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Abstract: - This paper presents modified cuckoo search (CS) algorithm for unconstrained optimization 

problems. Young and Deb`s cuckoo search algorithm was successfully used on some optimization problems 

and there is also a corresponding code. We implemented a modified version of this algorithm where the step 

size is determined from the sorted rather than only permuted fitness matrix. Our modified algorithm was tested 

on eight standard benchmark functions. Comparison of the pure cuckoo search algorithm and our modified one 

is presented and it shows improved results by our modification.  
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1 Introduction 
1Optimization has been an active area of research for 

several decades. As many real-world optimization 

problems become more complex, better 

optimization algorithms were needed. In all 

optimization problems the goal is to find the 

minimum or maximum of the objective function. 

Thus, unconstrained optimization problems can be 

formulated as minimization or maximization of D-

dimensional function: 
 

           Min (or max) f(x), x=(x1,x2,x3,…xD)       (1) 
 

where D is the number of parameters to be 

optimized.  
Many population based algorithms were 

proposed for solving unconstrained optimization 

problems. Genetic algorithms (GA), particle swarm 

optimization (PSO), and bee algorithms (BA) are 

most popular optimization algorithms which employ 

a population of individuals to solve the problem on 

hand. The success or failure of a population based 

algorithms depends on its ability to establish proper 

trade-off between exploration and exploitation. A 

poor balance between exploration and exploitation 

may result in a weak optimization method which 

may suffer from premature convergence, trapping in 

a local optima and stagnation.  

                                                 
1
 This research is supported by Ministry of Science, 
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GA is one of the most popular evolutionary 

algorithms in which a population of individuals 

evolves (moves through the fitness landscape) 

according to a set of rules such as selection, 

crossover and mutation [1].  

PSO algorithm is another example of population 

based algorithms [2]. PSO is a stochastic 

optimization technique which is well adapted to the 

optimization of nonlinear functions in 

multidimensional space and it has been applied to 

several real-world problems [3].  

Several metaheuristics have been proposed to 

model the specific intelligent behaviour of honey 

bee swarms [4], [5], [6], [7]. The bee swarm 

intelligence was used in the development of 

artificial systems aimed at solving complex 

problems in traffic and transportation [5]. That 

algorithm is called bee colony optimization 

metaheuristic (BCO), which is used for solving 

deterministic combinatorial problems, as well as 

combinatorial problems characterized by 

uncertainty. The artificial bee colony (ABC) 

algorithm is relatively new population based meta-

heuristic approach based on honey bee swarm [8]. 

In this algorithm possible solution of the problem is 

represented by food source. Quality of the solution 

is indicated by the amount of nectar of a particular 

food source. Exploitation process is carried by 

employed and onlooker bees, while exploration is 

done by scouts.  
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A new metaheuristic search algorithm, called 

cuckoo search (CS), based on cuckoo bird’s 

behaviour has been developed by Yang and Deb [9]. 

In this paper, we will introduce our modified 

version of CS algorithm and validate it against pure 

version on eight standard unconstrained test 

functions. For testing purposes, we developed our 

CS software named CSapp.  

 

 

2 Cuckoo search algorithm 
Cuckoo birds attract attention of many scientists 

around the world because of their unique behaviour. 

They have many characteristics which differentiate 

them from other birds, but their main distinguishing 

feature is aggressive reproduction strategy. Some 

species such as the Ani and Guira cuckoos lay their 

eggs in communal nests, though they may remove 

others’ eggs to increase the hatching probability of 

their own eggs [9]. Cuckoos engage brood 

parasitism. It is a type of parasitism in which a bird 

(brood parasite) lays and abandons its eggs in the 

nest of another species. There are three basic types 

of brood parasitism: intraspecific brood parasitism, 

cooperative breeding, and nest takeover [10].  

Some host birds do not behave friendly against 

intruders and engage in direct conflict with them. In 

such situation host bird will throw those alien eggs 

away. In other situations, more friendly hosts will 

simply abandon its nest and build a new nest 

elsewhere.  

Many studies have shown that flight behaviour 

of many animals and insects has demonstrated the 

typical characteristics of Lévy flights. Study 

conducted by Reynolds and Frye on fruit flies shows 

that fruit fly Dorsophila explores its landscape in a 

quite odd manner. This fly uses a series of straight 

flight paths with sudden 90
0
 turn, which leads to a  

Lévy-flight-style intermittent scale free search 

pattern.  

