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Preface 
 

 
The minmax problem is the most interesting part of the general problem of equilibrium. It is related 

mainly to the adoption of a prudent strategic behavior and the starting points are the axioms of rational 

behaviour of decision makers who participate in the decisional process. 

The paper proposes a comprehensive approach of the problem starting with the analysis of 

algebraic and topological conditions which contain solutions, continuing with the presentation of the main 

algorithms that can be used to solve the problem and ending with solving actual minmax problems 

encountered in technical economic practice. 

The book provides a summary of the main theoretical results found in specialized literature, while 

the elements of novelty and originality of the work are highlighted as follows: presenting new entropic 

optimality criteria and specifying the conditions of equivalence; extending the results obtained to a criterion 

less studied in specialized literature – the equalization criterion; the introduction of a new alignment 

criterion in the decision theory – the maximum probability criterion - and the analysis of its degree of 

generality; presenting an entropic solution to the problem of distribution of final outcomes (an issue 

commonly seen in the context of cooperative game theory); the analysis of the stability of coalitions formed 

by a special technique based on algebraic and entropic calculations. 

We also hope that the paper is a useful tool for professionals working in economic and technical 

fields, because it provides complete solutions for several important applications, such as: determining the 

moments of equipment failure, the analysis of mining stability in open mining, establishing the market 

equilibrium interest, solving important capitalization problems in terms of variable interest. 

The author wishes to thank the World Scientific and Engineering Academy and Society (WSEAS) 

for their support and for the special concern shown towards the publishing of this book under impeccable 

graphics. 
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Introduction  
 

 
Decision theory is an important area of applied mathematics, the development of which begins during the 

first decades of the last century. It is based on fundamental results from mathematical analysis, probabilistic 

and statistical calculations, numerical calculations, optimization theory etc. 

In fact, this new mathematical theory tries to model the most complex movement, the social 

movement (obviously, in terms of known economic and technical restrictions). In this respect, there were 

introduced rational behaviour concepts, the concept of utility, optimal decisional behaviour criteria in 

various situations (cautious behavior, risk behavior, total and partially cooperative cases).  

The paper aims to highlight and develop the main results of sequential decision theory emphasizing 

an important category of optimal points - the equilibrium points.  

It consists of six chapters; the first three are theoretical and the last chapters are concerned with 

actual application. Each chapter concludes with a separate paragraph entitled "Bibliographical Notes and 

Comments" which is a brief summary of the main results obtained by other authors and of the main open 

problems encountered (if any).  

Chapter 1 is an introductory chapter and presents the main concepts and results needed to develop 

the next chapters. Primarily, it dwells on the problem of entropy, a concept that is really fascinating for a 

wide range of mathematicians, engineers and economists.  

The problem is not completely analyzed, but it highlights the main types of entropy encountered 

(weighted and unweighted) and entropic concepts used in the system theory (degree of organization, degree 

of concentration, forecast). 

A separate paragraph of this chapter is dedicated to the analysis of some reference decisional 

processes; this analysis is being performed only at the level of basic concepts and fundamental results.  

The second chapter is entitled “The Minmax Inequality and Equality”. It starts from the fact that for 

a zero-sum game and two decision makers, a saddle point represents, actually, a particular case of 

equilibrium point. The double inequality that characterizes a saddle point is equivalent (under some 

algebraic and topological conditions) to a special optimal equation also known as the minmax equation. 

One can define the existential conditions of the minmax equality and one may characterize analytically the 

properties of the solutions of this equation. These goals are achieved both in the situation when there is no 

information exchange between players and in the (more complicated) case when exchanging information 

between players is allowed. There are some numerical methods for solving the minmax problem (both in 

simple strategies and in mixed strategies) and the emphasis falls on two constructive methods (actually two 

combined methods) due to the author. 

The third chapter is entitled “Minmax Decisions” and it constitutes a reference chapter of the paper. 

Basically, it is an extension of some results presented in the specialized literature and also of some issues 

approached by the author. First, the principles of optimal behavior are considered for a sequential decision 

problem in all possible stages: the non-cooperative case, the total cooperative and partially cooperative 

case. The reference optimal principles for the non-cooperative case are analyzed and extended (the 

maximum probability criterion, the criterion of maximum profit, the principle of stability etc.) and the 

results of the equalization principle are also developed (a lesser-known optimal principle). A new coalition 

criterion is being introduced in decision theory and its properties and its degree of generalization can be 

analyzed. The novelty of the chapter and, thus, of the entire paper, is the study of coalition stability (through 

an algebraic-probabilistic method and an entropic method), as well as giving an entropic solution of final 

gains, knowing that the distribution of final gains remains an open problem of cooperative games. 

The last chapters of this work have an applicatory characteristic.  

The fourth chapter is entitled “Applications of Minmax Equalities and of Equilibrium Points in the 

context of Analyzing the Operation Safety of a System”. 

The problem of determining the moments of a system failure is extremely difficult, especially when 

taking into account the structure of the system and the possibility of renewal. Basically, it starts from the 

graph associated with a system made up of several components, a system subject to the operating - failure - 

renewal requirements. The graph is immediately associated with a finite difference equation system and a 

system of differential equations, respectively. Applying the Laplace transformation we are led to solving an 

extremely difficult algebraic system, the equations being transcendental. Using the method of successive 

approximations, one can approximate the solutions of these equations and hence the unavailability of the 

system caused by each component. System availability is determined as a solution of a special maxmin 

problem and the moments of failure can be found immediately as equilibrium points. 

iv 



 

The last part of this chapter analyzes, using the minmax optimization technique, the dependence 

between the reliability of a system and power consumption. This dependence can be written analytically as 

a double integral while optimal maxmin and minmax problems can be solved by using Pontriaghin principle 

of maxmin and some methods specific to the game theory. The results are completed after determining the 

reliability increasing coefficients and the decrease in consumption of electricity in the case of interventions 

in moments of equilibrium, as well as the estimating the costs associated to these interventions.  

Chapter five is entitled "Applications of Minmax Equality within Problems Regarding 

Capitalization of Compound Interest” and it provides economic insight for this specific issue. 

It starts from the analytical expression of the compound interest capitalization polynomial and it 

presents the main results of optimal maxmin and minmax problems that occur.  

A milestone of this chapter is that it analyzes the situations when the unit interest is variable while 

the efficiency functions adopted do not allow the use results specific to differential calculus. The results are 

important and provide interesting economic interpretations.  

There are several options to approach the market equilibrium interest calculation; the most rigorous 

version is when it starts from the analytical expressions of the elasticity coefficients of credit demand and 

supply. 

It is analyzed the situation in which the elasticity coefficients are of polynomial type and unit 

interest is of equilibrium type; however the market equilibrium interest can only be approximated, not 

calculated (as the solution of a transcendental equation). 

The last chapter of this paper is entitled “Maxmin Optimal Method for Analyzing the Stability of 

Works in Open Pit Mining”. It dwells on a very important issue from practical point of view, because the 

exploitation of quarries is often more advantageous (in terms of costs and risk conditions) then the 

exploitation of underground deposits. On the other hand, the specialized literature does not know a rigorous 

method of analyzing the stability of mining pits. Basically, in the case of sliding on plane surfaces the 

mining work is considered to be stable if the stability coefficient is a proper fraction. Since the actual 

stability coefficient can only be approximated (mainly because of approximate quantification of the 

working conditions), one cannot say precisely what happens if this coefficient is approximately 1 or even 

greater. For this reason, Forster's idea seemed interesting: the breaking curve (in section) is not an arc but a 

section of a normal distribution for which a precise method for calculating the average and the dispersion 

value is given. Therefore, this chapter further develops this method and it also presents a new method of 

approximate calculation which determines the center and the radius of the circle according to which the 

slope is sliding (in fact it is a sequential method).  
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BASIC NOTIONS AND FUNDAMENTAL RESULTS 
 

 

The purpose of this introductory part is to show some reference results in the subsequent approaches of the 

paper. 

 

1.1 Entropy and entropic quantities used in the analysis of systems 
 

1.1.1 The Concept of Entropy 

Let us start a certain experiment ξ, the outcomes of which are the states E1, E2, ..., En; we shall note p1, p2, …,pn 

the probability of occurrence of these events. Therefore, the following conditions must be met: 

≥ =ip 0,i 1,n,  

=

=∑
n

i

i 1

p 1  

The entropy associated with the experiment is denoted by H(ξ), or simply H  when there is no risk of 

mistaking H(ξ) for H notations. The entropy measures: 

- the amount of indetermination contained before the experiment realization; 

- the information obtained after the experiment.  

The first measure of entropy was given in 1928 by Hartley, starting from the study of some 

communication problems.  

The concept of entropy was introduced rigorously by Shannon in 1948, based on the study of 

communication problems; practically, entropy is obtained as the solution of the following functional equation: 

= +H( xy ) H( x ) H( y ) , 

meeting the condition: H(1) = 0, where H is a monotonously increasing function. 

The solution of this equation is H(x) = a ln x, ∈a ℝ , while the entropy according to Shannon is 

defined as the average value of the discrete random variable 
 
 
 

1 2 n

1 2 n

x x ... x
X

p p ... p
 where xi = - ln pi, =i 1,n . 

If p is the distribution of probabilities (p1, p2, …, pn), then Shannon entropy associated with this 

distribution is written H and it is defined using the following equality: 

=

= −∑
n

1 2 n i i

i 1

H( p , p ,..., p ) p ln p       (1) 

Remark 1.1 Shannon's maximum entropy is made for an equi-probable distribution, i.e. when  

= = = =1 2 n

1
p p ... p

n
 

and consequently  

  = − = 
 

1 1 1 1
H , ,..., ln ln n

n n n n
 

It turned out that the entropy introduced by Shannon does not allow clear interpretation from technical 

– economic point of view and in order to avoid the subjectivity of such interpretations, other types of 

entropy were subsequently introduced.  

Basically, we can talk about these types of entropy: 

- unweighted entropy (which does not take into account the efficiency of states); 

- weighted entropy (which take into account the efficiency of states). 

 

 

1.1.1.1 Unweighted Entropies 

The most well-known unweighted entropies (besides Shannon entropy) are the so-called entropies of order α 

(attributed to Renyi) and α type entropies (attributed to Daroczy) .  

 

The entropy of order αααα [73], [84] 

Let Hα be the entropy defined as follows: 
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( ) =

=


≠ −

= 
− =


∑

∑

n

i

i 1

1 2 n n

i i

i 1

1
ln p , 1

1
H p , p ,..., p

p ln p , 1

α

α α
α

α
    (2) 

It can be verified immediately that Shannon entropy is a borderline case of α-order entropy, that is to 

say the following equality holds true: 

( ) ( )
→

=1 2 n 1 2 n
1

lim H p , p ,..., p H p , p ,..., pαα
 

Renyi's entropy retains the remarkable property of being additive. 

+ = +1 2 1 2H ( ) H ( ) H ( )α α αξ ξ ξ ξ  

This property can be interpreted as follows: the indetermination, i.e. the informational gain 

corresponding to the sum of events equals the sum of indeterminations, i.e. the sum of informational gains of 

events.  

 

αααα Type entropy [84] 
Let H

α
 be the entropy defined as follows: 

                 

   ( )
−

=

=

 − − ≠  = 
− =


∑

∑

n

i1
i 1

1 2 n n

i i

i 1

1
1 ( p 1), 1

2
H p , p ,..., p

p ln p , 1

α
α

α

α

α
    (3) 

Even in this case the Shannon entropy proves to be a borderline case of Daroczy entropy: 

( ) ( )
→

=1 2 n 1 2 n
1

lim H p , p ,..., p H p , p ,..., pα

α
 

Unlike Renyi entropy, Daroczy entropy does not retain the property of additivity, that is to say that the 

following equalities occur: 

+ > +1 2 1 2H ( ) H ( ) H ( ),α α αξ ξ ξ ξ  if > 1α ; 

+ = +1 2 1 2H ( ) H ( ) H ( ),α α αξ ξ ξ ξ  if < <0 1α . 

Remark 1.2 Although they admit different construction, entropies of order α and those of type α lead 

to similar results and therefore the possibility of being interpreted differently can be reduced.  

 

1.1.1.2 Weighted Entropies 

Let us consider the experiment ξ  which is associated with the states E1, E2,, …, En with the probabilities p1, p2, 

…, pn. The following conditions are necessary: 

≥ =ip 0,i 1,n,  
=

=∑
n

i

i 1

p 1  

If u is the efficiency function associated with the experiment ξ, we shall note u1, u2, …, un the efficiency 

of the states corresponding to ξ,: 

= = =1 1 2 2 n nu u( E ),u u( E ),...,u u( E )  

Weighted entropy (S. Guiasu) [44] 
This is denoted by HG and it is defined by the following equality: 

=

= −∑
n

G i i i

i 1

H ( u, p ) u p ln p       (4) 

where u and p represent the vectors (u1, u2,, …, un) and (p1, p2,, …, pn), respectively. 

Besides the fact that the analytical expression (4) shows clearly the contribution of state efficiency, 

Guiasu entropy has other properties as well, among which the most important are: 

1. ≥GH ( u, p ) 0 ; 

2. if = = = =1 2 nu u ... u 1 , then it coincides with Shannon entropy, meaning =GH ( u, p ) H( )ξ ; 

3. =G GH ( u, p ) H ( u, p )λ λ  which proves that this entropy is homogenous in the first argument. 

Relative entropy (Watanabe) 
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This concept is an adaptation of Gibbs' entropy from thermodynamics.  

This is defined somewhat differently from the previous entropy but the outcome is about the same, 

therefore the interpretations generated do not differ. We shall note it Hw and it is defined as follows: 

=

=∑
n

i
W i

i 1 i

Au
H ( u, p ) p ln

p
     (5) 

Where: 

=

≥ = =∑
n

i i

i 1

u 0, i 1,n, u 1  

= ≥1 2 nA A( u ,u ,...u ) 0  

 In this case, iAu plays the role of the utility function for the state =iE ,i 1,n . In the case of 

=1 2 nA( u ,u ,...u ) 1 , one can obtain a particular form of relative entropy approached by Tövissi, starting form an 

original point of view.  

 By computing the right component of the relation (5) we get for =1 2 nA( u ,u ,...u ) 1 : 

= =

= − +∑ ∑
n n

W i i i i

i 1 i 1

H ( u, p ) p ln p p lnu  

It is to be noted that the first member of the expression above is exactly the Shannon entropy and the 

second term can be interpreted as the average value of the utility logarithms.  

Remark 1.3 If utility logarithms can be interpreted as utilities, this means that Watanabe entropy can 

be defined as the sum of Shannon entropy and the average value of state utilities.  

In addition to these properties, the entropy is nonnegative and additive.  

Aggregate entropy (S. Birlea) 
It is an entropic concept derived from the study of the degree of organization of systems. Suppose that a 

system S consists of n subsystems S1, S2, …, Sn, and the weights (importance coefficients) of these systems are 

p1, p2, …, pn. Obviously: 

≥ =ip 0,i 1,n,   
=

=∑
n

i

i 1

p 1  

We shall note H(S), H(S1), H(S2), …, H(Sn) the Shannon entropies associated with the system and the 

subsystems, respectively. 

Birlea entropy is denoted by HB and it is defined as follows: 

=

= −∑
n

B i i i

i 1

H ( S ) p H ( S ) H( S )      (6) 

which means the difference between  the average of entropies of subsystems and the entropy of the system. 

It is actually a variant of the degree of organization according to Watanabe which means that the 

system is more organized if the overall behavior is better known, regardless of the behavior of subsystems.  

 

1.1.2 Entropic Concepts Used in the Analysis of Systems 

Taking into consideration the concept of entropy, in the specialized literature there were several attempts to 

study some reference properties of systems through this concept: degree of organization, degree of 

concentration, prediction, uncertainty. 

The first two properties are used most often, that is the degree of organization and the degree of 

concentration, while prediction is a probabilistic variant of the forecast and uncertainty is a relatively new 

concept about which there are few results. 

 

 

1.1.2.1 Degree of Organization 

The organization issue - one of the newest and the most useful problems related to the optimal decision 

framework - raises difficulties in terms of mathematical approach, which is explained by the fact that it has 

appeared only recently in specialized literature.  

Often, the notion “degree of concentration” is used as the degree of organization, which is incorrect 

because the concepts of organization and concentration mean different things; therefore they should be 

interpreted differently.  
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Suppose we have a system S that consists of a finite number of subsystems =iS , i 1,n . 

The degree of organization of system S was introduced by Watanabe under the name of interdependence 

(probability) between the corresponding probability fields of S and those corresponding to =iS , i 1,n . 

=

= −∑
n

1 2 n i

i 1

W( S ,S ,...,S ) H( S ) H( S )     (7) 

where: H (Si) – the entropy of the system; 

H (S) - is the entropy of system S and it is defined using the product probability.  

The entropy of the system will be denoted by H, the entropy of the system i, =i 1,n  will be written Hi, 

while the degree of organization is W making it easier in this cases: 

=

= −∑
n

i

i 1

W H( S ) H( S )  

Properties:  

1) ≥W 0 , if =W 0  then the subsystems Si are probabilistically independent; 

2) If subsystem Si consists of the elements = =j

i i ia , i 1,n, j 1,k , k , being the number of components of 

subsystem Si , then: 

( ) ( ) ( )
( ) ( )

= + +

+ + +

1 2 kn 1 2 k1

1 1 n 1 2 n 1 1 1 1

1 2 k 2 1 2 kn

2 2 2 2 n n n n

W S; a ,a ,...,a W S; S ,S ,...,S W S ; a ,a ,...,a

W S ; a ,a ,...,a ... W S ; a ,a ,...,a
 

3) the organization degree of the system regarding its component elements, equals the sum of 

organization degrees of the system regarding subsystems and the organization degrees of subsystems regarding 

their components.  

( ) ( )> =1 2 kn 1 2 ki

1 1 n i i i iW S; a ,a ,...,a W S ; a ,a ,...,a , i 1,n  

This property is a consequence of property 2) and it expresses the fact that the organization degree of 

the subsystem on its components is higher than any of the degrees of organization of subsystems on the 

component elements. 

  4) in the case of games with three players (triad) there are  some interesting results about the degree of 

organization of triads. We shall consider the system S made up of three players { }( )=S 1,2,3  split into two 

coalitions.  

We shall name cooperative solution of the triad the partition for which: 

{ } { } { }( ) { } { } { }( ){ }
=

≠ ≠

=0 0 0 0 0 0
i , j ,k 1,3

i j k

W 1,2,3 ; i , j ; k max W 1,2,3 ; i , j ; k    (8) 

It is noted that the usefulness of the concept of degree of organization of a system as a difference 

between the sum of the indeterminacy of the system components and the indeterminacy of the system remains 

dependent on a lack of connection between the indeterminacy of the system (subsystem) regarding the 

attainment of a state and its usefulness. For example, in the case of a decisional process involving multiple 

decision makers, it is natural for them to exercise options for certain subsets of the set of final states taking into 

account not only the state of indeterminacy towards reaching a certain position within the favourite subsets but 

also their associated utilities.  

If we change the concept of degree of organization of the system by replacing 
=

= −∑
n

i

i 1

W H H with 

=

= −∑
n

p

p i

i 1

W H H , where p

iH is the weighted entropy of subsystem i, then: 

= =

= +∑∑
n ki

j j

p i i

i 1 j 1

W W h p       (9) 

Where 
j

ih  - the weight of component j of the subsystem i; 
j

ip   - the probability of component j of the subsystem i. 
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Thus, a system is better organized if the overall behavior of the system is better known, despite the 

undetermined behavior of the components and the average weights of component subsystems. Since the weight 

of the entropy can be determined with the help of (normalized) utilities associated with subsystems, we 

conclude that a system is more organized if the difference between the sum of the degrees of indeterminacy of 

the component subsystems and the degree of indeterminacy of the system – on the one hand - as well as if the 

average value of (normalized) utilities of subsystems are higher, on the other hand.  

These concepts of degree of organization combine in a certain way the concepts of entropy and utility: 

= = = =

≥ = = =∑∑ ∑∑
n ki n ki

j j j j

i i i i

i 1 j 1 i 1 j 1

h , p 0, i 1,n, j 1,k , h p 1     (10) 

 

1.1.2.2 Degree of Concentration 

Suppose we have a system that evolves over time, and has different classes of values corresponding to different 

periods of time. 

The degree of concentration is a measure that characterizes the distribution on different classes of 

values, namely if the subsystem S is assigned, at time t0, the classes C1, C2, ..., Cm associated with the 

corresponding probabilities 
=

≥ = =∑
m

0 0 0 0

1 2 m i 1

i 1

p , p ,..., p , p 0, i 1,m, p 1  , while at time > 0t t  the classes 

=iC , i 1,m  are associated with the probabilities 
=

≥ = =∑
m

0 0 0 0

1 2 m i 1

i 1

p , p ,..., p , p 0, i 1,m, p 1 , the specialized 

literature recognizes two different degrees of concentration:  

a) degree of concentration that characterizes the distribution on different classes of values at a certain 

time having the general form ( )
=

= =∑
m

2

i

i 1

C C y , y p  (we considered t the period of time) as shown below:  

1) Renyi degree of concentration obtained for ( ) = −C y ln y . This degree of concentration can 

be obtained from the entropy of order α , for = 2α , in case all states are noticeable;  

2) Onicescu degree of concentration obtained for ( ) =C y y . This degree of concentration has 

been introduced by scientist Onicescu under the name of information energy and it is worth 

noticing that this degree of concentration generalizes the Herfindahl concentration degree 

introduced in 1950 at a relative frequency.  

3) Hirschman degree of concentration, is given by ( ) =C y y ; however, it should be noted that 

Hirschman did not work with probabilities but with relative frequencies.  

b) the degree of concentration characterizing the decrease or increase of the distribution on classes of 

values at different times, which can be defined using the concept of entropy in two different manners: 

= − t

0

H
C 1

H
 or = t

0

H
C

H
 

where H0  - the entropy associated with the system at time t0; 

Ht  - the entropy associated with the system at time t. 

  Assuming that we have a system S consisting of a finite number of subsystems =iS , i 1,n , the degree of 

organization of system S can be introduced (under the name of  probabilistic interdependence between the 

fields probability associated with S and =iS , i 1,n ) as follows:  

=

= −∑
n

1 2 n i

i 1

W( S ,S ,...,S ) H H  

where H and Hi represent the entropy of the system S and of the subsystem =iS , i 1,n  , respectively.  

