
SIS-SEIQR Adaptive Network Model for Pandemic Influenza

WANNIKA JUMPEN1∗,2, SOMSAK ORANKITJAROEN1,2, PICHIT BOONKRONG1,2

BOONMEE WATTANANON1, BENCHAWAN WIWATANAPATAPHEE1,2

1Department of Mathematics, Faculty of Science, Mahidol University, THAILAND
2Centre of Excellence in Mathematics, CHE, THAILAND

∗Corresponding author: scwjp@mahidol.ac.th

Abstract: This paper aims to present an SIS-SEIQR network model for pandemic influenza. We propose a net-
work algorithm to generate an adaptive social network with dynamic hub nodes to capture the disease transmission
in a human community. Effects of visiting probability on the spread of the disease are investigated. The results
indicate that high visiting probability increases the transmission rate of the disease.
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1 Introduction

Many countries around the world have continuously
announced about new human cases of an influenza
A(H1N1) virus infection. Geographic spread of the
H1N1 virus continues to evolve. The greatest number
of cases is in Mexico, the United States, and Canada.
There are also reports of cases in Europe, Asia, and in
Latin America [3]. The influenza situation in Thailand
was worrisome, after 470 people fell ill and two died
in January, 2011 [4]. Currently, such outbreaks are
taking place only in North America. The WHO is now
keeping the pandemic alert level at phase 5. Whenever
community-level transmission occurs in more than 1
WHO region, the pandemic alert level will increase to
phase 6. In Thailand for the moment, there is no tool
available for simulating and forecasting the spread of
influenza.

Over the last three decades, a number of works
on influenza modeling have been done [1, 2, 5, 8]. It
has been recognized that mathematical model solely
may cause the uncertainty in prediction of the spread-
ing and public health responses. Recently, many
researchers have proposed epidemic models involv-
ing a network of nodes in a discrete space domain
[6, 7, 9, 10, 11, 12]. The existing epidemic network
models just consider the disease spread only among
the people in a contact range. In fact, the disease
frequently spreads from the public places to popula-
tion. Thus, the epidemic network model taking into
account the features of public places in the commu-
nity can capture the spread of the disease in biological
network.

This paper proposes an algorithm for generating
a complex network and presents a numerical study for

the spreading of SIS-SEIQR infections in complex
networks. The rest of the paper is organized as fol-
lows. The network algorithm is presented in section
2, followed by the network characteristics in section
3. Section 4 deals with the SIS-SEIQR network
model, and discussion and conclusion are given in
section 5.

2 Network Algorithm
To mimic the social activities, we propose a net-
work algorithm to generate an adaptive social network
for studying the SIS-SEIQR disease transmission.
There are two types of networks in this study consist-
ing of a number of ordinary nodes (people) and may
or may not have dynamic hub nodes (public places)
with connecting links within a unit square region.

Let N and Nh be the total number of nodes and
hub nodes in the network; Rmin, Rs, Rhomin, Rh

and Rhmin be the minimum distance between any
two ordinary nodes, the neighborhood contact radius
of each ordinary node, the minimum distance be-
tween hub nodes and any ordinary nodes, the hub ra-
dius, and the minimum distance between any two hub
nodes, respectively; (xr, yr) be a random coordinate
in [0, 1] × [0, 1]; P (x, y) be the positions of any node
and dij be the distance between any node i and j.

Step 1 Generating hub nodes
If (Nh = 0 ), go to Step 2.

Step 1.1 Set a position of the first hub node
(i = 1),

Pi(x, y)← P (xr, yr)
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attach the node to the network
set i = i + 1.

Step 1.2 Select randomly a new position
P (xr, yr) .

Step 1.3 Pi(x, y)← P (xr, yr).
Step 1.4 If (0 < dij < Rhmin for j = 1, ..., i),

goto Step 1.2.

Step 1.5 Attach the hub node to the network and
set i = i + 1.

Step 1.6 Repeat Step 1.2 to Step 1.5 until all hub
nodes are generated.

Step 2 Generating ordinary nodes

Step 2.1 Set a position of the first ordinary node
(i = Nh + 1),

Pi(x, y)← P (xr, yr).
Step 2.2 If (Nh = 0),

attach the node to the network
else

if (0 < dij < Rhomin for j = 1, ..., i),
goto Step 2.1

else attach the node to the network
set i = i + 1.

Step 2.3 Select randomly a new position
P (xr, yr).

Step 2.4 Pi(x, y)← P (xr, yr).
Step 2.5 For j = 1, i

If (j > Nh)
If (0 < dij < Rmin), goto Step 2.3.

else
If (0 < dij < Rhomin), goto Step 2.3.

Step 2.6 Attach the ordinary node to the net-
work and set i = i + 1.

Step 2.7 Repeat Step 2.3 to Step 2.6 until all or-
dinary nodes are generated.

Step 3 Determining neighborhood Ni

For i = 1, N
For j = 1, N

If (i ≤ Nh and i �= j)
If (j ≤ Nh and dij < Rh)

add node j to neighborhood Ni of the hub node i
else

If (j > Nh and dij < Rs)
add node j to neighborhood Ni of the ordinary
node i.

3 The Network Characteristics
Using our network algorithm to generate a network in
a unit square region and setting Nh = 0 (no hub node)

and Rs ≤
√

2, we have a local network. If Rs ≈√
2, it is a homogenous network. Otherwise, it is a

heterogenous network. For the homogenous network,
every node has N−1 edges and each node connects to
one of the other N − 1 nodes. For Nh > 0, Rs �

√
2

and the degree of hub node varies in time, we have
a network with adaptive hub nodes and we call it an
adaptive network.