Lévy-style search behaviour and random search 

in general has been applied to optimization and 

implemented in many search algorithms [11], [12]. 

One of such algorithms is CS [10]. Preliminary 

results show its promising capability.    

  

 

2.1 Description of the original CS algorithm 

In order to simplify the description of novel Cuckoo 

Search algorithm, three idealized rules can be used 

[10]: 
 

• Only one egg at a time is laid by cuckoo. 

Cuckoo dumps its egg in a randomly chosen 

nest. 

• Only the best nests with high quality eggs will 

be passed into the next generation. 

• The number of available host nests is fixed. Egg 

laid by a cuckoo bird is discovered by the host 

bird with a probability pd   [0,1]. In this case, 

the host bird has two options. It can either throw 

the egg away, or it may abandon the nest. 
 

To make the things even more simple, the last 

assumption can be approximated by the fraction of 

pd of n nests that are replaced by new nests with new 

random solutions. Considering maximization 

problem, the quality (fitness) of a solution can 

simply be proportional to the value of its objective 

function. Other forms of fitness can be defined in a 

similar way the fitness function is defined in genetic 

algorithms and other evolutionary computation 

algorithms. A simple representation where one egg 

in a nest represents a solution and a cuckoo egg 

represent a new solution is used here. The aim is to 

use the new and potentially better solutions 

(cuckoos) to replace worse solutions that are in the 

nests. It is clear that this algorithm can be extended 

to the more complicated case where each nest has 

multiple eggs representing a set of solutions.  

When generating new solutions x
(t+1)

  for a 

cuckoo i, a Lévy flight is performed  using the 

following equation: 
 

               xi
(t+1)

 = xi
(t)

 + α ^ Lévy (λ),                 (2) 
 

where α (α>0) represents a step size. This step size 

should be related to the scales of problem the 

algorithm is trying to solve. In most cases, α can be 

set to the value of 1. The above expression is in 

essence stochastic equation for a random walk 

which is a Markov chain, whose next location 

(status) depends on two parameters: current location 

(first term in Eq. 2) and probability of transition 

(second term in the same expression). The product ^ 

represents entry-wise multiplications. Something 

similar to entry-wise product is seen in PSO 

algorithm, but random walk via Lévy flight is much 

more efficient in exploring the search space as its 

step length is much longer in the long run [11].  

The random step length is drawn from a Lévy 

distribution which has an infinite variance with an 

infinite mean:  
 

                      Lévy ~ u = t 
-λ
                         (3) 

   

where λ   (0,3]. 

Here the consecutive jumps/steps of a cuckoo 

essentially form a random walk process which 

obeys a power-law step length distribution with a 

heavy tail. 
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Taking into account basic three rules described 

above, pseudo code for CS algorithm is: 

  

   Start 
       Objective function f(x), x= (x1,x2…xu)T 
       Generating initial population of n host nests xi 

            (i=1,2,…n) 
   While (t<MaxGenerations) and (! termin.condit.) 
       Move a cuckoo randomly via Lévy flights 
       Evaluate its fitness Fi   
        Randomly choose nest among n available nests    
        (for example j)  
       If(Fi > Fj) Replace j by the new solution; 
       Fraction pd  of worse nests are abandoned and    
       new nests are being built; 
       Keep the best solutions or nests with quality  
       solutions; 
       Rank the solutions and find the current best  
   End while 
   Post process and visualize results 
   End  
 

 

2.2 Modified cuckoo search algorithm 

In the real world, if a cuckoo's egg is very similar 

to a host's eggs, then this cuckoo's egg is less likely 

to be discovered, thus the fitness should be related 

to the difference in solutions.  Therefore, it is a good 

idea to do a random walk in a biased way with some 

random step sizes.  

Both, original, and modified code use random 

step sizes. Compared to the original code, we use 

different function set for calculating this step size. 

In the original code, step size is calculated using 

following code expression: 
 

r*nests [permute1 [i]][j]- nests [permute2 [i]][j]   (4)     
 

where r is random number in [0,1] range, nests is 

matrix which contains candidate solutions along 

with their parameters, permute1 and permute2 are 

different rows permutation functions applied on 

nests matrix.  