Properties:  

1) ≥ =W 0,W 0  then the subsystems Si  are probabilistically independent; 

2) if the subsystem Si consists of elements = =j

i i ia , i 1,n, j 1,k , k being the number of elements of the 

subsystem Si , then:  
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( )

( ) ( )
=

=

= +∑

1 2 k1 1 2 k 2 1 2 kn

1 1 1 2 2 2 n n n

n
1 2 ki

1 2 n i i i i

i 1

W S; a ,a ,...,a ; a ,a ,...,a ; a ,a ,...,a

W S; S ,S ,...,S W S ; a ,a ,...,a
   (11) 

In other words, the degree of organization of the system S regarding its components equals the sum of 

the degree of organization of the system on the component subsystems and the degree of organization of the 

subsystems on the components.  

3) ( )1 2 k1 1 2 k 2 1 2 kn

1 1 1 2 2 2 n n nW S; a ,a ,...,a ; a ,a ,...,a ; a ,a ,...,a ( )≥ 1 2 ki

i i i iW S ; a ,a ,...,a , =i 1,n . Further on, there is a 

change in the concept of degree of organization of the system previously introduced by replacing 

=

= −∑
n

i

i 1

W H H with 
=

= −∑
n

p

p i

i 1

W H H , where p

iH  is the weighted entropy of the subsystem =iS , i 1,n . After an 

immediate calculation we get: 

= =

= +∑∑
n ki

j j

p i i

i 1 j 1

W W h p       (12) 

 where j

ih  and j

ip  represent the weight and the normalized utility of component j of the subsystem 

= =iS , i 1,n, j 1,k , respectively.  

Therefore, a system is better organized if the overall behavior of the system and the average value of 

the weights of the component subsystems are better known, even though these components have a random 

behavior. We apply the concept of degree of organization (which depends in this way on the linear utility) to a 

sequential decision process described by ( ) ( )− −= ∈ ∈i i i 1 i 1 i i is f s ,d , s S , d D s , ( )iD s  represents the 

multitude of decisions that may be adopted in the state ∈is S .  

We shall use the notification U for the sum of the normalized utilities obtained by the n decision-

makers taking part in the decision process and the notification 
=

= −∑
n

k

k i

i 1

W H H for the degree of organization 

of the system in the sequence k. 

Theorem 1.1 [47] 
The following properties are revealed: 

1) If decision-makers act together, then = k
k

U lim W ; 

2) If decision-makers take turns, then:  

( )
= = ==

 
= + − − − 

 
∑∑ ∑∏

kn k n
0

k i j i0k
i 1 j 1 i 1j 1

1
U lim W I j 1, j C H

H
   (13) 

we have written: ( )−iI j 1, j - the average informational gain (Renyi) reached by the decider i through the 

transition from state sk-1  to state sk   

( ) −
=

− =∑
kk

k i
i k 1

i 1 i

p
I k 1,k p ln

p
     (14) 

 Cj   - the degree of concentration of the system S in phase K. 

Remark 1.4  
1. In case decision-makers decide in turns, this theorem states that the sum of normalized utilities 

represents the limit of a nonlinear functional with the following variables: the degree of organization of the 

system, the sum of the initial entropies of the n decision makers, the sum of information gains of n decision-

makers, the initial entropy of the system, relative concentrations of the system.  

2. In case decision-makers act simultaneously, the total normalized utilities of n decision-makers will 

be the limit of the degree of organization the system.  

The concentration degree of a system characterizes the distribution. If the system S is composed of subsystems 

Si  with the weights pi  at time t0, 
=

≥ = =∑
n

i i

i 1

p 0, i 1,n, p 1 ,and at time , > 0t t the weights associated with the 
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component subsystems are ( )
=

≥ = =∑
n

t t

i i

i 1

p 0, i 1,n, p 1 ,  we can distinguish the following types of degrees of 

concentration:  

1) The degree of concentration characterizing the dispersal at a certain time and which has the form 

below: 

( ) ( )
=

= =∑
n

2
t

i

i 1

C C y , y p  

The following situations are pointed out: 

- if ( ) = −C y ln y , the degree of concentration is called Renyi degree of concentration  

- if ( ) =C y y , the degree of concentration is called the information energy (this measure was introduced by 

scientist Onicescu).  

2) Degrees of concentration characterizing the variation of the dispersal by classes at different times used 

in two different ways: 

= − =t t

0 0

H H
C 1 ; C

H H
 

where H0 and Ht denote the entropies of the system S at times t0 and t. 

Application:  

Let us consider the system S a "mining enterprise" consisting of the following subsystems:  

S1 = preparatory subsystem, 

S2 = mine opening subsystem,  

S3 = stopping subsystem.  

Let us assume that the subsystem Si is associated with repartitions
 

+ = 
 

i

i i

i i

a 0
, p q 1

p q
 regarding the 

success or failure in carrying out tasks at level =ia , i 1,3 .  

We intend to calculate the degree of organization of S if one of the subsystems totally completes its 

tasks (assuming =3p 1  and =1 2p q ). 

= + + − = + −1 2 3 1 2W H H H H H H H  

= − −1 1 1 1 1H p ln p q lnq  

( )= − = − − − = − + +2 2 2 2 2 2

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1H q lnq p ln p p ln p 2 p q q lnq 2 p ln p q lnq p q ln2 p q  

= + − =1 2 1 1W H H H 2 p q ln 2  

It is noticeable that the maximum degree of organization corresponds to repair works: 

   
    
         

   

1 2
3

a 0 a 0
a 0

, ,1 1 1 1
1 0

2 2 2 2

 and it will be =max

1
W ln 2

2
 

 

1.1.2.3 Prediction 

Mathematical prediction is a core concept in applied mathematics; the specialized literature offers a rich 

material in this area.  

We shall tackle the prediction problem closely related to entropic concepts presented so far. We should 

point out a prediction concept used by S. Guiaşu regarding a hypothesis in a three-person game in which 

players decide on several occasions.  

Suppose that the number of participants in a game is k, and by 1 2 kX ,X ,...,X  we understand the set of 

strategies of these players; 1

jx  is the strategy of the decider ij in the sequence i.  

Considering j  the set of hypotheses ( )= 1 2 tH h ,h ,...,h  about the future game, we shall note ( )0 ip h  the 

initial probability of the hypothesis =i, i 1,t  (in case we start from a maximum indeterminacy, initial 

probabilities are equal ( ) = =0 i

1
p h , i 1,t

t
).  
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According to hypothesis ∈h H , the prediction probability on the development of the future of game, 

based on this assumption, knowing that i steps were taken:  

∈1 1 1 2 2 2

i1 i2 ik i1 i2 ik i1 i2 ik ijx ,x ,...,x ; x ,x ,...,x ; ...; x ,x ,...,x , x X  

can be determined using Bayes' formula [68]: 

( )

( ) ( )

( )

− − −

=

− −

=

=
∏

1 1 1 2 2 2 l l l

i1 i2 ik i1 i2 ik i1 i2 ik

l
j j j l l l j l j l j l

0 i1 i2 ik i1 i2 ik i1 i2 ik

j 1

j j j l l l j l j l

0 i1 i2 ik i1 i2 ik i1 i2

P h / x ,x ,...,x ; x ,x ,...,x ; ...; x ,x ,...,x

P h p x ,x ,...,x ; x ,x ,...,x ; ...; x ,x ,...,x

p h p x ,x ,...,x ; x ,x ,...,x ; ...; x ,x ,( )

( ) ( )
( ) ( )

−

∈

− − −
−

− − −
−

∈

=

=

∑

∑

j l

ik

h H

1 1 1 2 2 2 l 1 l 1 l 1

l 1 i1 i2 ik i1 i2 ik i1 i2 ik 1

1 1 1 2 2 2 l 1 l 1 l 1

l 1 i1 i2 ik i1 i2 ik i1 i2 ik 1

h H

...,x

P h / x ,x ,...,x ; x ,x ,...,x ; ...; x ,x ,...,x A h

p h / x ,x ,...,x ; x ,x ,...,x ; ...; x ,x ,...,x A h

  (15) 

where 

( ) ( )− − −= ∀ ∈1 1 1 l 1 l 1 l 1

1 i1 i2 ik i1 i2 ik i1 i2 ikA h P x ,x ,...,x / h; x ,x ,...,x ; ...; x ,x ,...,x , h H  

Let us take into consideration another point of view regarding the prediction : 

If the event ζ is characterized by states 1 2 kE ,E ,...,E  and probabilities 1 2 kp , p ,..., p , the average value of 

information supplied by ζ  is H (ζ). 

( )
=

= −∑
n

i i

i 1

H p ln pζ  

Furthermore, if the event ζ
0
 is characterized by states 0 0 0

1 2 lE ,E ,...,E  and probabilities 0 0 0

1 2 lp , p ,..., p , the 

average value of information supplied by ζ is: 

( )
l

0 0

j j

j 1

H p ln pζ
=

= −∑  

The prediction regarding the change in the information provided by ζ, knowing that it was preceded by 

ζ
0 
is: 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( )
( )
( )

= = =

= =

= − = − =

 
 = −
  

∑ ∑∑

∑∑

0
k k l

i j0 0

i i i j 0
i 1 i 1 j 1 j

0
k l

i j

i j i 0
i 1 j 1 j

P E E
P / H H / P E ln p E P E E ln

P E

P E E
P E E ln P E ln

P E

ξ ξ ξ ξ ξ

          (16) 

Since ( ) ( )
=

=∑
l

0

i i j

j 1

P E P E E  

The entropic problem of prediction, which is very important in terms of practical applicability, will be 

discussed below in connection with Renyi in a sequential decision process ( )=G x,F  described by the 

recurrence relation:  

( ) ( )− − − −= ∈k k 1 k 1 k 1 k 1x F x ,d , d D X  

a) Where X is at most a countable set and it designates the set of positions or states xk meaning that the 

decision process has reached the sequence k;  

b) →F : X X is the transition function; due to F one can define the following sets: 

( ){ }−= ∈ = ∅1

0x x X | F x also called the initial position set; 

( ){ }= ∈ = ∅x x X | F x  also called the final position set. 

c) ( )kD x  is the set of decisions dk which can be made in the state ∈kx X . 

Suppose the decision-making process involves n decision-makers whose utility is denoted by 

=iU , i 1,n , while the set x  is finite, consisting of m positions: { }1 2 mx x ,x ,...,x . 
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Using the notation 1 2 na ,a ,...,a for the lower limited gains proposed by the n decision-makers and the 

notation ( )k k k k

1 2 mE ,E ,...,Eξ  for the event attached to the possibilities of reaching  x  in the sequence k, the 

Renyi prediction in this sense will be: 

( ) ( ) ( )− −= −k 1 2 k 1 k k 1 2 k 1

kP / , ,..., H H / , ,...,ξ ξ ξ ξ ξ ξ ξ ξ ξ    (17) 

where ( ) ( )−k k 1 2 k 1H , H / , ,...,ξ ξ ξ ξ ξ denotes the entropy of the event ζ
k 
and the conditioned entropy associated 

with the event −k 1 2 k 1/ , ,...,ξ ξ ξ ξ . 

 Considering that: 

( ) ( ) ( )
( ) ( )

−

− −

= − −

− − −

k 1 2 k 1 1 2 k 2 1

3 1 2 k 1 1 2 k 2

H / , ,..., H , ,..., H /

H / , ... H / , ,...,

ξ ξ ξ ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ ξ
   (18) 

the entropic measure of the prediction is: 

( ) ( ) ( ) ( )
( ) ( )

−

− −

= + + +

+ + −

k 1 2 k 1 k 1 2 1

k 1 1 2 k 2 1 2 k

P / , ,..., H H H /

... H / , ,..., H , ,...,

ξ ξ ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ ξ
   (19) 

 On the other hand, we have: 

( ) ( ) ( )= −2 1 2 2 1H / H P /ξ ξ ξ ξ ξ  

( ) ( ) ( )= −3 1 2 3 3 1 2H / , H P / ,ξ ξ ξ ξ ξ ξ ξ  

( ) ( ) ( )− − − −= −k 1 2 k 1 k 1 k 1 1 2 k 2H / , ,..., H P / , ,...,ξ ξ ξ ξ ξ ξ ξ ξ ξ  

thus: 

( ) ( ) ( ) ( )
−

− −

= =

= − −∑ ∑
k k 2

k 1 2 k 1 k 1 2 k i 1 2 i 1

i 1 i 2

P / , ,..., H H , ,..., P / , ,...,ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ  

Writing:  

( ) =1 2 k

kH , ,..., Hξ ξ ξ  

( ) = =i

iH H , i 1,kξ  

( )− = =i 1 2 i 1

iP / , ,..., P , i 1,kξ ξ ξ ξ  

the prediction in sequence k will be: 
−

= =

= − −∑ ∑
k k 1

k i k i

i 1 i 1

P H H P     (20) 

which means that prediction in an intermediate point will be the difference between the total entropies of 

intermediate events, the entropy of the system formed by the k decision-makers acting in k sequences and the 

sum of intermediate predictions.  

Remark 1.5 The last equality can take the following form: 
k k

i i k

i 1 i 1

P H H
= =

= −∑ ∑  

which means that the sum of predictions equals the difference between the total entropies of intermediate 

events and the entropy of the system consisting of the k decision-makers.  

We shall analyze further on the problem of determining the prediction in the sequence k, knowing that 

within the previous sequences the predictions were insignificant (we shall assume their significance - negligible 

– equals > 0ε ); the significance threshold in the sequence k is α. 

We shall note Wk the degree of organization (according to Guiaşu) of the system consisting of the k 

decision-makers and Ci the degree of concentration of the system in the sequence i, 1 i k≤ ≤ ,  therefore: 

=

= −∑
k

k i k

i 1

W H H  

= =i
i

l

H
C , i 1,k

H
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We shall also note ( )= ≥ ≥ = −1 1 n np P X a ,...,X a , q 1 p  where Xi is the random variable associated 

with the event =i , i 1,nξ . 

Theorem 1.2 

a) If ≤k n  , the prediction at time k  is significant (meaning > 0α ) in case ( )≥ + −kW k 2α ε ; 

b) If ( )k k n≫ is high enough, the prediction is significant at time k with the significance α if (Bereanu):  

( ) ( )
=

 ≥ + − − − + ∑
k

2 2

i

i 1

C k 2 2 p lg p q lg q pqlg pqα ε     (21) 

( )−
−

= =

= < <
− ∑∏

i i , j

ai

a A
nk

n
in

j 1 i 1

1 1
p e , 0 a

k 2 n
,     (22) 

where Ai,j represents the value of the variable Xi in sequence j so that ( )≥ >i i , jP X A α . 

Proof 

Demonstration of case a) is immediate. Based on remark 1), the prediction at time k is: 
− −

= = =

= − − ⇒ = −∑ ∑ ∑
k k 1 k 1

k i k i k k i

i 1 i 2 i 2

P H H P P W P     (23) 

Since ≥kP α  and < = −iP , i 1,k 1ε , we get ( )≥ + −kW k 2α ε . 

The demonstration of case b) is based on the following lemma: 

Lemma 1.2.1 The organization degree of a system S comprising two subsystems S1 and S2, 

characterized by probability fields (p,q) and (q,p), + = ⋅ ≥p q 1, p q 0 , respectively is =W 2 pq . 

Proof of the lemma 

We shall use the notation H1 and H2 for the entropies of the two subsystems and H for the entropy of 

the system: 

= + −1 2W H H H  

= − − = − −1 2H plg p qlg q; H qlg q plg p  

(the logarithm is binary (base 2)). 

 The entropy of the system is defined with the help of the probability field: 

( )= − − − = − + +2 2 2 2 2 2H p lg p 2 pqlg 2 pq q lg q 2 p lg p q lg q 2 pqlg pq  

Then 

( ) ( )
= + − = − − + + + =

= − + − + = =

2 2

1 2W H H H plg p 2 qlg q 2 p lg p 2q lg q 2 pqlg pq

2 p p 1 lg p 2 q q 1 lg q 2 pqlg 2 pq 2 pqlg 2 2 pq
 

Switching back to the demonstration of the theorem, we can notice that: 

= = =

= =∑ ∑ ∑
n n n

i
i l l i

i 1 i 1 i 1l

H
H , H H C

H
 

 According to the previous lemma, the entropy of the system composed of n decision-makers who target 

lower gains, is: 

= − + +2 2H 2 p lg p q lg q pqlg pq  

where 

( )= ≥ ≥ ≥

= −
1 1 2 2 n np P X a ,X a ,...,X a

q 1 p
 

Since we have estimated k as high enough, the decisional process tends to repeat itself, and for 

expressing p we shall use a known outcome according to which: 

( )−
−

= =

< <
− ∑∏

i i , j

ai

a A
nk

n
in

j 1 i 1

1 1
e , 0 a

k 2 n
    (24) 

is a non-dependent asymptotic estimation, also considered asymptotically normal for p. The prediction at time k 

has the significance α, resulting: 
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( ) ( )
=

 ≥ ⇒ ≥ + − − + + ⋅ ∑
k

2 2

k i

i 1

1
P C k 2 2 p lg p q lg q pqlg pq

H
α α ε   (25) 

Remark 1.6 In demonstrating this theorem, we have  taken into consideration the case in which the 

system consists of two subsystems built under the two possibilities or all decision-makers obtain at least the 

gains estimated (possibly none) or only some of the decision makers obtain at least the lower limited gains 

estimated. This case allows writing the following form of prediction at time k: 
−

= =

 = − − + − ∑ ∑
n k 1

k i 1 2 i

i 1 i 2

P H W H H P     (26) 

where 1H and 2H are the entropies of the two subsystems mentioned above. 

Remark 1.7 In the case of a maximum initial indeterminacy, 1H will be the entropy associated with the 

probability field. 

 
 
 

1 1 1
, ,...,

m m m
 

and thus: 

( )
=

= − = − = − = =∑
m

i ii n

i 1

1 1 m 1 1
H lg lg lg lg m 1

m m m m m
δ δ  

The prediction will be significant at time k if: 

( ) ( )
=

 ≥ + − + − − ⋅ ∑
n

i 1 2

i 1

1
C k 2 W H H

lg m
α ε     (27) 

 

1.2 Fundamental Decisional Processes 
Utility. In specialized literature, the term of utility was introduced in order to clearly specify the properties that 

must be met by a function of efficiency.  

There are two ways of introducing the concept of utility: ordinal utility (based on a axiomatic system) 

and cardinal utility (introduced under conditions imposed by the practice of market rules).  

 

1.2.1 Considerations Regarding the Concept of Utility 

We shall start from a set of entities E called the set of results, on which we introduce a binary relation called 

preference relation; if ≥x y; ∈x, y E  then the outcome x is preferred to y.  

The concept of experiment is also introduced by the notation[ ]−p,x; 1 p, y  ∈ ∈x, y E, p [0,1] , where: 

p represents the weight of the outcome x; 1-p is the weight of the outcome y.  

It is obvious that if we consider the results x1,x2, …, xn ∈E, the associated experiment becomes 

1 1 2 2 n n[ p ,x ; p ,x ; ...; p ,x ] , where p1, p2, …, pn are the weights of these outcomes. 

The utility is written as a function →u : E R  satisfying the following conditions (we shall consider 

only two results x, y, as well as the experiment generated by them): 

if ≥ ⇒ >x y u( x ) u( y ) ; 

[ ]( )− = + −u p,x;1 p, y pu( x ) ( 1 p )u( y )  

This means that utility is a monotonically increasing function in relation to preference and the utility of 

an experiment equals the average value of the utilities that form the experiment.  

Remark 1.8 If we consider the experiment [ ]1 1 2 2 n np ,x ; p ,x ; ...; p ,x then its utility is given by the 

following equality:  

[ ]( )
=

=∑
n

1 1 2 2 n n i i

i 1

u p ,x ; p ,x ;...; p ,x p u( x )  

 

Axioms of rational behavior  
This is an important issue for the financial practice, which is based on the concept of ordinal utility. 

The first system of axioms in terms of behavior was proposed by Neumann in 1935 and it was subsequently 

improved by Savage, Luce and Raiffa. 
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For the experiment [ ]1 1 2 2 n np ,x ; p ,x ; ...; p ,x , the axioms of rationality of Luce-Raiffa are the following:  

1. Determining the order of possible results  

- for any xi and xj we have ≥i jx x or ≥j ix x  (any results are compatible); 

- it has the property of transitivity, i.e.: ≥ ≥ ⇒ ≥i j j k i kx x ,x x x x .  

Based on these assumptions, we propose the concept of compound experiment.  

Further on, we assume that ≥ ≥ ≥1 2 nx x ... x and we shall use A to note the experiment 

1 1 2 2 n n[ p ,x ; p ,x ;...; p ,x ]  and A1, A2, …, An  for the experiments that have the following outcomes x1, x2, …, xn. 

Thus, the experiment 1 1 2 2 m m[ q ,A ; q ,A ; ...; q ,A ] is called a compound experiment.  

2.Reduction of compound experiments (to single experiments)  
A compound experiment is equivalent to a single simple experiment 

≈1 1 2 2 m m 1 1 2 2 n n[ q ,A ; q ,A ; ...;q ,A ] [ t ,x ; t ,x ; ...; t ,x ]  

 where: 
( )

=

=∑
m

i

j i j

i 1

t q t , 
( )i
jt  is the probability of entity xj  within the simple experiment Ei, =i 1,m ;  =j 1,n . 

3.Continuity  

For each outcome xi a real number ∈is [0,1]  is assigned so that −≈ −i i 1 2 n 1 i nx [ s ; x ;0,x ;...;0,x ;1 s ,x ]  

which can be written ≈ − =i i 1 i n ix [ s ,x ;1 s ,x ] X . Thus, any result is equivalent to an experiment determined by 

the first and the last outcome.  