The topologies and properties of the network de-
pend on the network parameters including the number
of nodes and contact radius. Figure 1 presents topolo-
gies of a part of the heterogenous network with 4 dif-
ferent contact radii.

(a) (b)

(c) (d)

Figure 1: Topologies of a part of the heterogeneous
network with 4 different contact radii (a) Rs = 0.05,
(b) Rs = 0.07, (c) Rs = 0.09 and (d) Rs = 0.11

An increase of contact radius increases the number of
edges (|E|) , the average degree (̄k), the clustering co-
efficient (C) but decreases the average vertex-vertex
distance (d̄) as shown in Figure 2 and Table 1.

Table 1: Properties of the local network for different
contact radii Rs

Rs 0.05 0.07 0.09 0.11
√

2
|E| 3625 6879 11279 17460 499500
k̄ 7 14 23 35 999
d̄ 9.687 6.688 5.131 4.162 1
C 0.497 0.559 0.584 0.604 1

The homogeneous network with Rs ≈
√

2 is a
small-world network. Its clustering coefficient (C) is
highest, C = 1. To investigate the effect of contact
radius on the degree distribution of the local network,
we use four values of contact radii. Figure 3 plots
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Figure 2: Dependence of the network properties with
contact radius for the local network.

an average fraction of nodes of degree k, denoted by
P (k), versus degree k. It shows the effect of contact
radius on the degree distribution. The result indicates
that contact radius has significant effect on the degree
distribution of the network. High contact radius gives
high degree of nodes but reduces peak value of P (k).
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Figure 3: The degree distribution of the heterogeneous
network with four contact radii Rs of 0.05, 0.07, 0.09
and 0.11 (from the left to the right curves).

To study how the disease spreads in the popula-
tion network, we use the adaptive network with 1000
nodes comprising a number of ordinary nodes Np and
a few number of hub nodes Nh. In real situation, peo-
ple in a different group may visit public places in a
different time, we then apply the visiting probability
p of the ordinary nodes to determine the change of
the node-hub links of network over the time. Figure
4 presents topologies of the adaptive network with the
hub radius Rh of 0.25, the contact radius Rs of 0.07

and the visiting probability p of 0.5 at four different
times including 0, 5, 10 and 15 days.The use of the
visiting probability results in the change of the con-
nection over time time between hub nodes and sur-
rounding nodes.

4 The SIS-SEIQR Network Model
We here consider the pandemic influenza A (H1N1)
on the adaptive network with dynamic 9 hub nodes,
contact radius Rs of 0.07 and hub radius Rh of 0.25
based on the flow diagram in Figure 5 corresponding
to the following SIS-SEIQR epidemic model.

Figure 5: A flow diagram of transmission dynamic of
SIS − SEIQR.

Model for hub nodes:

dSh

dt
= −ShI + γhIh,

dIh

dt
= ShI − γhIh,

(1)

Model for ordinary nodes:

dS

dt
= −S(βI + βhIhp),

dE

dt
= S(βI + βhIhp)− (α + κ)E,

dI

dt
= αE − (γ + δ)I,

dQ

dt
= δI − εQ,

dR

dt
= κE + γI + εQ,

(2)

where the parameters β, βh, α, γ, δ and ε are non-
negative constants described in Table 2. The letters
S, E, I, Q and R represent the numbers of suscep-
tible, exposed, infected and recovered individuals of
ordinary nodes whereas Sh and Ih represent numbers
of susceptible and infected individuals of hub nodes.
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(a)

(b) (c) (d)

Figure 4: Topology of a part of the adaptive network (Nh = 9) corresponding to the neighborhood contact radius
Rs of 0.07, the hub radius Rh of 0.25 and the visiting probability p of 0.5 at four different times: (a) t = 0 day, (b)
t = 5 days, (c) t = 10 days, (d) t = 15 days.

Table 2: Model parameters and descriptions
Parameter Descriptions

β Transmission rate of ordinary nodes
βh Transmission rate of hub nodes
p Visiting probability
α Transfer rate at which E becomes I

γ Transfer rate at which I becomes R

δ Transfer rate at which I becomes Q

ε Transfer rate at which Q becomes R

To examine of the effect of the visiting probability on
the disease spread, four values of p are investigated.
Figure 6 shows the effect of the visiting probability on
the disease spread on the adaptive network with β of

0.05, βh of 0.002 and Rh of 0.25. The results indicate
that the network with the higher visiting probability
gives larger number of exposed, infected and quaran-
tine individuals. Additionally, the higher of the vis-
iting probability leads to the higher transmission rate
and the shorter period of transmission. An increase of
p from 0.2 to 0.8 reduces the period of transmission
from 32 days to 18 days.

5 Discussion and Conclusion

We propose an algorithm to generate adaptive social
network for studying the SIS-SEIQR pandemic in-
fluenza. The network characteristics and properties
are presented. We simulate the pandemic influenza on
the SIS-SEIQR adaptive network with 9 dynamic
hub nodes. The results show that the visiting proba-
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(a) p = 0.20

0 15 30 45
0

0.25

0.5

0.75

1

Time (day)

Pr
op

or
tio

n 
of

 e
ac

h 
in

di
vi

du
al

s

0 15 30 45
0

0.1

0.2

0.3

Time (day)

Pr
op

or
tio

n 
of

 e
ac

h 
in

di
vi

du
al

s

(b) p = 0.40
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(c) p = 0.60
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(d) p = 0.80

Figure 6: Effect of visiting probability p on the disease
spread in the adaptive network with Rs = 0.07 and
Rh = 0.25.

bility has significant effects on disease transmission.
This implies that to control the spread of the disease
when the pandemic influenza occurs, the public places
such as theater and school would be closed or epi-
demiologist would suggest the risk people avoid visit-
ing the public places.
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