In order to calculate the step size, instead of 

Equation 4, we used: 
 

r*nests [sorted [i]][j] - nests [permute [i]][j]    (5) 
 

The difference is that instead of permute1, we 

used sorted function. This function sorts nests 

matrix by fitness of contained solutions. In this way, 

higher fitness solutions have slight advantage over 

solutions with lower fitness. This method keeps 

the selection pressure (the degree to which 

highly fit solutions are selected) towards better 

solutions and algorithm should achieve better 

results. That does not mean that high fitness 

solutions will flood population and the 

algorithm will stuck in local optimum.  
At a first glance, it seems that there are some 

similarities between CS and hill-climbing in respect 

with some large scale randomization. But, these two 

algorithms are in essence very different. Firstly, CS 

is population-based algorithm in a way similar to 

GA and PSO, but it uses some sort of elitism and/or 

selection similar to that used in harmony search. 

Secondly, the randomization is more efficient as the 

step length is heavy-tailed, and any large step is 

possible. And finally, the number of tuning 

parameters is less than in GA and PSO, and thus CS 

can be much easier adapted to a wider class of 

optimization problems. 

 

 

3 Experiments 
In this section, we show experimental results which 

validated our modified CS algorithm. As mentioned 

above, we developed our CS software (CSapp), and 

all tests were run in our testing environment. For 

testing purposes, we also implemented original 

version of CS algorithm. We compared results of 

our modified CS algorithm with the original one. 

This comparison is shown in the tables within this 

section. 

 

 

3.1 Benchmarks 
To test the performance of a modified CS, eight well 

known benchmark functions are used here for 

comparison, both in terms of optimum solution after 

a predefined number of iterations and the rate of 

convergence to the optimum solution. These 

benchmarks are widely used in evaluating 

performance of population based methods but some 

population based methods for unconstrained 

optimization use different benchmarks [13]. 

In order to show how our algorithm performs, we 

used the following set of functions: 
 

 Ackley  

 DixonAndPrice 

 Griewank  

 Penalized 

 Rastrigin 

 Schwefel 

 Sphere 

 Step 

Proceedings of the European Computing Conference

ISBN: 978-960-474-297-4 265



Ackley function is a continuous, multimodal 

function obtained by modulating an exponential 

function with a cosine wave of moderate amplitude. 

Formulation: 

f(x)= - 20exp(    √
 

 
∑   

  
   ) –  

- exp (
 

 
∑            

   )       
 

The global minimum value for this function is 0 

and the corresponding global optimum solution is 

xopt =(x1, x2,…,xn) = (0, 0, . . .  , 0). 
 

DixonAndPrice is our second test function. The 

number of parameters is not determinate for this 

function. Formulation: 
 

f(x)=           + ∑      
  

           2
 

 

Global minimum is  f5 (x) = 0. 
 

Griewank is third test function. Definition:  
 

f(x) = ∑
  

 

    
  ∏       

 
   

 
    √       

 

The global minimum value for this function is 0 

and the corresponding global optimum solution is  

xopt =(x1, x2, . . . , xn) = (100, 100, . . .  , 100).  
 

Penalized function is difficult for optimization 

because of its combinations of different periods of 

the sine function. Definition: 
 

yi =  1 + 
 

 
 (xi + 1) 

 

The global minimum value for this function is 0 

and the corresponding global optimum solution is 

xopt =(x1, x2, . . . , xn-1, xn) = (-1, -1, . . .  , -1, -5). 

  

Rastrigin function is based on Sphere function 

with the addition of cosine modulation to produce 

many local minima. Definition: 
 

f(x) = 10n + ∑    
  

                   
 

The global minimum value for this function is 0 

and the corresponding global optimum solution is 

xopt =(x1, x2, . . . , xn) = (0, 0, . . .  , 0). 
 

Schwefel function as our sixth benchmark. 

Definition: 

f(x) = ∑         √    
 
    

 

This function has a value - 418.9828 and  at its 

global minimum (420.9867, 420.9867,…, 

420.9867). Schwefel’s function is deceptive in that 

the global minimum is geometrically distant, over 

the parameter space, from the next best local 

minima. Therefore, the search algorithms are 

potentially prone to convergence in the wrong 

direction. Test area is usually restricted to 

hypercube – 500 ≤ xi ≤ 500,  i = 1, . . . , n. 

Sphere function that is continuous, convex 

and unimodal. Formulation:   
 

f(x)=∑   
  

    
 

Global minimum value for this function is 0 and 

optimum solution is xopt =(x1, x2,…,xn) = (0, 0, .. , 0). 
 

Finally, Step is our eighth benchmark function.  

Definition: 

f(x) = ∑            
    

 

This function represents the problem of flat 

surfaces. It is very hard for algorithms without 

variable step sizes to conquer flat surfaces problems 

because there is no information about which 

direction can provide optimal solution. 