4.Equivalence  

≈1 1 2 2 n n 1 1 2 2 i i n n[ p ,x ; p ,x ; ...; p ,x ] [ p ,x ; p ,x ; ...; p ,X ; ...; p ,x ]  

5.Transitivity  

Preference and equivalence are transitive. Hence we have the following relations:  

≈ ≈ ⇒ ≈

≥ ≥ ⇒ ≥
i j j k i k

i j j k i k

x x ,x x x x

x x ,x x x x
 

6.Monotony 

− ≥ − ⇔ ≥1 1 2 2 1 2[ p ,x; 1 p , y ] [ p ,x; 1 p , y ] p p  

Based on these axioms the concept of utility function presented above can be improved by specifying 

the property of linearity.  

Definition 1.1 The function of utility  

− = + −1 2 1 2u( p,A ; 1 p,A ) pu( A ) ( 1 p )u( A )     (28) 

is linear regardless of the simple experiments A1 and A2 and ∈p [0,1] .  

 More general, if we know the experiment [ ]= 1 1 2 2 n nA p ,A ; p ,A ; ; p ,A…  we have 

( ) ( ) ( ) ( )= + + +1 1 2 2 n nu A p u A p u A p u A…  

This definition reveals an important characteristic of the function of utility, that is to say it is unique up 

to a positive linear transformation. In other words, if u1 and u2 are functions of utility, there will be the real and 

positive constants a, b so that = +2 1u au b.  

 

1.2.2 Non – Cooperative Games 

The first preoccupations of treating mathematically the conflictual-competitional situations belong to Zermelo. 

The conflictual character of a decisional situation derives from the fact that the objectives of the 

deciders (the players) can not be done simultaneously, and the non-cooperative character from the fact that the 

choices of strategies are individual acts effectuated in the lack of an information exchange and of concluding 

some firm agreements. 

The first mathematical works consecrated to the study of the basic elements of the theory of games 

(problems of the analyze of the conflictual situations and the cooperative problems, too) are due to Neumann 

[57], [58]. 

The two-person games (two players) with a null sum analyzed by Neumann have been extended by 

Nash to n – person games by Nikaide and Isoda [60], Karlin [37] to the convex games and generalized convex 

and Shapley [77] to the stochastic games. 
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Other models of non-cooperative games with the function of particular paying can be found in [14], 

[29], [40]. 

The model of non-cooperative games under a normal form which we shall deal with can be considered 

as a particular case of the non-cooperative game in an extension form [82]. 

Definition 1.2 

We shall consider an n – person (players) game in a normal form, the ensemble: 

{ }= ∈i ix ,U ,i MΓ  

where: 

- { }=M 1,2,...,m  represents the set of players; 

- iX  is a non-void set named the set simple strategies of the decider i , =i 1,m . 

We shall denote by 
=

=∏
m

i

i 1

X X . 

→iU : X ℝ  is named the function of utility of the decider i , =i 1,m . 

From strategic point of view, the decisional optimal behavior of the deciders of the set M  is linked of 

the adoption of those strategies ∈x X  which are equilibrium points for Γ . 

Necessary and sufficient conditions of the existence of equilibrium points have been shown in [82]. 

Definition 1.3 

Γ  is named matrix game if the following conditions are met: 

1) =n 2  

2) + =1 2U U 0 ( the game is a zero-sum one)  

3) 1X  and 2X  are finite. Let’s assume that we have: 

 { } { }= =1 2 m 1 2 m

1 1 1 1 2 2 2 2X x ,x ,...,x ; X x ,x ,...,x   

If we note = = −1 2U U U , to the matrix game Γ  will be associated the matrix A : 

( ) ( )=
=

= = i j

i 1,mij ij 1 2
j 1,n

A a , a U x ,x  

Remark 1.9 

The association of matrix A  to the game Γ , justifies the terminology of a matrix game. If ( )0 0

1 2x ,x  is 

an equilibrium point for Γ  then, from (6), it results immediately that ( )0 0

1 2x ,x  is a saddle point for U  on 

×1 2X X , and ( )0 0

1 2x ,x  is the solution of the problem: 

 ( ) ( )
∈ ∈ ∈ ∈

=
1 1 2 2 2 2 1 1

1 2 1 2
x X x X x X x X
max minU x ,x min maxU x ,x  (30)  

Let’s consider ( )M Γ  the set of the equilibrium points of the game Γ  and ( ) ( )∈1 2x ,x M Γ , 

( ) ( )∈1 2x ,x M Γ . 

Theorem 1.3 [4], [82] 

The following properties take place: 

1) ( ) ( )=1 2 1 2U x ,x U x ,x  

2) ( ) ( )∈1 2x ,x M Γ , ( ) ( )∈1 2x ,x M Γ  

Definition 1.4 

( )= 1 2 mp p , p ,..., p , ≥1p 0 , =i 1,m , 
=

=∑
m

i

i 1

p 1  is called mixed strategy for the decider 1 ; the choice of the 

mixed strategy, by the decider 1 , means the use of strategy i

1x  with the probability ip , =i 1,m . 

The notion of mixed strategy is defined in the same way for the decider 2 . 

We denote by 1Xɶ , 2Xɶ  the sets of the mixed strategies of both deciders. 

For the case in which the requirements of the existence of equilibrium points for Γ  are not met, the 

optimum solution is sought as a saddle point for the mean value of the game on the set ×1 2X Xɶ ɶ . 
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Definition 1.5 

The mean value of the game associated to the pair ( )p,q  is the value of the function V  in ( )p,q , 

where: 

( ) ( ) ( )
= =

× → = = ∈ = ∈∑∑
m n

1 2 ij i j 1 2 n 1 1 2 n 2

i 1 j 1

V : X X ,V p,q a p q , p p , p ,..., p X , q q ,q ,...,q Xɶ ɶ ɶ ɶℝ  

If ( )∈ ×0 0

1 2p ,q X Xɶ ɶ  is a saddle point of the V  on ×1 2X Xɶ ɶ , ( )0 0V p ,q , then this will be called the 

value of the game. 

In mixed strategies, every matrix game has saddle points and these can be found as solutions of a linear 

programming problem. 

Theorem 1.4 (Ghermeier [29]) 

The solving of a matrix game in mixed strategies with the matrix ( ) =
=

= i 1,mij
j 1,n

A a  is equivalent with 

solving of a couple of dual linear programming problems. 

=

=


≤ =


 ≥ =

∑

∑

n

i

j 1

n

ij j

j 1

j

max y

a y 1 , i 1,m

y 0 , j 1,n

  

=

=


≥ =


 ≥ =

∑

∑

m

i

i 1

m

ij i

i 1

i

min x

a x 1 , j 1,n

x 0 , i 1,m

   (31) 

If ( )=0 0 0 0

1 2 ny y , y ,..., y , ( )=0 0 0 0

1 2 mx x ,x ,...,x  are the optimal solutions of both problems, then the value of 

the game is: 

= =

= =

∑ ∑
n m

0 0

j i

j 1 i 1

1 1
V

y x

, 

and the optimal mixed strategies are: 

( )= = =0 0 0 0 0

1 2 m i ip p , p ,..., p , p x V , i 1,m  

( )= = =0 0 0 0 0

1 2 n j jq q ,q ,...,q , q y V , j 1,n  

Remark 1.10 

An iterative method of solving the matrix game is shown in [63]. 

 

1.2.3 Cooperative Games under the Form of a Characteristic Function with Rewards 

The cooperative games are those which allow the exchange of information and the concluding of agreements 

between firms. 

The degree of cooperative in such a game depends on the possibility to realize or not the transfer of 

utility. 

Based on this requirement, the cooperative games are classified as follows: 

1) cooperative games without compensations; 

2) cooperative games with compensations. 

There isn’t a unitary point of view regarding the theory of cooperative games. Further on, we shall 

consider ourselves in the case of cooperative games in the form of a characteristic function with compensations; 

the other models of cooperative games (total cooperative game, cooperative games in the form of a 

characteristic function without compensations) are presented in [29], [49], [63]. 

The basic elements which are going to be analyzed are connected with the notions of  characteristic 

function, imputation, domination, nucleus, solution. 

Let us consider { }= ∈i iX ,U ,i MΓ , a n – person game in a normal form. 

Definition 1.6 

Any subset C  of M  is named a coalition; if =C M  the coalition is called a total coalition; if { }=C i , 

i  being any element of M  the coalition will be named a banal coalition. 
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Definition 1.7 

The application ( ) →P: Mν ℝ  which verifies the properties: 

( )
( ) ( ) ( ) ( )
∅ =

∪ ≥ + ∀ ∈P

0

A B A B , A,B M

ν

ν ν ν
   (32) 

is called the characteristic function. 

Definition 1.8 

( )= ∈ m

1 2 mZ z ,z ,...,z ℝ  is considered to be a determined imputation of ν  if the following conditions 

are met: 

( )

( )
=

≥ ∀ ∈

=∑

i

m

i

i 1

1) z i , i M

2 ) z M

ν

ν
      (33) 

We denote by Zν  the set of the imputations determined byν . 

Definition 1.9 

We shall call a cooperative game in the form of a characteristic function the ensemble: 

{ }= M , ,ZνΓ ν  

Let us assume ( )∈PC M , ≠ ∅C  on the set Zν ; we shall introduce a relation of a partial order as 

follows: 

∈z Zν  dominates relative to C  on ∈z Zν  ( )Cz z≻  if the conditions are verified: 

( )
∈

≤∑ i

i C

z Cν  

≥ ∀ ∈i iz z , i C  

We denote by { }= ∈ C

Cdom z z Z z zν ≻ . 

We shall consider ′∈z,z Zν . 

Definition 1.10 

We say that z  dominates on ′z  ( )′z z≻  if there exists ( )∈PC M  so that ′Cz z≻ . 

Definition 1.11 

⊆S Zν  is named the solution of the game (a stable set) if the following condition holds true: 

{ }′ ′∈ ∃ ∈ = Z
z Z z S ,z z

S
ν

ν ≻  

We note S  the set of coalitions of the game Γ . 

Definition 1.12 

⊆N Zν  is called a nucleus for Γ  if for any ∈z Zν , ( )∈PC M  we have: 

( )
∈

≥∑ i

i C

z Cν       (34) 

Theorem 1.5 (Owen [63]) 

N  is the set of undominated imputations and for any ∈SS , ≠ ∅S  we have ⊂N S . 

Theorem 1.6 (Ştefănescu [82]) 

For any two-person game the next equalities take place: 

= =N SZν  

Theorem 1.7 (Ştefănescu [82]) 

Any three-person game admits at least a non-void solution. 

Other solutions of the cooperative game Γ  have been given by Shapley [77], Caplow [11], Auman and 

Maschler [3], Mitran [47]. 

Returning to the game in normal form Γ , let us consider ( )∈PC M , ≠ ∅C . 

We shall note 
∈

=∑C i

i C

U u , 
∈

=∏C i

i C

X X , 
∈

= ∏C i

i M \C

X X . 

The application ( ) →P: Mν ℝ , given by: 
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( ) ( )
∈ ∈

=
C C

C
x X y X

C max minU x, yν      (35) 

is a characteristic function [63]. 

Other construction of the function of utility CU  for the coalition C  can be found in [44] and [47]. 

The gain of the coalition is the one maximum guaranteed in the zero-sum game from the coalitions C  

and M \ C  (the antagonist game between C  and M \ C ). 

This point of view is debatable. First of all, the formation of the coalition C  doesn’t compulsory lead 

to the formation of the coalition M \ C . Secondly, it isn’t compulsory that all the deciders of the set M \ C  

adopt a strategically behavior opposite to the achievement of objectives of the deciders from C . 

Thirdly, the adoption of the maximum criterion as a criterion of optimality for the deciders from 

coalition C  (which is a providing criterion and its adoption generally leads to little gains) is not a unanimous 

accepted objective in real decisional situations. 

 

1.2.4 The Sequential Decision Problem  

The first formulation of a problem of the sequential decision is due to Shapley [60]. This was accomplished by 

the formulation of a model of the stochastic game, a decisional sequential process with n  deciders of a private 

kind for which Shapley demonstrated the existence of the equilibrium points. 

Another decisional sequential model was formulated by Wald [88] in connection with a problem of 

statistical decision with experiments. 

The decisional sequential model which is to be presented next is the same to those from [6], [35] and 

[50]. Let’s consider X  the linear topological space (real) and BX , Γ – algebra generated by the topology of 

space X . We shall associate to the measurable space ( )BXX ,  the set ( )BXµ  of all the measures of probability 

defined on BX . 

The set X  will be named the set of positions. 

We denote by 0X , X  the set of initial positions, respectively final positions; we assume that 0X , X  

are compact sets. To each position ∈x X  , we shall associate the measure of probability ( )∈ Bx XP µ ; for every 

∈x X  we denote by ( )L B
x

2 X xX , ,P  the normed Hilbert space of all real random variables defined on X  by the 

moment of order 2  finite [35], [47]. 

The set { }=M 1,2,...,m  designates the set of the deciders that take part to the decisional process and 

( )∈L B
x

i 2 X xu X , ,P , ∀ ∈x X  represents the function of utility of the decider ∈i M . 

To each decider ∈i M , we shall associate the measure +∈ia ℝ  named ceiling, which signifies the fact 

that the participation of the decider i  to the decisional process is linked to his intention to obtain a gain which 

has to increase the ceiling. 

The set ( ){ }= ∈ ≥i i iX x X u x a  is called a target set of the decider ∈i M . 

The evolution of the decisional process is described by means of the relations of recurrence: 

 ( ) ( )+ = ∈ ∈n 1 n n n 0 0x f x ,d , x X any , n ℕ                                   (36) 

where: ( ) ( )
=

∈ =∏D
n

m
i

n nx
i 1

d D x ; ( )i

nD x  represents the set of decision that can be adopted in position ∈nx X  by 

the decider ∈i M  (hoping that for any ∈x X , the set of strategies ( )i

nD x  is linear topological space). 

Applications ( )× →Dn x
f : X X , ∈n ℕ , are called functions of transition and we shall consider them 

to be continuous and bounded [35]. ( )
∈

=D DX x

x X

∪ . If ∈nx X , then ( ) =n n n nf x ,d x , ( )∀ ∈D
n

n x
d . 

When there exists no risk of confusion, we denote ( )i

nD x  by i

nD  and ( )D
nx

by Dn . 

Definition 1.13 

We name a decisional sequential problem the ensemble: 

{ }= ∈ ∈ ∈ ∈i

0 i n nS X ; X ,X ; M ;U ,i M ; D ,i M ,n ; f ,nℕ ℕ  

where the elements of S  have been specified before. 
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Remark 1.11 

Using a result from [71], (36) we can write: 

 + = + +n 1 n n n nx Ax Bd C xλ  (37) 

in which the linear part was separated out of the non-linear part (we considered, in addition that from 

=dim X K , =Dndim m , ∀ ∈n ℕ ). 

In (37) A  and B  are matrixes with the dimensions ×K K , respectively ×K m  (with real elements), nC  

is a matrix whose elements are non-linear discrete functions, ∈n ℕ , and λ  is a scalar matrix of the weights of 

the non-linearities [35]. 

Remark 1.12 

If we assume that the set of the deciders is made up of a single decider and we associate with the 

dynamic equation (36) a functional of efficiency, we are led to a discrete system of command. 

Definition 1.14 

We call a trajectory, starting from ∈0 0x Xɶ , any sequence ( ) ∈n n
x X , defined by (36) with =0 0x xɶ . 

Definition 1.15 

We call a trajectory of duration, starting from ∈0 0x Xɶ , any sequence ( ) ⊂n n
x X  defined as follows: 

=

< ≤
= 

>

0 0

n n

n

x x

x , x defined by ( 36 ), if 1 n N
x

0 , if n N

ɶ

 

We denote by ( )0F x  the set of trajectories that start from ∈0 0x X  and with ( )N

0F x  the set of 

trajectories of duration N  that start from ∈0 0x X . 

We shall construct by means of recurrence the sequence of multivocal applications ( )n n
B  in the following 

approach (fig.1): 

 
Figure 1. 

  

With the help of fixed quantities 1 2 na ,a , ,a… , one can build the sets 1 2 mX ,X , ,X… as follows:  

( ){ }
( ){ }

( ){ }

 = ∈ ≥

 = ∈ ≥




= ∈ ≥

1 1

2 1

2 1

X x X : P x a

X x X : P x a

X x X : P x a

⋮
 

In terms of decision theory, the real positive numbers 1 2 na ,a , ,a…  are limits (i.e. the limit from which 

the participation of decision-makers to the decisional process becomes interesting). The sets 1 2 mX ,X , ,X…  are 

called target sets of decision makers.  

Remark 1.13 

If target sets form a partition of the set X , then the following conditions are met: 

=

= = ∅
m

i i j

i 1

X X , X X∪ ∩  

X0 

x0 x1 x2 xn x 

B1(x0) 

1X  

0X  

B2(x0) Bn(x0) 
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Remark 1.14 

For any ∈n ℕ  the following equality takes place: 

( ) { } ( )
=

= ×∏
n

n

0 0 i 0

i 1

F x x B x  

The set ( )n 0B x  represents the set of the positions in which it is possible to get in n  sequences starting 

from the initial position ∈0 0x X . It is noted: 

( ) ( ) ( )= ∈D D
n

n 0 n n 0x
x ; x B x  

Application regarding the money market equation 

Suppose one knows the estimated incomes 0 1 2 nV ,V ,V , ,V… at moments = = =t 0,t 1, ,t n… . The unit 

interests from the money market on the intervals [ ) [ ) [ )−0,1 , 1,2 , , n 1,n…  are denoted by 1 2 ni ,i , ,i… .  

We are interested in the maximum incomes 0 1 nV ,V , ,V…  that can be achieved at certain given 

moments. These revenues will always be a solution to the money market equation.  

This problem can be immediately interpreted as a sequential decision problem in which the states 

represent the maximum incomes and the strategies adopted represent the interest rates on the money market. 

Maximum incomes are calculated gradually according to figure 2. 

 

 

 

 

 

 

Figure 2 

 

=t 0   =0 0V V  

 =t 1  
( )
( )

− = + +


= + +

1

0 0 1 1

1 1 0 1

V V V 1 i

V V V 1 i
      (38) 

 =t 2  

( ) ( ) ( )

( ) ( )
( )( ) ( )

− − −

−

 = + + + + +


= + + + +


= + + + + +

1 1 1

0 0 1 1 2 1 2

1

1 1 0 1 2 2

2 2 0 1 2 1 2

V V V 1 i V 1 i 1 i

V V V 1 i V 1 i

V V V 1 i 1 i V 1 i

   (39) 

 ⋮  

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )( ) ( ) ( )

− − − − − −

− − −

−

 = + + + + + + + + + +

 = + + + + + + + +

= 



= + + + + + + +

1 1 1 1 1 1

0 0 1 1 2 1 2 n 1 2 n

1 1 1

1 1 0 1 2 2 n 2 n

n n 0 1 2 n n 1 n

V V V 1 i V 1 i 1 i V 1 i 1 i 1 i

V V V 1 i V 1 i V 1 i 1 i
t n

V V V 1 i 1 i 1 i V 1 i

… …

… …

⋮

… …

    (40) 

The money market equation is determined as follows:  

Case =t 2 : 

The targeted equation is actually the equation of a straight line determined by points ( )0V ,0  and 

( )10,V : 

( )D  =0

1

x y 1

V 0 1 0

0 V 1

      (41)  

After calculations we get:  

V2 V0 

i1 

V1 Vn-1 
Vn 

0 1 2 n-1 n 
i2 

in 
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( )D  ( ) ( )= − + + + +1 0 1 1y 1 i x V 1 i V      (42)  

Case =t 3 : 

The targeted equation is actually the equation of a plane determined by points 

( ) ( ) ( )0 1 2V ,0,0 , 0,V ,0 , 0,0,V : 

 ( )P  =
0

1

2

x y z 1

V 0 0 1
0

0 V 0 1

0 0 V 1

    (43) 

that is to say: 

( )P  ( )( ) ( ) ( )( ) ( )+ + + + + − + + − + − =1 2 2 0 1 2 1 2 3x 1 i 1 i y 1 i z V 1 i 1 i V 1 i V 0    (44) 

The general case =t n :  

In this case, the targeted equation is in fact the equation of a hyper-plane determined by the 

points ( ) ( ) ( )0 1 nV ,0, ,0 , 0,V ,0, ,0 , , 0,0, ,0,V… … … …  . 

As a result of calculations, the hyper-plane equation is the following: 

( )H  ( ) ( )
= == =

+ − + =∑ ∑∏ ∏
n nn n

k j k j

i 1 k 1j k j k

x 1 i V 1 i 0      (45)  

The problem of determining the maximum incomes at different time points can be approached as a 

sequential decision problem; the states 0 1 nx ,x , ,x… are defined by the following vectors (in accordance with 

(38) (39) (40)): 

( )
( )

( )+ +

 =


= = =


= = = =


 = = = =

0 0

1 1 1 1

1 1 2 1 0 2 1

2 2 2 2 2 2

2 1 2 3 1 0 2 1 3 2

n n n n n n

n 1 2 n 1 1 0 2 1 n 1 n

x V

x x ,x , x V , x V

x x ,x ,x , x V , x V ,x V

x x ,x , ,x , x V , x V , ,x V

⋮

… …

   (46) 

If { }Ð = =k 1 2 ki ,i , ,i , k 1,n…  

 

1.3 Bibliographical Notes and Comments 
The key issues approached in this chapter are related to the concepts of entropy and utility as well as to several 

important decisional processes. Being an introductory chapter, we have presented the basic notions and results 

and we did not insist on the details.  

For a certain experiment, the entropy measures either the amount of indeterminacy within the 

experiment (before its occurrence) or the information obtained (after carrying out the experiment) [84]. The 

first concerns related to determining the measure of entropy are owing to Hartley starting from the study of 

communication problems. In fact, the measure of the entropy introduced by him is similar to the H function 

introduced in statistical physics by Boltzmann.  

The first rigorous measure of entropy was introduced in 1948 by Shannon; he practically formulated 

the entropic measure as a solution to a certain functional equation. This measure is known as the first un-

weighted entropy. Extensions of this entropy have been formulated by other researchers as well, the most 

interesting ones belonging to Renyi and Daroczy and also known as un-weighted entropy. This type of 

entropies has proven that it cannot be used successfully in the analysis and interpretation of some results of 

complex problems. It was concluded that the lack of details regarding the quantification of states is the main 

shortcoming.  
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For example, in the case of the fields of probability
 
 
 

1 9
,

10 10
 and

 
 
 

9 1
,

10 10
 Shannon's entropies have 

the same value −
9

ln
100

which, from practical point of view, is not correct (it is imperative to use the log base 2, 

and not the natural logarithm).  

