318

– 325.

[7] L. Jiann-Horng, H. Li-Ren, Chaotic bee swarm

optimization algorithm for path planning of

mobile robots, Proceedings of the 10th WSEAS

international conference on evolutionary

computing, 2009, pp. 84-89.

[8] Behriye Akay, Dervis Karaboga, A modified

Artificial Bee Colony algorithm for real

parameter optimization, Information Sciences,

Article in Press, doi:10.1016/j.ins.2010.07.015,

2010.

[9] Yang, X. S. and Deb, S., Cuckoo search via
Lévy flights, in: Proc. of World Congress on

Nature & Biologically Inspired Computing

(NaBIC 2009), 2009, pp. 210-214.

[10] Yang, X.S., and Deb, S. Engineering

Optimisation by Cuckoo Search, Int. J. of

Mathematical Modelling and Numerical

Optimisation, Vol. 1, No. 4, 2010, pp. 330–

343.

[11] Mahmood M. Nesheli, Othman C., Arash

Moradkhani R., Optimization of Traffic Signal

Coordination System on Congestion: A Case

Study, WSEAS Transactions on Advances in

Engineering Education, Vol. 6, Issue 7, 2009,

pp. 203-212.

[12] L. Ozdamar: A dual sequence simulated

annealing algorithm for constrained

optimization, Proceedings of the 10th WSEAS

International Conference on applied

mathematics, 2006, pp. 557-564.

[13] Rogerio A. Flauzino, Ivan N. Da Silva, Tuning

of Fuzzy Inference Systems Through

Unconstrained Optimization Techniques, 2002

WSEAS Int. Conf. on System Science, Applied

Mathematics & Computer Science, and Power

Engineering Systems, 2002, pp. 2611-2616.

Proceedings of the European Computing Conference

ISBN: 978-960-474-297-4 268