 

 

3.2 Experimental results and algorithm’s 

  settings 
We tried to vary the number of host nests 

(population size n) and the probability of discovery 

pd. We have used different settings for n  (5, 10, 15, 

20, 50, 100, 150, 250, 500) and for pd. (0, 0.01, 0.05, 

0.1, 0.15, 0.2, 0.25, 0.4, 0.5) . From test phase 

simulations, we found that n = 25 and pd = 0.25 are 

sufficient for most optimization problems. This 

means that the fine parameters tuning are not needed 

for any given problem. Therefore, we used fixed n = 

25 and pd = 0.25 for all given problems.  

We tested each benchmark function four times 

with 5, 10, 50 and 100 parameters. For every test, 

we carried on 30 runs with 500 cycles per each run. 

We printed out best and mean results as well the 

standard deviation within the set of 30 runs. 

Parameter settings are in Table 1.  
 

Parameter Value 

Runtime 30 

Max Cycle 500 

N 25 

D 5/10/50/100 

Pd 0.25 

Table 1: Parameter settings for benchmark 

functions. 
 

Tests were done on Intel Core2Duo T8300 

mobile processor with 4GB of RAM on Windows 7 

x64 Ultimate Operating System and NetBeans 6.9.1 

IDE (Integrated Development Environment). 

Experimental results with 5, 10, 50 and 100 

parameters are shown in Tables 2, 3, 4 and 5 

respectively. All tables have two columns with 

results in order to make side by side comparison. In 

the first column, we show results of original, and in 

the second, results of modified algorithm. We 

showed values for best, mean and standard dev. 
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Function  Original Modified 

Ackley 

Best 

Mean 

Stdev. 

1.17E-12 

8.52E-11 

2.23E-10 

0.05E-12 

2.01E-11 

1.12E-10 

DixonAndPrice 

 

Best 

Mean 

Stdev. 

3.40E-1 

0.057 

0.097 

2.32E-2 

0.008 

0.062 

Griewank 

 

Best 

Mean 

Stdev. 

5.26E-25 

4.35E-19 

1.13E-17 

1.66E-27 

9.05E-20 

9.31E-17 

Penalized 

 

Best 

Mean 

Stdev. 

1.29E-6 

2.04E-5 

2.17E-5 

5.49E-7 

1.12E-5 

0.11E-5 

Rastrigin 

 

Best 

Mean 

Stdev. 

3.28E-18 

1.77E-16 

9.56E-16 

1.03E-19 

3.52E-18 

5.52E-18 

Schwefel 

Best 

Mean 

Stdev 

0.391 

134.333 

68.546 

0.352 

125.886 

56.002 

Sphere 

 

Best 

Mean 

Stdev. 

8.31E-26 

2.50E-22 

7.88E-22 

4.63E-28 

8.45E-24 

4.23E-23 

Step 

 

Best 

Mean 

Stdev. 

3.87E-6 

3.57E-5 

4.60E-5 

1.23E-6 

1.44E-5 

1.05E-5 
 

Table 2: Experimental results for 5 parameters 
 
 

As we can see from the Table 2, modified CS 

algorithm has outperformed the original algorithm 

in all eight benchmark functions in tests with 5 

parameters. 

 
Function  Original Modified 

Ackley 

Best 

Mean 

Stdev. 

1.65E-7 

1.10E-6 

9.30E-7 

3.56E-8 

9.13E-7 

0.05E-8 

DixonAndPrice 

 

Best 

Mean 

Stdev. 

0.593 

0.664 

0.013 

0.455 

0.602 

0.004 

Griewank 

 

Best 

Mean 

Stdev. 

3.15E-18 

5.03E-15 

9.89E-15 

5.67E-19 

7.56E-16 

8.92E-16 

Penalized 

 

Best 

Mean 

Stdev. 

3.20E-4 

2.19E-4 

9.93E-3 

8.45E-4 

1.22E-3 

1.02E-2 

Rastrigin 

 

Best 

Mean 

Stdev. 

1.77E-15 

4.72E-9 

1.16E-8 

5.03E-17 

8.51E-11 

5.81E-10 

Schwefel 

 

Best 

Mean 

Stdev. 

661.309 

883.518 

124.294 

628.205 

862.334 

102.004 

Sphere 

 

Best 

Mean 

Stdev. 

4.29E-15 

6.04E-13 

9.66E-13 

1.09E-16 

2.32E-14 

4.29E-14 

Step 

 

Best 

Mean 

Stdev. 