Therefore, there were introduced new concepts of entropy which take into account the efficiency of 

different states, known as weighted entropies [44] [63]. Starting from different points of view, we have 

obtained different results and interpretations.  

This paper does not analyze the concept of entropy based on infinite fields of probability.  

Taking into consideration the concept of entropy, one can introduce certain entropic measures used in 

systems analysis: degree of organization, degree of concentration, prediction, uncertainty [44] [84].  

A term of reference within the decision theory is the utility concept. Mathematically, utility is a 

function defined by the set of states (ordered by preferences) and it is unique until a positive linear 

transformation occurs. It was introduced under an axiomatic system describing rational behavior. This behavior 

is usually described by a list of axioms (first formulated by Neumann and Morgenstern [58]). Subsequently, the 

changes made to that list of axioms were made by Savage, Suppes, Winet, Luce and Raiffa [44] [63].  

Much of this work is part of the game theory (non-cooperative and cooperative). This theory was based 

on the work of Neumann and Morgenstern's [58] and it dwells on the following fundamental principles: each 

player adopts a rational behavior and all players know the rules of the game. Non-cooperative games imply the 

competitive nature of the decisional process. One of the principles of optimum behavior in the case of non-

cooperative games with n players is when the optimal solution is an equilibrium point. The first result regarding 

the existence of an equilibrium in n-person games is owing to Nash [56] who showed that any finite game 

admits equilibrium points within mixed strategies. This result was extended by Nikaido and Isoda [60] who 

stated that any convex game admits equilibrium points. In the case of stochastic games "with stops" the 

existence of equilibrium points was demonstrated by Shapley [77] who also thought of a method to determine 

them. Gillette made other types of stochastic games (with updates and without stops) and the method of solving 

equilibrium points was given by Hoffman for two-player zero sum games. The existence of equilibrium points 

in general was demonstrated by Sobel while Maitre and Parthasarathi made generalizations in the infinite case 

[82]. 

Cooperative games are those games that enable the exchange of information and firm agreements.  

The degree of cooperation in such a game depends on the possibility to carry out or not the utility 

transfer. According to this goal, cooperative games can be classified as follows: cooperative games without 

compensation and cooperative games with compensation. The central problem in the case of cooperative games 

is the distribution of individual gains. Since there are multiple ways of making coalitions, it is obvious that 

there are several types of relationships for final earnings Shapley [77], Caplow [11], Aumann and Mascher [3].  

The sequential decision problem is a particular case of decisional process. Since the efficiency function 

meets certain requirements, the optimum principle adopted is owing to Bellman [6]. In stationary conditions, 

the solution of such a problem is determined as a solution of a functional equation; the most recommended 

method is that of successive approximations. 
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THE MINMAX INEQUALITY AND EQUALITY   
 

 

2.1 Maxmin and Minmax Optimum Guaranteed Values and the Minmax Equality 
 

2.1.1 The Minimum Function 

For the beginning, we assume a game with two decision makers ( )1 1 2J D ,D ,F  where ( )
11 DD ,d , ( )

22 DD ,d  are 

metric spaces ( 1D , 2D  represents the sets of strategies of the two deciders). 

We construct Haussdorff’s metric: 

( ) ( ) ( ) ( ) ( ){ }× → = ∀ ⊂2 2 2d : D D ,d A,B max A,B ; B,A , A,B Dρ ρP P ℝ  

where ( ) ( )
∈ ∈

=
2D

x A y B

A,B supinf d x, yρ . 

Let ( )→1 2T : D DP  be the informational (multivocal) application of the first decider [25], [47]. 

Definition 2.1 

The set ⊆1 2Td D  is called the informational set of decider 1  corresponding to the strategy ∈1 1d D  and 

it represents the set of the strategies that decider 2  can take if decider 1  adopted the strategy ∈1 1d D . 

Definition 2.2 

The multivocal application T  is called: 

1) s.c.s. in ∈0

1 1d D , if ( )
→

=
0

1 1

0

1 1
d d

lim Td ,Td 0ρ ; 

2) s.c.i. in ∈0

1 1d D , if from conditions: 

= ∈n 0 0 0

1 1 2 1
n

limd d ,d Td  

results that there exists ( )∈n n n

2 2 1 n
d : d Td  so that =0 0

2 2
n

d limd ; 

3) closed in ∈0

1 1d D , if from conditions: 

= = ∈n 0 n 0 n n

1 1 2 2 2 1
n n

limd d , limd d ,d Td  

results ∈0 0

2 1d Td ; 

4) continue in ∈0

1 1d D , if ( )
→

=
0

1 1

0

1 1
d d

lim d Td ,Td 0 . 

Remark 2.1 

The conditions of s.c.i. and s.c.s. according to definition 2.2 in ∈0

1 1d D  for the multivocal application 

T  is generally not for assuring the continuity in 0

1d ; but if 2D  is sufficient compact, the continuity is assured. 

We suppose that 1D  and 2D  are compact. 

Consider the functional: 

( ) ( )
∈

→ =
2 1

1 1 1 2
d Td

R : D , R d inf F d ,dℝ  

Theorem 2.1 

If F  is s.c.s. on ×1 2D D , T  is continuous in ∈0

1 1d D , then functional R  is s.c.s. in ∈0

1 1d D . 

Proof 

Take any > 0ε  and small enough. 

As ( ) ( )
∈

=
0

2 1

0 0

1 1 2
d Td

R d inf F d ,d  there exists ∈0 0

2 1d Td  so that the inequality: 

 ( ) ( )≤ +0 0 0

1 2 1F d ,d R d
2

ε
  (47) 

hold true. 

From condition of s.c.s. of F  in ( )0 0

1 2d ,d  for the chosen > 0ε  it will exist > 0δ  so that: 
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( ) ( ) ( ) ( ) ( )( )×≥ − ∀ ∈ × ≤
1 2

0 0 0 0

1 2 1 2 1 2 1 2 D D 1 2 1 2F d ,d F d ,d , d ,d D D ,d d ,d , d ,d
2

ε
δ  

From continuity condition of T  occurs that there is a > 0γ  so that ( ) ≤
2

0

D 1 1d Td ,Td δ  for any ∈1 1d D  

with the property ( ) ≤
1

0

D 1 1d d ,d γ . 

Take ( ) ( ){ }= ∈ ≤0
11

0

1 1 D 1 1d
V d D d d ,d min ,δ γ . Regardless ∈ 0

1
1 d

d V , there is a ∈2 1d Td  so that 

( ) ≤
2

0

D 2 2d d ,d δ . 

So for any ∈ 0
1

1 d
d V  there is a ∈2 1d Td  so that: 

 ( ) ( ) ( )+ ≥ ≥ −0 0 0

1 1 2 1 2R d F d ,d F d ,d
2 2

ε ε
 (48) 

as 

 ( ) ( )≤ ∀ ∈1 1 2 2 1R d F d ,d , d Tdɶ ɶ  (49) 

From (48) and (49) the inequality occurs: 

( ) ( )≥ − ∀ ∈ 0
1

0

1 1 1 d
R d R d , d Vε  

which means that R  is s.c.s. in 0

1d . 

Consequence 2.1.1 

If F  is s.c.s. on ×1 2D D , T  is continuous on 1D , then there is a ∈*

1 1d D  so that: 

( ) ( )
∈ ∈

=
1 1

2 1

*

1 1 2
d D d Td

R d max inf F d ,d  

Remark 2.2 

We assume F  continue. As the functional of gain of the second decider is = −G F , if it is defined the 

functional × →1 2f : D Dɶ ℝ : 

( ) ( ) ( )
∈

= −
2 2

1 2 1 2 1 2
d D

f d ,d G d ,d maxG d ,dɶ  

then the best guaranteed result of the first decider will be [17], [24], [25]: 

( )
∈∈ 2 1

1 1

1 2
d Tdd D

sup min F d ,d  

if 

 ( ){ }= ∈ = ≠ ∅1 2 2 1 2Td d D f d ,d 0ɶ  (51) 

The form in which the informational set of the first decider occurs in (51) leads us to consider the 

informational application T  to be defined as follows: 

 ( ){ }= ∈ ≥1 2 2 1 2Td d D f d ,d 0  (52) 

where × →1 2f : D D ℝ  is a known functional. 

We denote by ( ){ }= ∈ >0

1 2 2 1 2T d d D f d ,d 0 . 

Theorem 2.2 [25], [42], [49] 

The following results occur: 

1) if F  is continuous and =0

1 1T d Td , ∀ ∈1 1d D , then T  is continuous on 1D ; 

2) if in addition to 1), we assume that F  is continuous on ×1 2D D  and 1Td  is compact ∀ ∈1 1d D , then 

R  is continuous, so there is a ∈*

1 1d D  thus: 

( ) ( )
∈ ∈

=
1 1 2 1

*

1 1 2
d D d Td

R d max min F d ,d      (53) 

Remark 2.3 

The conditions of continuity of T  proved at point 1) acted essentially only to assure the condition of 

closeness and the equalities (53). 
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Remark 2.4 

The condition of compactity of 1D , 2D  and the continuity of F  does not assure in the case of the 

games with an informational exchange, the contingence of the optimal guaranteed value: 

( )
∈ ∈

=
1 1 2 1

1 2
d D d Td

V max min F d ,d       (54) 

(likewise in the case of the games without an informational exchange). But if F , T  are continuous, ≠ ∅1Td , 

∀ ∈1 1d D , then the contingence of quantity V  is realizable [82]. 

Let’s notice that in comparison with conditions of theorem 2.2, these conditions are modified (in the 

sense that have been weaker and others are harder). 

The performances obtained in the case of game 1J  can be extended to a game 
=

 
= × 
 
∏
n

n i i 1

i 1

J D D ,F  in 

which the deciders are coalized into two coalitions { }= −1C 1,3,...,2n 1 , { }=2C 2,4,...,2n  with opposite 

interests (we marked with 1F  –  the functional of gain and iD , iD  the set of the strategies of decider i , 

=i 1,n ). 

In this case, the best guaranteed result of the first decider is given by the quantity: 

( )
( )

( )
∈ ∈ ∈ ∈ ∈ ∈

 
=  

 1 1 1 1 n n n n i i i i

n

1 1 n n 1 1 n n
d D d D d D d D d D d D

sup inf ... sup inf F d ,d ,...,d ,d sup inf F d ,d ,...,d ,d   (55) 

Let’s assume that in game nJ  the informational exchange is permitted; the informational sets of those 

2n  deciders are iA , =i 1,n  for the deciders from 1C  and iB , =i 1,n  for the deciders from 2C , being 

constructed by means of the informational applications iT  (for the deciders from 1C ), iT  (from the deciders 

from 2C ), =i 1,n : 

( ) ( ){ }− − − −= = ∈ ≥ = =i i 1 1 i 1 i 1 i i i 1 1 i 1 i 1 i 1 1A T d ,d ,...,d ,d d D f d ,d ,...,d ,d ,d 0 , i 2,n, A D  

( ) ( ){ }− −= = ∈ ≥ =i i 1 1 i 1 i 1 i i i i 1 1 i iB T d ,d ,...,d ,d ,d d D f d ,d ,...,d ,d 0 , i 1,n  

( )
−

=

× × →∏
i 1

i j j i

j 1

f : D D D ℝ , =i 2,n , 
=

× →∏
i

i j j

j 1

f : D D ℝ , =i 1,n  being known. 

The best guaranteed result of the decider 1  in this case is given by the quantity: 

 ( )
∈ ∈

=
i i i i

n 1 1 n n
d A d B

V sup inf F d ,d ,...,d ,d  (56) 

Let’s notice that in the case which iD , iD , =i 1,n , are compact metric spaces, F , iT , iT , if , if , 

=i 1,n  are continuous, ≠ ∅iA , =i 2,n , ≠ ∅iB , =i 1,n , then the superior and inferior bounds from (55) can 

be reached (remark 2.4). That’s why there naturally arises the problem of establishing some methods for 

determining of the optimal guaranteed values of the first decider in games nJ  and 1J . 

Other important results related to the semi-continuity of multivocal applications and to the minimum 

function are presented below.  

Theorem 2.3 [25], [47], [48] 

Let us consider that X , Y are compact metric spaces,  F is defined on ×X Y , B  is an multivocal 

application , ( )→B : X YP , ( ) ( )=
x

f x inf F x, y .  

Therefore, we shall have: 

1) If F is continuous on ×X Y , B  is s.c.s. in ∈0x X , then f  is s.c.i. on 0x ; 

2) If F is continuous on ×X Y , B  is continuous in 0x , then f  is continuous in 0x ; 

3) If F  est s.c.s. on ×X Y , B  is s.c.i. on 0x  and ( )0B x  is closed, then f  is s.c.i. in 0x ; 

4) If F  is s.c.s. on ×X Y , B  is continuous in 0x , then f  is s.c.s. in 0x . 

Remark 2.5 [25] 
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Let us consider ( )n n
B , multivocal applications that are continuous on X , so that the following equality 

takes place: 

( ) ( )( ) =1 n
n

limd B x ,B x 0 , ∀ ∈x X , ( ) ( )+⊆n n 1B x B x , ( ) ≠ ∅1B x , ∀ ∈x X . 

If the multivocal application is continuous, then the sequence ( )n n
B  is uniformly convergent to B .  

Consequently, we shall have: 

( )
( )

( )
( )

∈ ∈
= ∀ ∈

n 0y B x y B x

lim inf F x, y inf F x, y , x X    (57) 

Remark 2.6 [25] 

Let us consider g is continuous on ×X Y . Therefore, we shall have 

1) If ( ) ( ){ }= ∈ ≥B x y Y g x,y 0 , then B  is s.c.i. on X  

2) If ( ) ( ){ }= ∈ ≥B x y Y g x,y 0 , ( ) ( ){ }= ∈ >0B x y Y g x,y 0 , ( ) ( )=0B x B x , then B  is continuous. 

Theorem 2.4 [25], [48] 

Let us assume the sequence of functions ( )n n
f  which are decreasingly convergent to 0f . 

1) The following equality takes place: ( ) ( )
∈ ∈

=n 0
n x X x X

lim sup f x sup f x ; if the sequence ( )n n
x  verifies: 

( ) ( )
∈

≥ − = >n n n n n
nx X

f x sup f x , lim 0, 0ε ε ε  

then we shall have: 

( ) ( )
∈

=0 n 0
n x X

lim f x sup f x                           (58) 

2) If X is a compact space and f is s.c.i., then 

( ) ( )
∈ ∈

=n 0
n x X x X

limmin f x min f x  ; if ( )
∈

=n n
x X

x Rmin f x , then we have: ( )
∈

=*

0
x X

x Rmin f x  

Remark 2.7 

If F  is s.c.s. on ×X Y , B  is continuous on X , then f  is s.c.s. on X . As a consequence, there exists 

∈0x X  so that 

( ) ( )
∈

=0
x X

f x max f x       (59) 

which implies the following equality 

( )
( )

( )
∈ ∈

=0
x X y B x

f x max min F x,y      (60) 

If F  is continuous on ×X Y , B  is continuous on X , then f  is continuous on X .  

Consequently, there exists ∈1x X  so that: 

( )
( )

( )
∈ ∈

=1
x X y B x

f x min max F x,y      (61) 

and ∈2x X  so that: 

( )
( )

( )
∈ ∈

=2
x X y B x

f x max min F x, y      (62) 

 

2.1.2 Guaranteed optimum values and their generalizations  

The guaranteed optimum values were introduced by Neumann [57] starting from a non-cooperative game 

structure with two decision makers (players) ( )=2 1 2 1 2j F ,F ;D ,D  where:  

1 2D ,D represent the decisions of both players,  

× →1 2 1 2F ,F : D D ℝ are the efficiency functions of the players.  

Guaranteed optimum values are related to cautious strategic behaviour (the principle of stability); the 

goal of each decision maker is to reach an equilibrium point. The pair of strategies ( )∈ ×1 2 1 2d ,d D D  is called 

equilibrium point in case any deviation of a decision maker from ( )1 2d ,d would bring down their gains (63): 
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( ) ( )
( ) ( )

 ≥ ∀ ∈


≥ ∀ ∈

1 2 11 1 2 2 2

1 2 22 2 1 1 1

F d ,d F d ,d , d D

F d ,d F d ,d , d D
     (63) 

 

In the case of a zero sum game + =1 2( F F 0 ) , if we use the notation = = −1 2 2F F F , then the inequalities 

(63) can take the following form:  

( ) ( ) ( )≤ ≤ ∀ ∈ ×1 1 2 22 1 1 2 1 2F d ,d F d ,d F d ,d , ( d ,d ) D D              (64) 

In terms of decision theory, the guaranteed optimum values are denoted by 1 2v ,v  and they are defined 

as follows: 

( )=
1 2

1 1 2
d d

v supinf F d ,d       (65) 

 ( )=
2 1

2 1 2
d d

v inf sup F d ,d       (66) 

Basically, 1v  represents the maximum absolute gain that can be achieved by the first player regardless 

of the opponent's strategic behaviour. Moreover, 2v  represents the maximum loss that may be experienced by 

the second decider.  

When the limits 1v and 2v can be reached, in algebraic and typological terms, it is clear that equalities 

(65) and (66) can be written as follows: 

( )=
1 2

1 1 2
d d

v maxminF d ,d       (67) 

( )=
2 1

2 1 2
d d

v minmaxF d ,d       (68) 

Remark 2.8 

The significance of the optimal and guaranteed strategies and values in the context of the theory of non-

cooperative games is the following: 

1) if ( )2 1

1 2d ,d  is the optimal guaranteed strategy of the first decider, then the quantity: 

( ) ( )
∈ ∈

= =
1 1 2 2

1 1

1 1 2 1 2
d D d D

V max min F d ,d F d ,d  

represents the maximum sure gain which the first decider can obtain; 

2) if ( )2 2

1 2d ,d  is the optimal guaranteed strategy of the second decider, then the quantity: 

( ) ( )
∈ ∈

= =
2 2 1 1

2 2

2 1 2 1 2
d D d D

V min maxF d ,d F d ,d  

represents the maximum loss the second decider could wait for. 

Remark 2.9 

The equilibrium point ( )∈ ×1 2 1 2d ,d D D defined by conditions (63) or, equivalently, (64) is called a 

saddle point. Basically, a saddle point is a particular equilibrium point; it is in fact an equilibrium point for 

antagonistic zero-sum games with two players.  

In some algebraic and topological conditions [82], the solution ( )1 2d ,d of inequalities 

( ) ( ) ( )≤ ≤ ∀ ∈ ×1 1 2 22 1 1 2 1 2F d ,d F d ,d F d ,d , ( d ,d ) D D  is in fact the solution of the equation 

( ) =
1 2

1 2
d d

maxminF d ,d ( )
2 1

1 2
d d
minmaxF d ,d      (69) 

also known as a minmax equation.  

The existence of guaranteed optimum values 1v and 2v determined by (67) and (68) is assured, in a 

sufficiently general framework, by the next result [39], [82]. 

Theorem 2.5 

If the conditions hold true: 

1) ( )1 1D ,ρ , ( )2 2D ,ρ  there are compact metrical spaces; 

2) F  is continue in both arguments 
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then there exist optimal guaranteed strategies for 1J . 

Proof 

Let’s take the functions: 

( ) ( )
∈

→ =
2 2

1 1 1 1 1 2
d D

f : D , f d min F d ,dℝ  

( ) ( )
∈

→ =
1 1

2 2 2 2 1 2
d D

f : D , f d maxF d ,dℝ  

In order to prove the existence of the optimal guaranteed strategies it is sufficient to show that 1f  and 

2f  are continue (because any continue function on a compact is bounded and it reaches its bounds on the 

compact). 

F  is continue on ×1 2D D  and, consequently, it is uniformly continue. 

Let us consider > 0ε  small enough. Then there exists ( )δ ε , so that the inequality takes place: 

 ( ) ( )− <1 2

1 2 1 2F d ,d F d ,d ε   (69) 

For any ∈2 2d D  and any ∈1 2

1 1 1d ,d D , with the property ( ) ( )<1 2

1 1 1d ,dρ δ ε . 

Let us consider ∈1 2

2 2 2d ,d D , so that: 

 ( ) ( ) ( )
∈

= =
2 2

1 1 1 1

1 1 1 2 1 2
d D

f d min F d ,d F d ,d   (70) 

 ( ) ( ) ( )
∈

= =
2 2

2 2 2 2

1 1 1 2 1 2
d D

f d min F d ,d F d ,d   (71) 

For ( ) ( ) ( ) ( )− = −1 2 1 1 2 2

1 1 1 1 1 2 1 2f d f d F d ,d F d ,d , there exist the following possibilities: 

1) ( ) ( )≤ −1 1 2 2

1 2 1 20 F d ,d F d ,d  

In this case, ( ) ( ) ( ) ( )− ≤ − ≤1 1 2 2 1 2 2 2

1 2 1 2 1 2 1 2F d ,d F d ,d F d ,d F d ,d ε , according to the inequality (69). 

2) ( ) ( )≤ −2 2 1 1

1 2 1 20 F d ,d F d ,d  

In this case, ( ) ( ) ( ) ( )− ≤ − ≤1 1 2 2 1 2 2 2

1 2 1 2 1 1 1 2F d ,d F d ,d F d ,d F d ,d ε , according to the inequality (69). 

Consequently, for any ∈1 2

1 1 1d ,d D , so that ( ) ( )<1 2d ,dρ δ ε  the inequality: 

( ) ( )− <1 2

1 1 1 1f d f d ε       (72) 

holds true and proves the fact that 1f  is continue. 

Analogically, we assume that the theorem is proved. 

Generalizing the concept of guaranteed optimum value can be done in two ways. First, one can speak 

of guaranteed optimum values without an informational exchange [25]. 

If we consider the game ( )=2n 1 1J F , ,
2

D D  at which take part 2n  coalized deciders in the coalitions 

{ }= −1C 1,3,...,2n 1 , { }=2C 2,4,...,2n  with opposite interest in which: 

- iD  represents the set of strategies of the decider ∈ 1i C  

=

=∏
n

1 i

i 1

DD  

- jD  represents the set of strategies of decider ∈ 2j C  

=

=∏
n

2 j

j 1

DD  

- 1F  is the functional of the gain, then we can define in the same way with the game 1J  the optimal 

guaranteed values for 1C  and 2C : 

( )
( )

( )
∈ ∈ ∈ ∈ ∈ ∈

 
= =  

 1 1 1 1 n n n n i i i i

n
not

1 1 1 n n 1 1 n n
d D d D d D d D d D d D

V sup inf ... sup inf F d ,d ,...,d ,d sup inf F d ,d ,...,d ,d  
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( )
( )

( )
∈ ∈ ∈ ∈ ∈ ∈

 
= =  

 1 1 1 1 n n n n i i i i

n
not

2 1 1 n n 1 1 n n
d D d D d D d D d D d D

V inf sup ... inf sup F d ,d ,...,d ,d inf sup F d ,d ,...,d ,d  

as well as the optimal guaranteed strategies. 

We assume the problem of determining conditions in which there exists optimal guaranteed strategies 

for 1J  and 2nJ  ( )>n 1 . 

Remark 2.10 

The theorem 2.1 which applies to 1J  can be generalized to nJ , >n 1 . 

In case that 1F  is continue and the sets iD , iD , =i 1,n , are compact metric spaces, then for 2nJ  we 

can prove the existence of the optimal guaranteed strategies. 

An extremely important problem which appears in real decisional situations, is when from any reason, 

the function of efficiency F  is replaced by another function of efficiency 1F  (easily to express from analytical 

point of view). It arises the problem of deviation from the optimal guaranteed value, knowing that two 

functions of efficiency verify the condition ( ) ( )− <1 2 1 1 2F d ,d F d ,d ε , > 0ε  small enough. In this case, we 

can prove the following inequality: 

−
1 2 1 2

1 2 1 1 2
d d d d

maxminF( d ,d ) maxminF ( d ,d ) ε≺     (73) 

The second manner of generalizing the concept of guaranteed optimum value is based on the idea of 

informational set; for this reason, we can talk about guaranteed optimum values with informational change.  

We shall assume that we are in the case of a game with 2n  players, ( )= =i2n ij F ,D ,D ,i 1,n , for which 

the meaning of the efficiency functions and the meaning of the set of strategies iD , iD are known from game 

theory. By the instrumentality of the following known functions: 

−× → =i 1i ig : D D , i 1,nℝ  

× → =ii ih : D D , i 1,nℝ  

we shall define as follows, the multivocal applications =i iA ,B ,i 1,n : 

( )

( )
−−

−

× →

× →

i 1i i 1 i

i 1 ii i

A : D D D

B : D D D

P

P
 

We are led to the following problem that needs to be solved: 

( ) ( )
1 1 2 2 n n

1 n1 n
d d d d d d

P maxminmaxmin maxmin F d ,d d ,d… …    (74) 

Obviously, ( )∈ × =iii id ,d D D , i 1,n  

If ( ) ( )
=

∈ ×∏
n

* ** *
i1 n1 n i

i 1

d ,d , ,d ,d D D… represents a solution for the problem ( )P , we shall use the 

following notations: 

( )=
* * ** * *
1 2 n1 2 nM F d ,d ,d ,d ,d ,d…  

and, therefore, we have the following equality: 

( )
=

 =   ii

n

1 n1 n
d d i 1

M maxmin F d ,d d ,d…      (75) 

 This problem can be considered as a game which allows the informational change. 

 The sets =i iA ,B ,i 1,n are called the informational sets of players.  

Remark 2.11 

If the informational change is allowed, the minmax inequality is not verified.  

 For example [25], let us consider ( ) ( ) ( )= +1 1 1 1F d ,d g d h d and the functions g and h, which are 

known. The informational sets can be defined as follows: 

Chapter 2

27



( ) ( ){ } ( ) ( ){ }= ≥ = ≥1 1 1 1 1 1 1 1B d d : d ,d 0 , A d d : d ,d 0ϕ ϕ  

We consider that ( ){ } ( ){ }= ≠ ∅ = ≠ ∅1 1 1 2 1 1D d : B d , D d : A d  

We shall give proof of the following equality: 

 ( ) ( )≥
1 11 1

1 1 1 1
d dd d

supinf F d ,d inf sup F d ,d     (76) 

In the left member of the inequality (76), we have ( )∈ ∈1 1 1 1d D ,d B d , and in the right member of the 

same equality, we have ( )∈ ∈1 2 1 1d D ,d A d  

Obviously, ( ) ( )⊂ ⊂ ∀ ∈ ∀ ∈1 1 1 2 1 1 1 2A d D , B d D , d D , d D  

 Therefore, we shall have: 

( ) ( ) ( )
( )

( )
∈ ∈ ∈ ∈

 
+ ≥ +  

 1 1 1 2 1 2 1 1

1 1 1 1
d D d D d D d A d

sup g d inf h d inf h d sup g d  

( )
( )

( )
( )

( )
∈ ∈∈ ∈

 
+ =  

 1 2 1 21 1 1 1

1 1 1 1
d D d Dd A d d A d

inf h d sup g d inf sup F d ,d  

which immediately yields the inequality (2.21). 

Remark 2.12 

If =n 2 , we shall use, further on, the following notation: 

( )=
1 1

*

1 1 1
d d

d RmaxminF d ,d  is a solution of the problem 

( ) ( )=
1 1 1

1

1 1 1 1
d d d

d

maxminF d ,d minmaxF d ,d  

where ( ) ( )∈ ∈1 1 1 1d A d ,d B d  

 

2.2 Minmax Conditions of Optimality 

 
2.2.1 The Case when Informational Change is not Allowed 

 
2.2.1.1 Minmax Theorems 

The minmax theorem is undoubtedly connected to the name of J. von Neumann and to the theory of games. 

In a broad acceptance, the minmax theory sets the conditions in which, if 1D  and 2D  are non-void sets 

and × →1 2f : D D ℝ  the equality takes place: 

( ) ( )
∈ ∈ ∈ ∈

=
2 2 1 1 1 1 2 2

1 2 1 2
d D d D d D d D

inf sup f d ,d sup inf f d ,d          (77) 

As a basic result in proving the minmax equality, we can consider the following one. 

Theorem 2.6 

If 1D , 2D  are compact and convex in linear topologic spaces and f  is concave-convex on ×1 2D D  and 

continue, separately, on 1D  and 2D , then the equality holds true: 

( ) ( )
∈ ∈ ∈ ∈

=
1 1 2 2 2 2 1 1

1 2 1 2
d D d D d D d D
max min f d ,d min max f d ,d                                            (78) 

The release of algebraic and topologic hypotheses which condition the above equality (or in the infsup 

variant) led to numerous minmax theorems. 

In addition, we have got to notice that all the theorems of equilibrium from [82] become minmax 

theorems through their simple transcription for the case of zero-sum two-person games. 

Theorem 2.7 [82] 

If 2D  is compact in any topologic space and =f s .c .i .  on 2D , for every ∈1 1d D  fixed, then the 

following conditions are equivalent: 
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1) ( ) ( )
∈ ∈∈ ∈

=
2 2 2 2

1 1 1 1

1 2 1 2
d D d Dd D d D

sup min f d ,d min sup f d ,d ; 

2) For each finite pair ( )′1a,D , ∈a ℝ , ′ ⊂1D D , so that: 

( )
∈ ∈

<
2 2 1 1

1 2
d D d D

a min max f d ,d  

there exists a ∈0

1 1d D  so that 

( )
∈

≤
2 2

0

1 2
d D

a min f d ,d  

Proof 

We prove the implication ⇒1) 2 ) . 

Let us consider ′ ⊂1D D  finite and ∈a ℝ , so that the inequality may take place: 

( )
∈ ∈

<
2 2 1 1

1 2
d D d D

a min max f d ,d  

and, consequently, ( )
∈ ∈

< =
2 2 1 1

1 2 2
d D d D

a min max f d ,d V .  

Writing = −2V aε , there results = −2a V ε  or, in an equivalent form, = −1a V ε . From the definition of 

1V  results that there exists a ∈0

1 1d D  so that: 

( )
∈

≥ − =
1 1

0

1 2 1
d D
min f d ,d V aε  

Therefore, the implication ⇒1) 2 )  is proved. 

Hereinfater, we shall prove the implication ⇒2 ) 1) . 

Let us consider ∈a ℝ  be so that ( )
∈ ∈

<
2 2

1 1

1 2
d D d D

a min sup f d ,d . 

For every ∈1 1d D , we shall consider the closed set: 

( ) ( ){ }= ∈ ≤a 1 2 2 1 2A d d D f d ,d a  

Obviously, ( )
∈

= ∅
1 1

a 1

d D

A d∩ . Since 2D  is compact there exists the finite set ′ ⊂1 1D D  so that 

( )
′∈

= ∅
1 1

a 1

d D

A d∩ . Therefore, the following inequality takes place: 

( )
∈

< ∀ ∈
1 1

1 2 2 2
d D

a max f d ,d , d D  

which proves that ( )
′∈ ∈

<
2 2 1 1

1 2
d D d D

a min max f d ,d . 

Let’s consider ∈0

1 1d D  which meets the condition 2). Then: 

( ) ( )
∈ ∈∈

≤ =
2 2 2 2

1 1

0

1 2 1 2 1
d D d Dd D

a min f d ,d sup min f d ,d V  

Since a  was arbitrary chosen, < 2a V , it results ≤2 1V V  and, thereby, the implication ⇒2 ) 1)  is 

proved. 

Theorem 2.8 [82] 

Let us consider 2D  compact in a topologic space and × →1 2f : D D ℝ  s.c.i. so that the following 

hypothesis is verified: 

  ( ) ( ) ( )∀ ∈ ∃ ∈ + ≤ ∀ ∈1 2 0 1 2 0

1 1 1 1 1 1 2 1 2 1 2 2 2d ,d D , d D : f d ,d f d ,d 2 f d ,d , d D   (79) 

Moreover, we assume that for each ∈a ℝ , [ ]∈ 0,1λ , ∈1 2

1 1 1d ,d D  and ′ ⊂1 1D D  finite, with the property 

{ }( ) { }( )′ ′∪ ∩ ∪ = ∅1 2

a 1 1 a 1 1A D d A D d  is true for one of the inclusions: 

 
( ) ( ) { }( )
( ) ( ) { }( )

′ ′∩ ⊆ ∪

′ ′∩ ⊆ ∪

1 2 1

1 1 a 1 a 1 1

1 2 2

1 1 a 1 a 1 1

L ,a,d ,d A D A D d

L ,a,d ,d A D A D d

λ

λ
 (80) 

Then the following equality takes place: 
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( ) ( )
∈ ∈∈ ∈

=
2 2 2 2

1 1 1 1

1 2 1 2
d D d Dd D d D

min sup f d ,d sup min f d ,d  

Remark 2.13 

We shall note: 

( ) ( ) ( ) ( ){ }= ∈ + − ≤1 2 1 2 2

1 1 2 2 1 1 1 2L ,a,d ,d d D f d ,d 1 f d ,d aλ λ λ  

( ) ( ) ( ) ( ){ }
′∈

′ ′= ⊂ = ∈ <
1 1

a 1 a 1 1 1 a 1 2 2 1 2

d D

A D A d ,D D , A d d D f d ,d a∩  

Remark 2.14 

The previous theorem is Ştefănescu’s [82]. Based on this theorem, we can prove all the minmax 

theorems which will be presented from now on. 

Theorem 2.9 [82] 

If 2D  is compact on a separated topologic space, f  is s.c.i. convex on 2D  and verifies the hypothesis 

(80) from the previous theorem, then the following inequality takes place: 

( ) ( )
∈ ∈∈ ∈

=
2 2 2 2

1 1 1 1

1 2 1 2
d D d Dd D d D

min sup f d ,d sup min f d ,d     (81) 

Theorem 2.10 [24] 

If 2D  is compact in a separated space, f  is s.c.i. on 2D  and concave-convex on ×1 2D D , then the 

equality takes place: 

( ) ( )
∈ ∈∈ ∈

=
2 2 2 2

1 1 1 1

1 2 1 2
d D d Dd D d D

min sup f d ,d sup min f d ,d     (82) 

Theorem 2.11 [24] 

If 1D , 2D  are compact in topological spaces, f  is s.c.s. on 1D  and s.c.i. on 2D . If, in addition, f  is 

concave-convex, then we have: 

( ) ( )
∈ ∈ ∈ ∈

=
2 2 1 1 1 1 2 2

1 2 1 2
d D d D d D d D
min max f d ,d max min f d ,d     (83) 

We notice that beside the original proofs, these theorems admit simpler proofs, too. 

Thus, theorem 2.10 allows an immediate proof, because the conditions of theorem 2.10 are met and the 

proof of theorem 2.11 is a consequence of the fact that the conditions of the theorem 2.10 are also met. 

Indeed, the functions: 

( ) ( )
∈

→ =
2 2

1 1 1 1 1 2
d D

f : D , f d min f d ,dℝ     (84) 

( ) ( )
∈

→ =
1 1

2 2 2 2 1 2
d D

f : D , f d max f d ,dℝ     (85) 

are s.c.s., respectively s.c.i. and so they will reach their bounds on 1D  sets, as well as on 2D  sets. 

Remark 2.15 

Let’s also notice that the minmax equality formulated in the framework of the theorem 2.11 is 

preserved if we replace the imposed conditions for the spaces 1D , 2D  and for the function f by the following 

requisites: 

- 1D , 2D  are convex and compact in the linear topologic spaces; 

- f  is concave and s.c.s. on 1D ; 

- f  is convex and s.c.i. on 2D . 

Based on this remark, we shall give a proof of the well known minmax theorem belonging to Neumann. 

In order to prove this theorem, Neumann has used a mathematical apparatus sophisticated enough, 

based on the theorem of the fixed point. 

Later on, they gave algebraic proofs much more simple, the simplest direct proof being based on the 

properties of duality in linear optimization. 

Theorem 2.12 [82] 

Let’s consider the real numbers i , ja , =i 1,m , =j 1,n . Then there exist the non-negative constants 

1 2 m 1 2 np , p ,..., p ,q ,q ,...,q , 
= =

= =∑ ∑
m m

i j

i 1 j 1

p q 1  so that the following equivalent conditions can be verified: 
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= = = =

≤ ≤ = =∑ ∑∑ ∑
n m n m

ij j ij i j ij i

j 1 i 1 j 1 i 1

a q a p q a p , i 1,m, j 1,n                (86) 

= = = = = =

≤ ≤∑∑ ∑∑ ∑∑
m n m n m n

ij i j ij i j ij i j

i 1 j 1 i 1 j 1 i 1 j 1

a p q a p q a p q                   (87) 

for any non-negative constants 1 2 m 1 2 np , p ,..., p ,q ,q ,...,q , 
= =

= =∑ ∑
m m

i j

i 1 j 1

p q 1 . 

Proof 

We shall consider: 

( )
=

 
= = ≥ = 

 
∑
m

1 2 m i i

i 1

P p p , p ,..., p p 0, p 1  

( )
=

  
= = ≥ = 
  

∑
n

1 2 n j j

j 1

Q q q ,q ,...,q q 0, q 1  

Let us define  

× →f : P Q ℝ , ( )
= =

=∑∑
m n

ij i j

i 1 j 1

f p,q a p q     (88) 

It results immediately that P , Q  are compact and convex in mℝ , respectively nℝ . 

Due to remark 2.15, we have the property 2), from where the equivalence with property 1) is evident. 

Remark 2.16 

The theorems presented so far imply successively Theorem 2.8 ⇒  Theorem 2.9 ⇒  Theorem 2.10 ⇒  

Theorem 2.11 ⇒  Theorem 2.12, the last theorem being in the fact minmax theorem for which they gave proof 

(from a chronologic point of view). 

Other versions of the proofs of the minmax equality have been the object of preoccupation of other 

mathematicians, too (in Bibliographic Notes and Commentaries we shall refer to other results obtained in this 

domain). 

In case of aleatory extensions of the games there is nothing new from the very strict point of view of 

the minmax theorem, because the more general conditions of existence of the minmax equality are not pointed 

out. 

The fact that the minmax equality is not satisfied for any game, led to the idea of defining of an 

extension of an initial game where the minmax equality should exist. 

Practically speaking, the aleatory extensions of the zero-sum two-person games have been introduced, 

in an attempt of giving a universal character to the minmax theorem. 

The acceptation or rejection of the modality of construction of this extension is based on the 

fundamental ideas of the games theory regarding the behavior of the deciders and the measurement of their 

utility. 

Similar to the case proving the existence of the equilibrium points in the aleatory extensions of the 

game, we shall replace the sets 1D , 2D  with different spaces of probabilities defined on these and we shall 

extend conveniently the function f  on their product. 

We consider the aleatory extension ( ) ( )( )= 1 2J P D ,P D ,Fɶ  where: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
×

= ⊗ = =

=

∫ ∫ ∫

∫ ∫
1 2 1 2

2 1

1 2 1 2 1 2 2 1

D D D D

1 2 1 2

D D

F p,q f d ,d dp q d ,d f d ,d dq d dp d

f d ,d dp d dq d
 (89) 

Theorem 2.13 [82] 

If 1D , 2D  are compact in separated topological spaces and f  is continue on ×1 2D D , then the equality 

takes place: 

( ) ( )
( )

( ) ( )
( )

∈ ∈ ∈ ∈
=

2 1 1 2q P D p P D p P D q P D
min max F p,q max min F p,q    (90) 

Corollary 2.13.1 (J. Ville’s minmax theorem) 

Chapter 2

31



Let us consider [ ] [ ]× →f : 0,1 0,1 ℝ , continue. Then, we have the equality: 

( ) ( )
∈ ∈ ∈ ∈

=
H G G H
minmaxF G,H maxminF G,H
F F F F

    (91) 

where F  is the set of functions defined on [ ]0,1  and: 

( ) ( ) ( ) ( ) ( ) ( ) ( )= =∫ ∫ ∫ ∫
1 1 1 1

1 2 1 2 1 2 2 1

0 0 0 0

F G,H f d ,d dG d dH d f d ,d dH d dG d  (92) 

Corollary 2.13.2 (J. von Neumann minmax theorem) 

If { }= 1 2 m

1 1 1 1D d ,d ,...,d , { }= 1 2 n

2 2 2 2D d ,d ,...,d  then the equality takes place: 

( ) ( )
( )

( ) ( )
( )

∈ ∈ ∈ ∈
=

2 1 1 2q P D p P D p P D q P D
min max F p,q max min F p,q     (93) 

where: 

( ) ( ) ( ) ( ) ( ) ( )
= =

= = ∈ = ∈∑∑
m n

i j

1 2 i j 1 2 m 1 1 2 n 2

i 1 j 1

F p,q f d ,d p q , p p , p ,..., p P D ,q q ,q ,...,q P D  

Remark 2.17 

Neumann’s theorem presented as a corollary of theorem 2.13 has the following interpretation: the 

aleatory extension of a zero-sum finite game verifies the minmax equality. 

J. Ville has given the first proof of the minmax theorem regarding the infinite games. It is he who has 

given the first example of an infinite game for which the minmax equality is not verified in the case of aleatory 

extension, either. 

Other results regarding minmax equality in the case of the aleatory extensions of the game may be 

found in [30], [63], [82]. 

 

2.2.1.2 Optimum Minmax Conditions through Varitional Inequalities 

Rockfeller [75] was the first to notice that the study of minmax problems in the differentiable gain functions 

could be done by means of the theory of variational inequalities with monotone operators. 

Let us consider X  and *X  (respectively Y  and *Y ) vectorial topologic local convex and separated 

spaces put to duality through the bilinear form 
1

,  (respectively 
2

, ), ⊂1 XΩ , ⊂2 YΩ  opened, ⊂ 1C Ω , 

⊂ 2D Ω  convex and × →i 1 2f :Ω Ω ℝ  Gâteaux derivable. 

We note with ( )∇1 f x, y  Gâteaux derivative of yf  in x  and with ( )∇2 f x, y  Gâteaux derivative of xf  

in y . 

Let us consider × → ×* *

1 2T : X YΩ Ω  defined as it follows: 

( ) ( ) ( )( ) ( )= ∇ −∇ = ∈ ×1 2 1 2T z f x, y f x, y , z x, y Ω Ω    (94) 

Theorem 2.14 (Auslender [4]) 

f  is convex-concave (strong convex-concave) on ×C D  if and only if T  is monotone (strong 

monotone) on ×C D . 

Theorem 2.15 (Auslender [4]) 

( )=* * *z x , y  is a saddle point of f  on ×C D  if and only if the inequality takes place: 

 ( ) ( )− ≥ ∀ = ∈ ×* *T z ,z z 0, z x, y C D  (95) 

Remark 2.18 
The inequality (95) is a variational one associated to the operator T  is thus generalized: take 

→ *A :C X , monotone, ∈ *l X , ( ]→ −∞ ∞:C ,ϕ  convex and non identical +∞ . We have to solve to following 

problem: 

(P) Let us determine u: ( ) ( )C l Au,v u v u , v Cϕ ϕ∈ − − ≤ − ∀ ∈⋮  (96) 

In this case, × = ×C D X Y , the inequality (96) becomes: 

 ( ) =*T z 0  (97) 

and the problem ( )P  leads to the next one: 
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( )1P  in which we have to find ∈ =u X Au l⋮  

We assume ( ) ( ]{ }= → −∞ ∞ + ∞0 X : X , , convex and unequalΓ ϕ . 

Theorem 2.16 (Auslender [4]) 

If → *A :C X  is monotone and semicontinue, ( )∈ 0 Xϕ Γ , then for any ∈ *l X , the set of the solutions 

of the problem ( )Pɶ  is convex and closed in X . 

Definition 2.3 

We shall say that → *A :C X  is of type M  for any sequent ( ) ⊂n n
u C , so that the following 

conditions have to be met: 

i) →snu u  

ii) ( )→snA u B  

iii) ≤n n
n

lim Au ,u B,u  

then =uA B . 

Definition 2.4 

The operator → *A :C X  is called pseudomonotone if for every sequence ( ) ⊂n n
u C , so that the 

conditions must be verified: 

i1) →snu u  

i2) − ≤n n
n

lim Au ,u u 0  

then − ≤ −n n
n

Au,u v lim Au ,u v , ∀ ∈v C . 