8.12E-5 

3.33E-4 

7.66E-4 

1.05E-5 

1.23E-4 

2.52E-4 

Table 3: Experimental results for 10 parameters 

 

If we compare test results with 10 and 50 

parameters (see Tables 3 and 4), we can observe that 

the performance is almost the same. 

Function  Original Modified 

Ackley 

Best 

Mean 

Stdev. 

3.91E-5 

5.39E-4 

4.19E-4 

0.72E-5 

3.21E-4 

2.09E-4 

DixonAndPrice 

 

Best 

Mean 

Stdev. 

0.667 

0.674 

0.022 

0.625 

0.661 

0.015 

Griewank 

 

Best 

Mean 

Stdev. 

1.58E-9 

1.60E-8 

2.50E-8 

9.92E-10 

0.41E-8 

1.02E-8 

Penalized 

 

Best 

Mean 

Stdev. 

0.115 

0.206 

0.039 

0.193 

0.288 

0.076 

Rastrigin 

 

Best 

Mean 

Stdev. 

8.53E-8 

8.01E-6 

1.23E-5 

2.39E-14 

2.39E-10 

0.03E-7 

Schwefel 

 

Best 

Mean 

Stdev. 

9781.549 

10813.984 

361.787 

9653.209 

10012.562 

307.905 

Sphere 

 

Best 

Mean 

Stdev. 

2.36E-8 

4.64E-6 

8.43E-6 

3.02E-10 

9.45E-8 

9.49E-8 

Step 

 

Best 

Mean 

Stdev. 

3.392 

4.141 

0.532 

3.013 

3.994 

0.486 

Table 4: Experimental results for 50 parameters 

 

 
Function  Original Modified 

Ackley 

Best 

Mean 

Stdev. 

1.93E-4 

0.035 

0.005 

0.31E-4 

0.026 

0.002 

DixonAndPrice 

 

Best 

Mean 

Stdev. 

0.668 

0.698 

0.057 

0.598 

0.676 

0.045 

Griewank 

 

Best 

Mean 

Stdev. 

2.56E-9 

2.81E-7 

3.11E-7 

0.61E-9 

1.05E-7 

1.85E-7 

Penalized 

 

Best 

Mean 

Stdev. 

0.402 

0.474 

0.047 

0.502 

0.594 

0.092 

Rastrigin 

 

Best 

Mean 

Stdev. 

4.43E-6 

1.31E-4 

1.64E-4 

1.91E-11 

0.06E-8 

1.12E-5 

Schwefel 

 

Best 

Mean 

Stdev. 

24983.536 

26902.073 

664.865 

24339.456 

26233.125 

605.009 

Sphere 

 

Best 

Mean 

Stdev. 

3.12E-6 

4.64E-5 

5.28E-5 

9.83E-8 

7.24E-7 

6.09E-6 

Step 

 

Best 

Mean 

Stdev. 

12.905 

15.647 

0.847 

12.302 

15.133 

0.701 

Table 5: Experimental results for 100 parameters 

 

In tests with 10, 50 and 100 parameters (see 

Tables 3, 4 and 5 respectively), the original 

algorithm outperformed modified only in tests for 

penalized function. 

As can be seen from presented tables, for almost 

all test functions, modified CS has performed 

slightly better than the original algorithm. Although 
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there is no substantial improvement, presented 

performance benefit should not be neglected. 

Modified algorithm, as well as original, 

establishes a fine balance of randomization and 

intensification with small number of control 

parameters. As for any metaheuristic algorithm, a 

good balance of intensive local search strategy and 

an efficient exploration of the whole search space 

will usually lead to a more efficient algorithm [10]. 

On the other hand, there are only two parameters in 

this algorithm, the population size n, and pd. Once n 

is fixed, pd essentially controls the elitism and the 

balance of the randomization and local search. Few 

parameters make an algorithm less complex and 

thus potentially more generic. 

 

 

4 Conclusion 
In this paper, we present an improved CS algorithm 

for unconstrained optimization problems. The 

capability of this algorithm was investigated through 

the performance of several experiments on well-

known test problems. The results obtained by the 

modified CS algorithm are satisfying.  

As we can from the comparative analysis 

between original and modified CS algorithm for 

unconstrained optimization problems, new 

algorithm has performed slightly better in seven of 

eight benchmark functions. For only one function, 

standard CS algorithm outperformed the modified 

one. Future work will include investigation of the 

modified CS performance in other benchmark and 

real life problems. 
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