Definition 2.5 

The operator → *B : X X  is called an operator of penalization in respect with the convex, closed and 

non-void ⊂C X , if is monotone, semicontinue, bounded and =Ker B C . The link between the properties of 

the operator → *A :C X  monotone and pseudomonotone and the type M  is given by the following results. 

Theorem 2.17 (Brezis [7]) 

If the operator A  is pseudomonotone then A  is of type M . 

Theorem 2.18 (Brezis [7]) 

If operator A  is monotone and semicontinue on C , then A  is pseudomonotone on C . 

Further on, we shall present some methods of solving the minmax problem by using the variational 

inequalities formulated in  problem ( )P , respectively the variational equality formulated in problem ( )1P . 

1) The minmax variational equality with an operator of type M  by using Galerin’s method 

Let us consider X  a Banach reflexive separable space put to duality with *X  (its conjugate) through 

the bilinear form ⋅ ⋅, . 

If 1 2 mw ,w ,...,w ,...  is a basis of X , we note: 

( )= ∈m p 1 2 mW S w ,w ,...,w ,m ℕ  

Let us suppose → *A : X X  which verifies the conditions: 

a) A it is bounded; 

b) A it is coercive (i.e. 
( )

→∞
= ∞

v

A v v
lim

v
); 

c) A it is of type M . 

We assume the problem of solving the variational equality: 

( )1P  ( ) =A u l , where ∈ *l X  is fixed 

In order to solve the problem, we form the sequence ( )m m
u  that verifies the conditions: 

(i)  ∈m mu W , ∀ ∈m ℕ ; 

(ii) ( ) =m j jA u ,w l,w , =j 1,m . 
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Theorem 2.19 (Auslender [4]) 

1) There is a sequence mu  that verifies (i) and (ii). 

2) Any weak limiting point of a subsequence ( )m m
u  (and there exists at least one) is the solution of 

problem ( )1P . 

Proof 

1) Let’s consider mW  with a Hilbertian structure given by the scalar product: 

( )
=

=∑
m

i i

i 1

x, y wα , where 
=

=∑
m

i i

i 1

x wα , 
=

=∑
m

i i

i 1

u wβ  

Due to the Rietz’s theorem: 

( ) ( )( ) ( )∀ ∈ ∃ ∈ = ∀ ∈m mu X , P u W P u ,v A u ,v , v W⋮  

Consequently ( )( ) ( )=P u ,u A u ,u , ∀ ∈ mu W . 

On the other hand, based on Rietz’s theorem, ∃ ∈y W  so that: 

( )( ) ( )( ) ( ) ( )( )− = − = −P u ,u l ,u P u ,u y,u P u y,u  

According to Schwartz’s inequality, we have: 

( ) ( )− ≥ − ∀ ∈ mA u ,u l ,u A u ,u l u , u V  

A  being coercive, ∃ > 0ρ  so that: 

∀ ∈ =mu W , u ρ  we have ( ) ( )( )− ≥ ⇒ − ≥A u ,u l u 0 P u y,u 0  

 As A  is bounded and of type M , it can be immediately verified that it is weakly continue and, 

consequently, P  is weakly continue, too. 

Lemma 2.19.1 Let us consider F  the Euclidean finite dimensional space with the scalar product ( )⋅ ⋅, , 

→P : E E  continue so that ( )( )∃ > ≥0 P a ,a 0ρ ⋮ , ∀ ∈a E  with the property =a ρ . Thus, there is an 

∈ ≤a E a ρ⋮ , ( ) =P a 0 . 

Based on this lemma: 

( )( ) ( )( ) ( ) ( )

( )

∃ ∈ ≤ − = ⇒ = ⇒ = ⇒

⇒ = ∀ =

m m m m m m m m m m m

m j j

u W , u P u y,u 0 P u ,u y,u A u ,u l ,u

A u ,w l,w , j 1,m

ρ⋮
 

2) 

 ( )
( )

= ≤ ⇔ ≤m m

m m m

A u ,u
A u ,u l ,u l u l

u
 (98) 

A  being coercive, from (98) results that the sequence ( ) ∈m m
u

ℕ
 is bounded and therefore: 

 +∃ ∈ ≤ ∀ ∈mC : u C, mℝ ℕ  (99) 

The relationship (99) shows that there is at least a limiting point of accumulation 0u  of ( ) ∈m m
u

ℕ
 and 

from the reflexivity condition of space X , it occurs that 0u  is a weak limit of a subsequence ( )
nm n

u  of the 

sequence ( )m m
u . On the other hand, A  is bounded and therefore, there is a limiting point p  of a subsequence 

( )( )k k
A u  of the ( )( )

nm n
A u . 

For each j  which meets the condition (ii), we shall pass to the limit and we shall obtain: 

( )= = ⇒ =j k j j
k

p,w lim A u ,w l ,w p l  

( ) = = 0

k k k
k k

lim A u ,u lim l,u l ,u  

because ∈l X  and →s 0

ku u . 

Corollary 2.19.1 

If A  is bounded, monotone, semicontinue and coercive and the following conditions are verified too: 
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 1) the application →v v  is strict convex 

2) ( ) ( )= ⇔ = =A u A v u v ρ  

then the problem ( )1P  admits a unique solution. 

2) Minmax variational inequality with pseudomonotone operators through the method of 

penalization 

Let us assume *X a Banach reflexive separable space, ⊂C X  convex, closed and non-void, 

→ *A : X X  bounded, pseudomonotone and coercive, ∈l X . 

Consider → *P : X X  an operator of penalization related to C  (i.e. monotone, bounded, semicontinue 

and with the nucleus C ). We assume the next problem: 

( ) ( )∈ − − ≥ ∀ ∈2P u C, A u l,v n 0, v C,l is fixed  

The solving of the variational inequality given by ( )2P  by means of the method of penalization consists 

in the solving of a sequence of variational equalities in X : 

 ( ) ( )+ = > ∀ ∈ = ∞n n n n n
n

A u K P u l, K 0, n , limKℕ  (100) 

Theorem 2.20 [4] 

1) There is a sequence ( )nu  which verifies (100). 

2) Any weak limiting point of a subsequence of ( )n n
u  (and there is at least one) is the solution of the 

problem ( )2P . 

Proof 

1) The operator + nA K P  is bounded as a sum of two operators and pseudomonotone as a sum between 

a pseudomonotone and semicontinue operator. He is also coercive relatively to ∈0v C : 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

→∞

− + − = − + − − ≥ − ⇒

− + −
⇒ →∞

0 n 0 0 n 0 0 0

0 n 0

v

A v ,v v K P v ,v v A v ,v v K P v P v ,v v A v ,v v

A v ,v v K P v ,v v

v

 

because A  is coercive. 

According to the theorem 2.19, for any ∈n ℕ  there is at least a solution of the variational equality 

(100). 

2) From conditions: 

( ) ( )
( ) ( )

→∞

+ =

− + −
→∞

n

n n n

n 0 n n 0

u

n

A u K P u l

A v ,u v K P v ,u v

u

 

it is immediately obtained the boundery of the sequence ( )n n
u  (by reducing ad absurdum). 

As the set C  is closed and ( ) ⊂nu C , there is at least a limiting point *u  (weaked) of ( )n n
u  and a 

subsequence ( )m m
u  of ( )n n

u  so that →s *

mu u . 

Considering that A  is bounded we have: 

( ) ( )=  −  → 
s

m m

m

1
P u l A u 0

K
 

because ∈ *l X  is bounded in *X . In addition, ∃ ∈ *h X  and ( ) ( )⊂k nk n
u u  so that →s *

ku u , ( )→skA u h . 

P  is also an operator of penalization, of type M , monotone and semicontinue and verifies the 

conditions: 

( )= *

m
n

liminf u u weak  

( ) ( )=m
n

limP u 0 weak  

( ) ≤ *

m m
m
lim sup P u ,u 0,u  
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we obtain: 

 ( ) = ⇒ ∈* *P u 0 u C  (101) 

From (101) we get for any ∈v C : 

( ) ( ) ( )− − = − − ≥k k n k kA u l ,v u K P v P u ,v u 0  

because P  is monotone and >nK 0 , ∀ ∈n ℕ , from which, making = *v u  we have: 

( ) ( ) ( )− ≥ − = ⇒ − ≤* * *

k k k k k
k k k

liminf A u ,u u liminf l ,u u 0 lim sup A u ,u u 0  

Because A  is pseudomonotone, we have: 

( ) ( )− ≤ − ≤ − = −k k k
k k

A u ,u v liminf A u ,u v liminf l ,u v l ,u v  

3) Minmax variational inequality using monotonous operators 

We note with P  the class of the convex, bounded and closed sets from a Banach reflexive space X  

and with I  a finite set of indexes. 

Let us consider ( ]→ −∞ ∞ig : X ,  convex, semicontinue inferior and non-identical ∞ , ∀ ∈i I . 

If ∈D P , we define by means of the family ( ) ∈ig i I , the following subset of D : 

( ){ }= ∈ ≤ ∈iC x D g x 0, i I  

We define the multivocal application →:Γ P P  as it follows: 

∈ ∀ ∈ ≠ ∅⇒ ≠ ∅A A, A ; if A AΓ ΓP  

Suppose that we have the following problem: 

( )4P  Let us determine an element of CΓ  

In order to solve the problem ( )4P  we shall proceed as it follows: let us consider iJ  a family of 

indexes, ∈i I  and ( )
∈ i

ij j J
g  a family of convex weakly uniform equicontinue functionals on D  as that: 

 ( ) ( ){ }= ∈ ∈i ij ig x sup g x , j J , i I  (102) 

Considering =0Q D , we build a sequence of sets ( )n n
Q , a family of sequence of indexes ( ) ∈ni i I

j , 

∈ni ij J  and a sequence of elements ( ) ∈n n
x D  as it follows: 

a) →n nQ x  through relation ∈n nx QΓ  if ∈nx C  then nx  is the solution of problem ( )4P ; 

b) →n nix j  through relation: 

( ) ( ){ } ( )≥ ∈ − = ∈
niij n ij n i n i ng x sup g x , j J g x , i Iθ λ θ  

where ( )∈ 0,1θ  is fixed and ( ) ⊂nλ ℝ , →n 0λ . 

c) +→n ni n 1Q , j Q  so that: 

( ){ }+ = ∩ ≤ ∈
nin 1 n ijQ Q x g x 0,i I  

Theorem 2.21 [4] 

Any limiting point of the sequence ( )n n
x  (and there is at least one) belongs to C . 

 

2.2.2 The Case when Informational Change is Allowed  

We have to solve the following problem: 

 ( ) ( )
∈ ∈x A y B

P supinf F x, y  (103) 

where 

 
( ){ }
( ){ }

= ∈ ≥ = ≠ ∅

= ∈ ≥ = ≠ ∅

i

j

A x X g x 0, i 1,m

B y Y h y 0, j 1,n
 (104) 

the functions =ig ,i 1,m =jh , j 1,n  are known.  
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Definition 2.4 

The function ( )⋅ ⋅ × →L , ,a,b : X Y ℝ  defined by: 

( ) ( ) ( ) ( )
= =

= + − ≥ = ≤ =∑ ∑
n n

i i j j i j

i 1 j 1

L x,y,a,b F x,y a g x b h y , a 0, i 1,m,b 0, j 1,n  (105) 

is called the Lagrange function for the problem (103).  

Theorem 2.22 [25], [48] 

If F , ig , jh , =i 1,m , =j 1,n  are bounded, then we shall have: 

1) ( ) ( ) ( )
∈ ∈ ∈ ∈ ≥ ≤ ∈ ∈ ≤ ≥

= =
x A y B x A y B a 0 b 0 x A y B b 0 a 0

supinf F x, y supinf inf sup L x,y,a,b supinf sup inf L x, y,a,b  

2) If ( )
∈ ∈ ≥ ≤

=*

x X x Y a 0 b 0

x Rmaxinf inf sup L x,y,a,b  

then ( )
∈ ∈

=*

x X x Y

x Rmaxinf F x, y . 

Theorem 2.23 [25] 

If the following conditions hold true: 

1) X  and Y are compact metric spaces; 

2) F  is the Lipschitzien on ×X Y ; 

3) Functions ig , jh , =i 1,m , =j 1,n  are continuous and 

( ) ( )
≤ ≤

≤ − ∀ ∉i X
1 i m
min g x d x,A , x Aβ  

( ) ( )
≤ ≤

≤ − ∀ ∉j y
1 j n
min h y d y,B , y Bβ  

where > 0β is a certain constant.  

Then, there exist a, ≥*a 0 and b, ≤*b 0 so that 

( ) ( )
∈ ∈ ∈ ∈≤ ≤ ≤ ≤

=
* *x X y Y x X y Y0 a a b b 0

maxmin min max L x,y,a,b maxminF x,y    (106) 

Theorem 2.24 [25] 

1) If we have the equality 

 ( ) ( )
∈ ∈ ∈ ∈
≤ ≥ ≥ ≤

=
x X y Y y Y x X
b 0 a 0 a 0 b 0

supinf L x, y,a,b inf sup L x,y,a,b  (107) 

than we shall have: 

 ( ) ( )
∈ ∈ ∈ ∈

=
x X y Y y Y x X

supinf F x, y inf sup F x,y  (108) 

2) If ig , =i 1,m , jh , =j 1,n  are concave functions on the compact convex space convexes X  and Y , 

F  is a concave function in respect with x and a convex function in respect with y , then the equality (108) 

implies the equality (107). 

Assume ∈*x X with the following property: 

 ( ) ( )
∈ ∈ ∈

= *

x X y Y y Y
maxminF x, y minF x ,y  (109) 

Theorem 2.25 [25] 

Let us consider that the following equalities hold true: 

1) ⊂ nX E  is an convex compact space, Y is an compact metric space; 

2) F , 
∂
∂
F

x
 are continuous in ×X Y . 

Thus, if ( )
∈ ∈

=*

x X y Y
x RmaxminF x, y  is the solution of the problem 

 ( ) ( )
∈ ∈ ∈

= *

x X y Y y Y
maxminF x, y minF x ,y  (110) 

there exist ≥ip 0 , ∈iy Y , ≤ ≤ ≤ +1 i r n 1  so that 

=

=∑
r

i

i 1

p 1 , ( ) ( )
=

∂
− =

∂∑
r

* * *

i i X

i 1

p F x ,y K x
x

 (where ( )
∈

= *

i
y Y

y RminF x ,y ) 

which is equivalent to 
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( ) ( )− ∩ ≠ ∅* * *

XQ x K x       (111) 

where ( ) ( )=Q x coH x  is the convex hull of the set: 

( ) ( ) ( )
∈

∂ = = ∈ 
∂ y Y

H x z F x,y y RminF x,y
x

 

Theorem 2.26 [25], [48] 

The condition (111), can be written 

 
( )

( )
∈∈

∂ − = ∂ *

* *

y Y xx X

sup min F x ,y ,x x 0
x

 (112) 

where ( ) ( )
∈

=* *

y Y
Y x RminF x ,y . 

Application: The Excess Problem 

Let us assume the cooperative game ( )=J M ,ν , for which { }=M 1,2,...,m represents the set of players 

and ν is the characteristic function.  

We can prove that: 

 ( ) ( ) ( )+ ≤ ∪ ∀ ⊆ ∩ = ∅1 2 1 2 1 2 1 2C C C C , C ,C M ,C Cν ν ν  (113) 

 Let us assume Z the set of imputations which have the following form: 

( ) { }( ) ( )
=

 
= = ≥ = 

 
∑
m

1 2 m i i

i 1

Z z z ,z ,...,z z i , z Mν ν  

 We shall consider C the set of coalitions and the excess function × →e :C Z ℝ , defined by 

( ) ( )
∈

= −∑ i

i C

e C,z C zν       (114) 

 According to Kukuskin et Moruzov, [39] the most equitable imputation *z is a solution of the problem: 

( ) ( )
∈ ⊆ ⊆

= *

z C C M C M
minmaxe C,z maxe C,z      (115) 

By taking into consideration theorem 2.26, we can show that the following condition is met: 

( )
( )

∈ ∈

∂ − = ∂ *

* *

z C C C z

min max e C,z ,z z 0
z

    (116) 

where ( )*C z  represents the set of coalitions which verify the equality :  

( ) ( )
⊆

= =*

i
C M
maxe C,z e C ,z , i 1,k  

Obviously,  

( ) ( )∂
= − −

∂
e C,z 0,..., 1,..., 1,...,0

z
 

(here, in the position j , we shall have the value -1 if the player j takes part in the coalition C ).  

The condition of optimality for *z can be written:  

 ( ) ( )
∈

∈ ∈

  
− − = 

  
∑ ∑

1 k

i i i i
z Z

i C i C

minmax z z ,..., z z 0  (117) 

If the player ∈ ij C , then the condition 117 is satisfied for { }( )=*

jz jν .  

Obviously, the coalition { }( ) ( )∪ ∉ *

1C j C z . 

Hence, we have the following equality: 

{ }( ) ( )∪ <* *

1 1e C j ,z e C ,z  

from which we are led to: 

{ }( ) ( )
∈ ∈

∪ − − < −∑ ∑
1 1

* * *

1 i j 1 i

i C i C

C j z z C zν ν  

Thus, we can show that 

 { }( ) ( ) { }( )∪ < +1 1C j C jν ν ν  (118) 
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 We can immediately take notice of the contradiction between the relationships (113) and (118).  

Accordingly, each player takes part to at least a coalition from C .  

On the other hand,  

( ) ( ) ( )= = =* * *

1 2 ke C ,z e C ,z ... e C ,z  

 

2.3 Solving The Minmax Problem 
 

2.3.1 The Case of Simple Strategies  

 

2.3.1.1 The Case when Informational Change is not Allowed 

 

2.3.1.1.1 The Penalty Method and the Method Convergence  

Let us consider X a compact metric space and ( ) =i i 1,n
f a finite family of functionals which are defined on X .  

If →F : X ℝ , we shall solve the following problem ( )P : 

( )P  We must find ∈0x A  which verifies the equality ( ) ( )
∈

=0
x A

F x max F x  where 

( ){ }= ∈ ≥ = ≠ ∅iA x X f x 0, i 1,n  

 Let us assume the function ( )⋅J ,C  defined by X (C  is a parameter) which verifies the following 

properties: 

1) ( ) ≥J x,C 0 , ∀ ∈x X ; 

2) ( )J x,C 0ց , if → ∞C on the dense set A : 

3) ( )
→∞

= ∞
C
lim J x,C  uniformly, ( )∀ ∈x X \V Aδ , ∀ > 0δ , where ( )V Aδ  represents an δ - 

neighbourhood of A . 

The function ( )J x,C is called the penalty function.  

Let us assume ( )⋅ →L ,C : X ℝ  defined by 

( ) ( ) ( )= −L x,C F x J x,C      (119) 

Theorem 2.27 

If the functions F , if , =i 1,n  are continuous, then: 

1) ( ) ( )
∈ →∞ ∈

=
x X C x X

maxF x lim sup L x,C  

2) if the sequence ( )n n
x  verifies the equality: 

( ) ( )
∈

≥ −n n n n
x X

L x ,C sup L x,C ε  

where = =n
n n

n

1
lim lim 0

C
ε , >n 0ε , ∀ ∈n ℕ ; then, if x  is a limit point of the sequence ( )n n

x , x  is the solution 

of the problem ( )P . 

Corollary 2.27.1 

Let us assume the penalty function ( ) ( )=J x,C Cf x . 

Then, ( )( )*F x C , ( )( )*f x C  are monotonously decreasing for >C 0 , where 

( ) ( ) ( ){ }∈
= ∈ =*

x X
x C x X L x ,C max L x,C  

Proof 

For < <1 20 C C  we shall have 

 ( )( ) ( )( )≥* *

1 1 2 1L x C ,C L x C ,C  (120) 

 ( )( ) ( )( )≥* *

2 2 2 1L x C ,C L x C ,C  (121) 
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From relations (120) and (121) we are led to the following inequality: 

( ) ( )( ) ( )( ) − − ≥ 
* *

1 2 2 1C C f x C f x C 0  

which shows that: 

 ( )( ) ( )( )≤* *

1 2f x C f x C  (122) 

Obviously,  

( )( ) ( )( )≥1 2F x C F x C  

from where we get the following inequality: 

( )( ) ( )( )≥* *

1 2F x C F x C  

Remark 2.19 

In particular, we can consider the following penalty functions: 

( ) ( )( )
=

= >∑
n q

1 i

i 1

J x,C C min 0, f x , q 0     (123) 

( )
( )( )

= >
  

2 q

i

C
J x,C , q 0

min 0, f x
    (124) 

Let us consider the compact metric spaces iX , iY , =i 1,n  and the functional ( )
=

× →∏
n

i i

i 1

F : X Y ℝ  ; 

then, by taking into account notations from §2.1, we shall have: 

( ) ( ){ }− − −= = ∈ ≥ =i 1 i 1 i i 1

i i i i iA A x ,y x X q x ,y 0 , i 1,n  

( ) ( ){ }−= = ∈ ≥ =i i 1 i i

i i i i iB B x ,y y Y h x , y 0 , i 1,n  

If >C 0 , we can define the penalty functions iI , iJ , =i 1,n : 

( )
( )

( ) ( ) ( )

− −

−

− −

 ∈
= 

∉ <

i 1 i 1

i ii i 1

i
i 1 i 1

i i

0 , si x A x , y
J x , y ,C

a C , si x A x , y , a C 0
   (125) 

( )
( )

( ) ( ) ( )

−

−

 ∈
= 

∉ <

i i 1

i ii i

i
i i 1

i i

0 , si y B x , y
I x , y ,C

b C , si y B x , y ,b C 0
   (126) 

( ) ( )− − −

→∞
= −∞ ∉i i 1 i 1 i 1

i i i
C
lim J x , y ,C , si x A x , y  

( ) ( )− −

→∞
= ∞ ∈i i 1 i i 1

i i i
C
lim I x , y ,C , si y B x , y  

Remark 2.20 

Assume ( )⋅ ⋅iJ , ,C : ( )
=

× →∏
n

i i

i 1

X Y ℝ  defined by 

 ( ) ( )( )− −=i i 1 i i 1

i iJ x , y ,C Cmin 0,g x , y  (127) 

This application is a penalty functional. 

Remark 2.21 

Let us assume a game problem ( )= F ,G;X ,YΓ which allows the informational change.  

The set of strategies  X  and Y are compact metric spaces and the decisional functions F  and G  are 

continuous on ×X Y . 

We have the following equality: 

( )
( )

( )
∈ ∈ ∈ ∈

=
x X y Y x X y B x

supinf F x, y sup inf F x, y  

where ( ) ( )
∈

=
y Y

B x RmaxG x, y . 
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Method Convergence 

If ( )= 1 2 2nC C ,C ,...,C , >iC 0 , =i 1,2n , we shall consider ( )⋅ ⋅L , ,C : ( )
=

× →∏
n

i i

i 1

X Y ℝ  defined by 

( ) ( ) ( ) ( )−
+

=

= + +∑
n

n n n n i i 1 i i

i i i n i

i 1

L x ,y ,C F x ,y J x , y ,C I x , y ,C    (128) 

Theorem 2.28 [25], [39] 

If the following conditions hold true: 

1) iX , iY  are compact metric spaces, =i 1,n ; 

2) the functions F , g , ih  are continuous, =i 1,n ; 

3) the sets ( )− −i 1 i 1

iA x ,y , ( )−i i 1

iB x ,y  are non-void; 

4) the multivocal applications are continuous in Hausdorff's metric. 

then: 

1) ( ) ( )
→∞ ∈ ∈∈ ∈ ==

   =      i i i i
i i i i

n n
n n

1 1 n n
C x X y Yx A y B i 1i 1

sup inf F x , y ,...,x , y lim maxmin L x ,y ,C  

2) Every adherence point *x  of the set 

( ){ }→ ∞*

k kx C C  

where ( ) ( )
∈ ∈ =

 =   i i i i

n
n n

k k
x X y Y

i 1

x C R maxmin L x ,y ,C , verifies the equality: 

( )
∈ ∈ =

 =   i i i i

n
* n n

x A y B
i 1

x R maxmin F x ,y  

Corollary 2.28.1 

All the limit points of the set ( ){ }→ ∞*

k ky C C . 

( ) ( )( )
∈ ∈ ∈ =

 =   1 1 i i i i

n
* *

k k 1 n n k
y Y x X y Y

i 2

y C Rmin maxmin L x C ,y ,...,x , y ,C     (129) 

( ) =* *

k
k

lim x C x , verifies the equality: 

( )
∈ ∈ ∈ =

 =   1 1 i i i i

n
* *

1 2 2 n n
y Y x A y B

i 2

y Rmin maxmin F x ,y ,x , y ,...,x , y  

Theoreme 2.29 [25], [39] 

If the following conditions are met: 

1) iX , iY  are compact metric spaces, =i 1,n ; 

2) the functions F , ig , ih  are continuous, =i 1,n ; 

3) the sets ( )− −i 1 i 1

iA x ,y , ( )−i i 1

iB x ,y , =i 1,n  are non-void; 

4) the applications iA , =i 1,n , are continuous (in Hausdorff's metric). 

then: 

1) ( ) ( ) ( ){ }
−

∈ →∞ ∈ ∈ ∈∈ ∈= =

   
= = +   

   i i i i n n n n
i i i i

n n 1

n n n n n n

n
y B C y B x A y Bx A x A

i 1 i 1

M supmin F x ,y lim supmin max min F x ,y I x , y ,C  

2) ( )( )
+ +

−

→∞ ∈ ∈ =

 
=  

 i i
i 1 i 1

n 1

*

1 n n
C y B x A

i 1

M lim min sup minF x C , y ,...,x , y  

where the sequence ( ){ }→ ∞*

k kx C C  verifies the inequality: 
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( )( ) ( )( ){ }

( ) ( ){ }

+ +

−

∈ ∈∈ =

∈ ∈ ∈∈ =

 
+ ≥ 

 

 
≥ + − 

 

i i n n
i 1 i 1

i i n n n n
i i

n 1

* *

k 1 n n n k 1 n n k
y B y Bx A

i 1

n

n n n n

n k k
y B x A y Bx A

i 1

min sup min F x C ,y ,...,x , y I x C ,y ,...,x , y ,C

supmin max min F x ,y I x , y ,C ε

 

and ≥k 0ε , ∈k ℕ , =k
k

lim 0ε . 

Remark 2.22 

( )( )*

k k
x C is an ε -optimum sequence of  strategies. 

Proof 

1) For ( )−n n 1x , y  fixed, we have the inequality: 

( )
( ) ( ) ( ){ }

− →∞ ∈∈
= +

n n 1
k n nn n

n n n n n n

n k
C y Yy B x ,y

min F x ,y lim min F x ,y I x , y ,C   (130) 

The applications iB  are s.c.s., =i 1,n , in Hausdorff's metric. 

Because the applications iA  are continuous, iB  are s.c.s., then, according to theorems 2.27 and 2.28 we 

immediately get the property 1). 

2) This property is a consequence of theorem 2.28. 

Remark 2.23 

For the two-players game with informational change, we shall consider the application B , defined by  

( ) ( ){ }= ∈ ≥B x y Y f x, y 0  

where × →f : X Y ℝ  is a continuous function.  

According to the theorem 2.29, we have the equality 

( )
( ) ( ) ( ){ }

∈ →∞ ∈
= +

y B x C y Y
min F x,y lim min F x,y I x, y,C  

where the penalty function +× × →I : X Y ℝ ℝ  is defined by  

( ) ( )( ) =  
2

I x, y,C C min 0, f x, y  

According to the theorem 2.29, we can approximate: 

( )
( )

∈∈ y B xx X

sup min F x,y  by ( ) ( ){ }
∈ ∈

+
x X y Y
maxmin F x,y I x, y,C  

 

2.3.1.1.2 Combined Variational Methods of Solving Minmax Problem 

In this paragraph there will be presented two combined methods of determining a solution to the minmax 

problem by generalizing two methods belonging to Auslender [4]. 

Method 1 

We assume that =1 2D D , we shall write D  ( D  is the real Hilbert space endowed with the scalar 

product ( )⋅ ⋅,  which generalize the norm ) and we consider × →f : D D ℝ  the Gâteaux derivative. Let us 

take 1C , 2C , 1G , 2G  convex, bounded and closed subsets in D . 

Let us suppose →1h : D ℝ , →2h : D ℝ  which verify the properties: 

i1) ( ) =1h x 0 , ∀ ∈ 1x C , ( ) =2h y 0 , ∀ ∈ 1y G  

i2) ( ) >1h x 0 , ∀ ∈ 1x H \C , ( ) >2h y 0 , ∀ ∈ 1y H \G  

i3) 1h , 2h  are convex Gâteaux derivative. 

If = ∩0 1 2C C C , = ∩0 1 2G G G , a saddle point of f  on ×0 0C G  is to be determined (obviously ×0 0C G  

is convex, bounded and weakly closed in ×D D ). 

Let us take ( ) +⊂n n
a ℝ , = ∞n

n
lima . 

For each ∈n ℕ , we build the following functional: 

( ) ( ) ( ) ( )× → = +  −  
n n

n 1 2B : D D ,B x,y f x, y a h x h yℝ   (131) 
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Starting from its definiton, the functional nB , ∈n ℕ  verifies the properties: 

a) ( ) ( ) ( )= ∀ ∈ ×n

0 0B x,y f x, y , x, y C G  

b) nB  is a Gâteaux derivative and convex-concave. 

For each ∈n ℕ , the following operator is built: 

( ) ( ) ( )( )× → × = ∇ −∇* * n n

n n 1 2A : D D D D , A x,y B x,y , B x, y   (132) 

where: 
*D  represents the dual of D ; 

( )∇ n

1B x,y , ( )∇ n

2B x,y  represents the Gâteaux derivatives of n

yB  in x  and n

xB  in y  respectively. 

We assume that operators nA are strongly monotone and have the same constant of coerciveness >C 0 , 

∀ ∈n ℕ : 

( ) ( )− − ≥ − ∀ ∈ ×n 1 n 2 1 2 1 2 1 2A z A z ,z z C z z , z ,z D D    (133) 

To each operator nA , we shall associate the ( )n

m m
u  sequence defined through the recurrence relation: 

 ( )( )+ ×= − > ∈
2 2

n n n n

m 1 C G m n m 0u P u pA u , p 0 (a fixed p ), any u D  (134) 

Theorem 2.30 

If for any ∈n ℕ , the operator nA  is Lipschitzian of constant M  and 
 ∈ 
 2

2c
p 0,

M
, then the following 

results take place: 

1) the sequence ( )n

m m
u  is strongly convergent and the limit ( )n

* n
u  is the saddle point of nB  on 

×2 2C G ; 

2) the sequence ( )n

* n
u  is made up of at least one strongly convergent subsequence and the limit of 

such a subsequence is the saddle point of f  on ×0 0C G  (fig.3). 

 

1 2

* * *

1 2

2 2 2

1 2

1 1 1

k

k

k

u u u

u u u

u u u

⋯

⋮ ⋮ ⋮ ⋮

⋯

⋯

( ),u x y=

0 0C G×

1 1C G×
2 2C G×

 
Figure 3 

 

Proof 

1) For each ∈n ℕ  the application ( ) ( )( )×→ = −
2 2n C G nV F V P V pA V  is taken into consideration. As the 

projection operator is nonexpansive, the following inequalities takes place: 

 
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

− = − − − ≤

≤ − + − = − −

22

n 1 n 2 1 2 n 1 n 2

22 2

1 2 n 1 n 2 n 1 n 2 1 2

F V F V V V P A V A V

V V p A V A V 2p A V A V ,V V

 (135) 

 

Besides of the properties of the operator nA of being strongly monotone and Lipschitzian, the following 

inequality results directly from (135): 
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( ) ( )− ≤ − = − +
2 2 2 2

n 1 n 2 1 2F V F V K V V ,K 1 2 pc p M    (136) 

As for 
 ∈ 
 2

2c
p 0,

M
, K  is subunitary the ( )→ nV F V  application is a contraction and, consequently, 

the sequence ( )n

m m
u  defined by (134) is strongly convergent and the strong limit n

*u  of this sequence is a fixed 

point for nF . Consequently, ( ) ( )( )×= = −
2 2

n n n n

* n * C G * n *u F u P u A u  and by applying the inequality of the 

projection, we get the inequality: 

 ( )( )− ≥ ∀ ∈ ×n n

n * * 2 2A u ,V u 0, V C G  (137) 

Considering the way in which the operator nA has been drawn, it follows directly that n

*u  is a saddle 

point of nB  on ×2 2C G . 

2) The fact that ( )n

* n
u  is made up of at least one strongly convergent subsequence can be accounted as 

it follows: ×2 2C G  being bounded and closed, the ( )n

* n
u  sequence will comprise a weakly convergent 

subsequence ( ) ⊂ ×1k

1

n

* 2 2
k

u C G  being also convex, the ( )n

* n
u  sequence will comprise a ( )2k

2

n

*
k

u  strongly 

convergent subsequence, each 2k
n

*u  term of this subsequence being a convex combination built with the help of 

the terms of the ( )1k

1

n

*
k

u  subsequence. 

Let us consider ( )∈ ×2 2x , y C G  the strong limit of the subsequence ( ) ( )=1

1 1

k

k k
1 1

n

* n n
k k

u x , y . 

We shall show at first that ( )∈ ×0 0x , y C G  and then that ( )x , y  is saddle point of f  on ×0 0C G  (for 

the sake of calculation easiness, we shall replace the ( )
1 1k k

1

n n
k

x , y  subsequence by the ( )n n n
x , y  sequence). 

Let us take a fixed point ( )∈ ×0 0 0 0x , y C G . As ( )n nx , y  is a saddle point of nB  on ( )n nx , y  we shall 

have: 

 ( ) ( ) ( ) ( )≤ ≤ ∀ ∈ ×n n n

n n n n 2 2B x ,y B x ,y B x,y , x, y C G  (138) 

For ( )∈ ×0 0 0 0x , y C G  we shall have ( ) ( )= =1 0 2 0h x h y 0  and, consequently, the inequality: 

( ) ( )≤n n

n n 0 nB x ,y B x ,y  

can be written as: 

 ( ) ( ) ( ) ( )+ ≤ −n 0 n 1 n 0 n n 2 nf x , y a h x f x , y a h y  (139) 

From (139) it follows that: 

( ) ( )( ) ( ) ( )+ ≤ −n 1 n 2 n 0 n n 0a h x h y f x , y f x , y  

We shall consider the applications: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

× → = + ∀ ∈ ×

× → = − ∀ ∈ ×
1 1 2 1 1 2 1 2

2 1 2 2 0 0 1 2

g : H H , g x, y h x h y , x, y D D

g : D D , g x, y f x , y f x, y , x, y D D

ℝ

ℝ
 

Considering the way in which these applications were built, it follows directly that 1g , 2g  are Gâteaux 

derivatives. 

From the inequality (139), we can write: 

 ( ) ( ) ( ) ( ) ( ) ( )−
= + ≤ =0 n n 0 2 n n

1 n n 1 n 2 n

n n

f x , y f x , y g x , y
g x , y h x h y

a a
 (140) 

and passing to the limit in (140) we get: 

 ( ) ( ) ( )= + ≤1 1 2g x , y h x h y 0  (141) 

Taking into account the properties of the functionals 1h  and 2h , it results from (141) that 

( ) ( )= =1 2h x h y 0 , i.e. ( )∈ ×0 0x , y C G . 
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We show that ( )x , y  is a saddle point of f  on ×0 0C G . From (139) we have the inequality: 

 ( ) ( )≤n 0 0 nf x , y f x , y  (142) 

hence, by passing to the limit we obtain: 

( ) ( )≤0 0f x , y f x , y      (143) 

Because ( )∈ ×0 0 0 0x , y C G  has been chosen as any ( )∈ ×0 0 0 0x , y C G , from (143) it results that: 

( ) ( )≤0f x , y f x , y      (144) 

( ) ( )≤ 0f x , y f x , y      (145) 

which proves that ( )x , y  is a saddle point of f  on ×0 0C G . 

Remark 2.24 

The G – derivability condition of the f , 1h , 2h  functionals is important only to prove point 1) of 

theorem 1. 

If a saddle point ( )n nx , y  of nB  on ×2 2C G  is known, the fact that f  has a saddle point on ×0 0C G  can 

be demonstrated under weaker condition imposed upon the functionals f , 1h , 2h  [1]. 

Method 2 

We shall assume that the real Hilbert spaces 1D  and 2D  are endowed with the scalar products ( )⋅ ⋅
1

, , 

( )⋅ ⋅
2

, , ⊂ 1C D , ⊂ 2D D , which are convex and closed and f  is subdifferentiable and has saddle points on 

×C D . 

We want to find a saddle point of f  on ×C D . We write: 

( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }

′ ′ ′= ∈ − ≤ − ∀ ∈

′ ′ ′= ∈ − ≤ − ∀ ∈

*

x 2 x x 2

*

y 1 y y 2

f y y H f y f y y, y y , y D

f x x H f x f x x,x x , x D

ν

ν
 

( xfν , yfν  represents the set of the subgradients of the functional xf  and yf , respectively). 

Let us take → *

1 1A : D D , → *

2 2B : D D  and assume that operators A , B  verify the conditions: 

( )− ≤ ∀ ∈ ∀ ∈11
Ax,x u 0, x D , u C     (146) 

( )− ≥ ∀ ∈ ∀ ∈22
By,y v 0, y D , v D     (147) 

Let us consider ( ) +⊂n n
a ℝ , =n

n
lima 0 . 

We assume that the following inequality is verified: 

( ) ( ) ( ) ( )− + + ≤ ∀ ∈ ∀ ∈
n n

2 2

n n n n n n y n n x n1 2
H Ax c By d a , c f x , d f yν ν  

In order to determine a saddle point of f  on ×C D , we proceed as it follows. 

Algorithm 2.1 

Let us consider >p 0 . Starting from ( )∈ ×0 0x , y C D , the sequence ( ) ∈ ×n n n
x , y C D  is built: 

( )( ) ( )+ = − − ∈
nn 1 C n n n n y nx P x p c Ax ,c f xν     (148) 

( )( ) ( )+ = + + ∈
nn 1 D n n n n x ny P y p d By , d f yν     (149) 

The algorithm stops if ( ) ( )+ + =n 1 n 1 n nx , y x , y . 

Theorem 2.31 

The following properties take place: 

1) If ( ) ( )+ + =n 1 n 1 n nx , y x , y  then ( )n nx , y  is a saddle point of f  on ×C D . 

2) If f  is strongly convex-concave on ×C D  and the ( )H  hypothesis is verified, then the set of the 

saddle points of f  on ×C D  is a singleton marked ( )* *x , y  and for 
 ∈ 
 

1
p 0, k

2
, the sequence ( )n n n

x , y  
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converge strongly at ( )* *x , y , { }= 1 2k min k ,k , 1k , 2k  being the coefficients if coercion of the strong convex-

concavity condition of f . 

Proof 

1) If ( ) ( )+ +=n n n 1 n 1x , y x , y , then the following equalities take place: 

( )( )+ = − −n 1 C n n nx P x p c Ax      (150) 

( )( )+ = + +n 1 D n n ny P y p d By      (151) 

and by applying the property of the projection operator to a convex set ( ( )= ⇒ − − ≤ ∀ ∈Cz P x x z, y z 0, y C ) we 

have: 

 ( )( ) ( )− + − − ≥ ⇒ − ≥ ∀ ∈n n n n n n n 11
x x p c Ax ,y x 0 c , y y 0, y C  (152) 

 ( )( ) ( )′ ′ ′− − + − ≤ ⇒ − ≤ ∀ ∈n n n n n n n 22
y y p d By ,y y 0 d , y y 0, y D  (153) 

Taking into account the properties of subgradients, conditions (152) and (153) lead to the inequalities: 

 ( ) ( )≤ ∀ ∈n n nf x , y f x, y , x C   (154) 

 ( ) ( )≥ ∀ ∈n n nf x , y f x , y , y D   (155) 

which means that ( )n nx , y  is the saddle point of f  on ×C D . 

2) This property is proved through reduction ad absurdum. 

Indeed, if there were ( )1 1x , y , ( )2 2x , y  saddle points of f  on ×C D , then there would be 

( )∈
11 y 1c f xν , ( )∈

11 x 1d f yν , ( )∈
22 y 2c f xν , ( )∈

22 x 2d f yν , so that the following inequalities take place: 

 ( ) ( )− ≥ − − ≥1 2 1 1 2 11 2
c ,x x 0, d , y y 0  (156) 

 ( ) ( )− ≤ − − ≤2 1 2 2 1 21 2
c ,x x 0, d , y y 0  (157) 

 From (156) and (157) we obtain: 

 ( ) ( )− − − − − ≤1 2 1 2 1 2 1 2c c ,x x d d ,y y 0  (158) 

 But the equality (158) contradicts the fact that f  is strongly convex-concave on ×C D  because in this 

case it is known that for any ′ ′′∈x ,x C , ′ ′′∈y , y D , ( )′′ ′∈ yc f xν , ( )′′′′ ′′∈ yc f xν , ( )′′ ′∈ xd f yν , ( )′′′′ ′′∈ xd f yν , 

there exist >1 2k ,k 0  so as to verify the inequality: 

 ( ) ( )′ ′′ ′ ′′ ′ ′′ ′ ′′ ′ ′′ ′ ′′− − − − − ≥ − + −1 21 2 1 2
c c ,x x d d ,y y 2k x x 2k y y  (159) 

 From (158) and (159), we draw the conclusion that the assumption (there are two saddle points 

( )1 1x , y , ( )2 2x , y  of f  on ×C D ) is false and consequently the set of saddle points of f  on ×C D  is a 

singleton (marked with ( )* *x , y ). 

We shall prove that ( )* *x , y  is the strong limit of the sequence ( )n nx , y . Let us consider 

= − + −* *

n 2 n1 2
s x x y y .   

Writing ( )= −n n nc p c Ax , ( )= +n n nd p d By , = −n nu x c , = +n nv y d  we have: 

 

( ) ( ) ( ) ( )( )
( ) ( )
( ) ( )

( )

+ − = − − = − − = − − − − =

= − − = − + − − + − =

= − + − − + − + − − =

= − + − − + −

2 2
* * * * *

n 1 C n n C n n C n n C n n1 1 1 1

* * * *

C C C C1 1

* * *

C C C1 1

2 * *

C C1 1 1

x x P x c x x P x c x P x c ,x P x c

x P u,x P u u P u x u,u P u x u

u P u x u,u P u u P u x u,x u

u P u 2 x u,u P u x u

(160) 

 The last two terms of the right member of the inequalities (160) can be rewritten in the following way: 
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( ) ( )

( )

− = − + − + = − + − − =

= − + − − − −

2 2* * * * *

n n n n n n n n11 1 1

2
* 2 *

n n n n n n1 1

x u x x c ,x x c x x c 2 x x ,c

x x p c Ax 2 p c Ax ,x x

 (161) 

 
( ) ( ) ( ) ( )

( )
− − = − − = − − + − − =

= − + − −

* * *

C C C C C C11 1 1

2 *

C C C1 1

x u,u P u u P u,x u u P u,P u u u P u,x P u

u P u u P u,x P u
 (162) 

Taking into account (159), (160) and (161), (162) we shall get: 

 ( )+ − ≤ − + − − −
2 2* * 2 *

n 1 n n n n n11 1 1
x x x x p c Ax 2 p c ,x x  (163) 

By means of a similar reasoning, we can prove that: 

 ( )+ − ≤ − + + + −
2 2* * 2 *

n 1 n n n n n22 2 2
y y y y p d By 2 p d ,y y  (164) 

From (163) and (164) the following inequalities are obtained: 

( ) ( ) ( )+ ≤ + − + + + − − −
2 22 * *

n 1 n n n n n n n n n1 2 1 2
s s p c Ax d By 2 p c ,x x d , y y  

On the other hand, taking into account the fact that there is ( )∈ *

* *

y
c f xν , ( )∈ *

* *

x
d f yν  so that the 

following inequalities takes place: 

 ( ) ( )− ≥ − ≤* * * *

n n1 2
c ,x x 0, d , y y 0  (165) 

we are led to the inequalities: 

 

( ) ( )

( ) ( )

+

+

 ≤ + − − − − − − ≤ 

≤ + − − − + ≤ − +

2 * * * *

n 1 n n n n n n1 2

n 12 2 n
n n n n n 0

s s p a 2 p c c ,x x d d ,y y

pa
s p a 2 pks s 1 2 pk p a s 1 2 pk

2k

 (166) 

where ( )= >1 2k min k ,k 0 . 

 It results from (166) that for any > 0ε , ( )∃ ∈0n ε ℕ  so that the following inequalities take place for 

( )≥ 0n n ε : 

( ) ( )− ≤ − ≤ →* *

n n n n n
x x ; y y i .e . x , y x, y

2 2

ε ε
   (167) 

for 
 ∈ 
 

1
p 0,

2k
 which proves the theorem. 

Remark 2.25 

Method 1 represents in fact a combination of a projection method and a penalization method and it 

generalizes a method belonging to Auslender [4]. 

Method 2 represents a combination of a projection method and a subgradient method and it generalizes 

a subgradient method also belonging to Auslender [4] 

The advantage of using these methods lies in the fact that these constructive methods being iterative, 

they allow the use of certain known numerical methods, in order to determin the approximate solution of the 

minmax problem (with a fixed error). 

 

2.3.1.2 The Case when Informational Change is Allowed 

Let us consider a game problem ( )= F ,G;X ,YΓ for which informational change is allowed.  

The sets of strategies X  and Y  are compact metric spaces if the decision functions F  and G  are 

continuous on ×X Y . 

The best guaranteed result for the first decision maker is : 

( )
( )

∈ ∈x X y B x

sup inf F x, y , where ( ) ( )
∈

=
y Y

B x RmaxG x, y  

Let us assume the penalty function  

 ( ) ( ) ( )
∈

 = −
 z Y

I x, y,C C maxG x,z G x, y  (168) 

 According to theorem 2.28, we have the following equality: 
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( )
( ) ( ){ }

∈ →∞ ∈ ∈∈
= +

y B x C x X y Yx X

sup min lim maxmin F x,y I x, y,C  

( ) ( ){ } ( ) ( ) ( ){ }
∈ ∈ ∈ ∈

∈

+ = + −
x X y Y x X y Y

z Y

maxmin F x,y I x, y,C maxmin F x,y CG x,z G x,y  

For the penalty function 

 ( ) ( ) ( )( ) ( ) = − ∫
2

Y

I x, y,C C min 0,G x,y G x,z d zµ  (169) 

we have the following theorem: 

Theorem 2.32 [25] 

If F  and G  are lipschitziens in respect with y , then 

( )
( )

( )
( ) ( ) ( )( )

∈ →∞ ∈ ×∈

  
= = + − 

  
∫

q

y B x C x,u X Ux X
Y

1) sup min F x, y lim max u z C min 0,F x, y I x, y,C u dy  (170) 

where ( )z C  verifies the condition 
( )→∞

=
n

C

C
lim 0

z C
. 

 2) For every > 0ε , there exists 0C , so that for ≥ 0C C , reaching the maximum ( ( )qx C , ( )qu C ) in 

(170) is an ε - optimum strategy and ε -approximation for 
( )

( )
∈ ∈x X y B x

sup inf F x, y ). 

We can assume, without restricting the generality of the problem, that the application B has a particular 

form.  

If × →h : X Y ℝ  is continuous, let us consider 

( ) ( ){ }= ∈ =B x y Y h x, y 0  

Theorem 2.33 

If 

 ( ) ( ) ( ) ( )
∈

= + −
y Y

L x,y,C,D F x,y Ch x,y Dminh x, y  (171) 

then we shall have the following equality: 

( )( )
( )

( )
→∞ ∈ ∈ ∈ ∈

=
C x X y Y x A y B x
lim maxminL x,y,C,z C max min F x,y  

where the fonction z  verifies 

 
( )

→∞
>

C

z C
lim 1

C
 (172) 

Proof 

We shall use the notations: 

( )
( )

∈ ∈
=*

x A y B x
W max min F x,y  

( ) ( )( )
∈ ∈

=
x X y Y

W C maxminL x,y,C,z C  

Let us consider 

( )
( )

∈ ∈
=

x A y B x
x Rmax min F x, y  

and, consequently,  

( ) ( ) ( )
∈

≥  +  y Y
W C min F x ,y Ch x,y  

we shall have (see theorem 2.8): 

( ) ( )
→∞ ∈

 +  = 
*

C y Y
lim min F x ,y Ch x , y W  

which implies 

 ( )
→∞

≥ *

C

limW C W  (173) 

On the other hand, ∃ >0C 0 , >0 0ε  so that ( ) ( )≥ + 0z C 1 Cε , ∀ ≥ 0C C and, consequently, 

( )
( )

( ) ( )
∈ ∈

≤  −  0
x X y Y x

W C max min F x,y Ch x,yε  
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where ( ) ( ) ( ){ }∈
= ∈ × =

y Y
Y x x, y X Y y Rminh x, y . 

Because ( ) ( )=Y x B x , ∀ ∈x A , we shall have 

( )
( ) ( )

→∞ ∈ ∈
 −  = 

*

0
C x X y Y x
lim max min F x,y Ch x,y Wε  

and, accordingly,  

( )
→∞

≤ *

C
limW C W  

This inequality and (173) implies that 

( )
→∞

=*

C
W limW C      (174) 

and, therefore, we have the equality: 

( )
( ) ( )( )

∈ ∈ →∞ ∈ ∈
=

x X y B x C x X y Y
max min F x,y lim maxminL x,y,C,z C    (175) 

Corollary 2.33.1 

If *x  is a limit point for the following set 

( )( ){ }∈ ∈
= →∞*

k k k k
x X y Y

x RmaxminL x,y,C ,z C C  

then ∈*x A  and 
( )

( )
∈ ∈

=*

x X y B x
x Rmax min F x,y . 

2.3.2 The Case of Mixed Strategies (for Matrix Games) 

The central result used in order to solve this problem consists in the theorem of approximation of the 

continuous games through finite games [16], [25]. 

Based on this result, the solving of some types of particular games (games with a separable function of 

paying, games with a convex and generalized – convex function of paying, temporal games) can be found (at 

least from a theoretical point of view) in [25], [29], [85]. 

Due to this reason, beside the presentation of the theorem that allows the approximation of the 

continuous games through the finite games there will be issued some methods of solving the matrix games. One 

of the methods refers to the abridgement of the solving of a matrix game to the solving of a couple of problems 

of linear dual programming. The other method to be presented within this paragraph is the iterative method. 

The iterative method is constructive and represents, in fact, a version of Brown’s method and it refers 

to repeated games in which the accumulated experience in the previous games can be used as a restrictive 

number of simple strategies. For the beginning, we assume that in the game ( )=1 1 2J f ,D ,D , the sets of the 

strategies are bounded and closed in the Euclidean space nE , respectively mE . For the aleatory extension 1J
ɶ  of 

1J  we note: 

( )

( )

=

=

∫ ∫

∫ ∫
1 2

1 2

1 1 2

D D

2 1 2

D D

V supinf f d ,d d d

V inf sup f d ,d d d

ν µ

µ ν

µ ν

µ ν
 

where ν  and µ  are probabilistic measures defined on compact X , respectively Y  and f  is a continue 

function. 

We can easily prove the inequality ≤1 2V V . 

There exists the equality =1 2V V ; sup  and inf  will be changed with max , respectively min  when 1J
ɶ  

has got a saddle point ( )0 0,ν µ . We can prove that the strategy 0ν  of the first decider is a probabilistic quantity 

for which the equality takes place: 

( )= ∫ ∫
1 2

1 1 2 0

D D

V min f d ,d d d
µ

µ ν      (176) 

In the strategy 0µ  of the second decider there is a probabilistic quantity for which the following 

equality occurs: 

( )= ∫ ∫
1 2

2 1 2 0

D D

V min f d ,d d d
ν

µ ν      (177) 
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The existence of the pair ( )0 0,µ ν  which represents a saddle point for 1J
ɶ  games is a consequence of the 

results presented in [16], [25]. 

Remark 2.26 

We can easily prove the equalities: 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

=

=

=

=

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫

1 2 1

1 2 1

1 2 2

1 2 2

1 2 1 2

D D D

1 2 1 2

D D D

1 2 1 2

D D D

1 2 1 2

D D D

maxmin f d ,d d d maxmin f d ,d d

min f d ,d d d min f d ,d d

minmax f d ,d d d minmax f d ,d d

max f d ,d d d max f d ,d d

ν µ ν µ

µ µ

µ ν µ ν

ν ν

µ ν ν

µ ν ν

µ ν µ

µ ν µ

 

As we have mentioned above, the simplest direct proof of Neumann’s theorem is based on the 

properties of duality in the linear optimization. 

It is important to mention that the phenomenon of duality in the problems of optimization was firstly 

pointed out in the context of the minmax problem for the finite games. 

Therefore, let’s consider the matrix game ( )= 1 2J f ,D ,Dɶ , { }= 1 n

1 1 1D d ,...,d , { }= 1 m

2 2 2D d ,...,d , where 

we note ( ) =i j

1 2 ijf d ,d a , =i 1,n , =j 1,m . 

We assume the problem of determining the mixed strategies: 

{ } { }= =0 0 0 m

0 1 n 0 1 1P p ,..., p ,Q q ,...,q  

which determine a saddle point of f for Jɶ . 

We are led to solving the following two problems: 

a) the determination of a strategy 0P  so that: 

≤ ≤ ≤ ≤
= =

= =∑ ∑
n n

0

ij i ij i
1 j m P 1 j m

i 1 i 1

min a p max min a p V  

where { }= 1 2 nP p , p ,..., p ; 

b) the detremination of a strategy 0Q  so that: 

≤ ≤ ≤ ≤
= =

= =∑ ∑
m m

0

ij j ij j
1 i n Q 1 i n

j 1 j 1

max a q minmax a q V  

where { }= 1 2 mQ q ,q ,...,q . 

Let us consider >ija 0 . 

If we write: 

( )
≤ ≤

=

= ∑
n

1 ij i
1 j m

i 1

V P min a p       (178) 

( )
≤ ≤

=

= ∑
m

2 ij j
1 i n

j 1

V Q max a q       (179) 

the first problem may be approached as a problem of maximization of ( )1V P  with the constraints: 

( )
= =

≤ = = ≥∑ ∑
n n

1 ij i i i

i 1 i 1

V P a p , j 1,m, p 1, p 0  

We introduce the variables: 

( ) =

= ⇒ ≤ ≥∑
n

i
i ij i i

i 11

p
x 1 a x , x 0

V P
 

Consequently, the problem of maximization of ( )1V P  leads to that of minimization of 
=
∑
n

i

i 1

x . 

The Minmax Inequality and Equality

50



Analog, by writing 
( )

= i
i

2

q
y

V Q
 the problem b) is reduced to the minimization of 

( )=

=∑
m

i

i 1 2

1
y

V Q
, 

having got the relationships: 

=

≥ ≥∑
m

ij j j

j 1

1 a y , y 0  

Therefore, any solution ( )0 0P ,Q  of a game of value V  gives, at the same time, a solution of the two 

problems of linear optimization in respect with variables ix , jy  and 
= =

= =∑ ∑
n m

0 0

i j

i 1 j 1

1
x y

V
. 

Contrarily, if { }0ix , { }0jy  are optimal solutions of the two problems of linear optimization and 

= =

= =∑ ∑
n m

0 0

i j

i 1 j 1

1
x y

V
, then for =0 0

i ip Vx , =0 0

j jq Vy  it results that 
= =

= =∑ ∑
n m

0 0

i j

i 1 j 1

p q 1 , ≤ ≤∑ ∑0 0

ij j ij i

j i

a q V a p , ≤i n , 

≤j m . From here, we can write ≥ ≥∑ ∑0 0

ij i ij j
j i

i j

min a p V max a q  and thus the inequalities form below take 

place: 

= =

≥ ≥∑ ∑
n m

ij i ij j
P j Q i

i 1 j 1

maxmin a p V minmax a q     (180) 

Therefore, { }= 0

0 iP p , { }= 0

0 jQ q  are optimal mixed strategies. 

Consequence 

The solving of a matrix game with the matrix of paying ( ) =
=

i 1,nij
j 1,m

a  is equivalent to the solving of a 

couple of dual linear optimization problems: 

1) ∑ i

i

min x  

≥ ≥ =∑i ij i

i

x 0, a x 1, j 1,m  

2) ∑ j

j

max y  

≥ ≤ =∑j ij j

j

y 0, a y 1, i 1,n  

The value V  of the game is = =
∑ ∑0 0

i j

i j

1 1
V

x y
 and the optimal strategies 0

ip , 0

jq  are given by 

=0 0

i ip Vx , =0 0

j jq Vy . 

Remark 2.27 

If the player 2 carries only simple strategies and the player 1 adopts only mixed strategies, we shall 

consider 

( )
=

= =∑
n

i i

i 1

V V P,q a p  

the mean value of the game (here ( )= 1 2 nP p , p ,..., p ) is a mixed strategy for the player 1. 

We are led to the following problem: 

=

≥ →∑
n

i i

i 1

a p V max  

=

= ≥ =∑
n

i i

i 1

p 1, p 0, i 1,n  

We denote by = i
i

p
x

V
 ; we have the problem: 
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=

≥∑
n

i i

i 1

a x 1  

=

= ≥ =∑
n

i i

i 1

1
x , x 0, i 1,n

M
 

Because →M max , we are led to a linear optimization problem: 

=

=






≥

 ≥ =



∑

∑

n

i

i 1

m

i i

i 1

i

min x

a x 1

x 0, i 1,m

 

Remark 2.27 (The Equivalence Matrix Game – Linear Optimization) 

Let us consider the matrix ( ) =
=

= i 1,mij
j 1,n

A a  and the following linear optimization problem: 

 

=

=






≤ =

 ≥ =



∑

∑

m

i i

i 1

n

ij i j

i 1

i

max c x

a x b , j 1,n

x 0, i 1,m

   

=

=






≥ =

 ≥ =


∑

∑

n

j j

j 1

n

ij j i

j 1

j

min b y

a y c , i 1,m

y 0, j 1,n

 

Let us assume the matrix: 

11 1 1

1

11 1 1

1

1 1

0 0

0 0

0 0

0 0

0

n

m nm m

m

n nm n

m n

a a c

a a c

a a b

a a b

c c b b

⋯ ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋯ ⋯

⋯ ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋯ ⋯

⋯ ⋯













 

{

{

m

m

n

n

1

1

B =

 

If ix , =i 1,m , jy , =j 1,n  are the solutions corresponding to problems a) and b), then =0

i 1 ix V x , 

=i 1,m , =0

j 1 jv V x , =j 1,n , where 

= =

=
+ +∑ ∑

1 m n

i j

i 1 j 1

1
V

1 x y

 

are optimum strategies for the game with the matrix B .  

Remark 2.28 

If the matrix A verifies the equality = −ij jia a , =i 1,n , =j 1,m , then: 

1) The value of the game is zero. 

2) If ( )= 0 0 0

0 1 2 nP p , p ,..., p  is an optimum strategy for the player 1, then this is also an optimum strategy 

for the player 2. 
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2.4 Bibliographical Notes and Comments 
Semi-continuity of multivocal applications was first introduced by Kuratovski on metric spaces and it was 

extended for topological spaces by Kakutani, Choqet etc.  

Minmax theorems were originally demonstrated using fixed point theorems (Neumann, Fan, Brouwer). 

Moreover, a great part of the equilibrium theorems for general games appeal to the fixed point theorems 

(Kakutani, Fan, Ghicksberg).  

The first formulation of minmax theorem is attributed to Borel starting from an antagonist game 

problem. Placing the issue in an inappropriate framework, Borel had concluded that the minmax equality 

cannot occur in a sufficiently general case.  

A correct expression of the minmax problem is owned to Neumann who showed that its solution is a 

condition that is equivalent to the existence of a saddle point for the efficiency function adopted. The existence 

of the optimum solution was demonstrated using a fixed point theorem; later on, more simple algebraic 

demonstrations have been made. The most convenient direct demonstration of Neumann theorem is based on 

the dual properties of linear optimization.  

The first generalization of Kakutani’s minmax theorem was made under conditions of continuity for the 

efficiency function and according to the hypothesis that the sets of strategies are infinite. The solution was 

demonstrated by a fixed point for higher semi-continuous multi-voce applications.  

An extremely important analysis of the conditions necessary for the minmax equality is presented in the 

excellent monograph of Stefanescu [82].  

The first approach of minmax equality in a random extension of a finite game is owed to Neumann [57] 

who has shown that in such cases there is always a solution to the minmax equality. Ville [87] has made the 

first theorem for infinite games and Wold has shown that if a set of strategies is finite and the other set is 

countable then the random extension of the game satisfies the minmax equality if the efficiency function is 

bounded.  

Nash enlarged the saddle point notion to that of an equilibrium point at the n  person games [56] 

permitting the introduction of a new optimality concept, the stability principle, for the playing game situations 

with n  deciders. 

On the other hand, Rockfaller [75] remarked that the study of saddle point problems with differentiable 

utility functions is a particular case of the variation inequality theory with monotone operators. This theory was 

developed by Brower, Brezis, Sibony. The existence of equilibrium points was generally demonstrated in the 

games theory. 

Thus, Nikaido [59] demonstrated the existence of equilibrium points in the convex two-person zero 

sum games.  

In the random extensions of n  player games ( )≥n 2 , Young [92], Glicksberg [31] demonstrated the 

existence of equilibrium points, Shapley [77] showed that any stochastic game with stops has equilibrium 

points and Gillete [30] demonstrated the same thing in the case of stochastic games without stops and with 

updates. 

An important result related to the probabilistic characterization of minmax equality is owed to Goldman 

[32]. In the case of finite games, this result can be characterized as follows: if the number of strategies of the 

first player is m and the number of strategies of the second player is n, then the probability of a saddle point 

existing in a simple strategy is:  

( )+ −
m!n!

m n 1 !
 

Basically, in the case of a two-person zero sum game, this result proves that the existence of a saddle 

point is more rare than the existence of an equilibrium point which has the following probability to 

occur: −− 11 e . 
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MINMAX DECISIONS 

 

 

The sequential decision problem in its general form is defined as follows: 

 ( ){ }= ∈ ∈ ∈ ∈i

0 i nS X ;X ,X ;M ;u ,i M ;D x ,i ,x X ; f ,nℕ ℕ , where: 

 * X  represents the set of states; 

 * 0X ,X  represents the set of initial states, respectively the set of final states 

(obviously ⊂ ⊂0X X ,X X  ); 

* The set { }=M 1,2, ,m…  represents the set of decision makers participating to the decision making 

process; 

* iu  represents the utility function of the decision makers ∈i M ; 

* ( )iD x  represents the set of strategies of the decision maker ∈i M in state ∈x X  (denoted 

by ( ) ( )
=

=∏
m

i

i 1

D x D x ; 

* ∈nf ,n ℕ  represents the transition functions. The decision making process is described by the 

following recurrent relation: ( ) ( )+ = ∈ ∈n 1 n n n 0 0 n nx f x ,d , x X , d D x  

* ia  represents the minimal gain proposed by the decision maker ∈i M   

* ( ){ }= ∈ ≥i i iX x X ;u x a  represents the target set of the decision maker; 

Let us consider the following algebraic and topological requirements: 

 X  is a linear and topological space; ßX is σ _algebra generated by topology of space X. We shall 

associate to measurable space (X, ßX) the set µ (ßX) of all the measures of probability defined on ßX. To each 

position ∈x X is associated the measure of probability ∈xP µ (ßX).  

 0X ,X  are compact sets, ( )iD x  are linear topological spaces, ∈ ∈i , x Xℕ ; 

 Applications ∈nf ,n ℕ and → ∈iu : X ,i Mℝ  are continuous. 

We shall also use the following notations:  

( )0T x  represents the set of trajectories starting from 0x  and ( )k

0T x  represents the set of duration 

trajectories k starting from ∈0 0x X ; 

( )→n 0B : X P x  are multivocal applications due to which it is possible to establish the set of positions 

to be reached after n  stages, starting from a certain initial position: 

( ) ( ) ( ){ }= ∈ = ∈ ∈1 0 1 1 0 0 0 0 0 0 0B x x X : x f x ,d ,x X ,d D x  

( ) ( ) ( ) ( ){ }− − − − − − −= ∈ = ∈ ∈n 0 n n n 1 n 1 n 1 n 1 n 1 0 n 1 n 1B x x X : x f x ,d ,x B x ,d D x , >n 1 ; 

 

3.1 Optimum Principles for the Uncooperative Case 
The conditions that should be met by an optimality criterion were presented for the first time as a list of axioms 

in a finite decision problem considered as a game against nature. Based on these axioms, Milnor [46] 

characterizes the minmax principle and the principle of insufficient rationality. Changes to this list of axioms 

were formulated by Atkinson and Church [2], Harris and more recently by Preda [69] (who characterized the 

Bayesian principles strictly and broadly for a sequential decision problem). 

The optimum criteria agreed by the decision theory, as well as their classification, will be presented 

hereinafter, by using a synthetic approach.  

 In order to simplify our presentation, we shall consider a decisional process ( )= 1 2 1 2y f , f ;D ,D which 

involves only two decision makers. We shall denote by 1 2f , f the efficiency functions corresponding to the 

above mentioned decision makers and by 1 2D ,D the sets of their strategies. The results carried forth bellow will 

take into consideration the perspective of the first decision maker (player).  
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 Under nondeterministic conditions, the maxmin criterion and the minimum regret criterion can be 

accepted.  

 According to the maxmin criterion, the first decision maker will choose that specific strategy which 

verifies the following equality: 

 ( )=
1 2

*

1 1 2
d d

a maxmin f d ,d       (181) 

namely 

 ( ){ }= ≥ ∈ ∀ ∈
1

*

1 2 1 1 2 2
d

a max a : f d ,d a,d D , d D     (182) 

 In other words, the decision maker will select the strategy which allows him to achieve the lower 

ceiling of the gain *a , regardless of the strategic behavior of the second decision maker. It is obvious that this 

optimum criterion implies the minimum regret criterion (Savage); thus the first decision maker will choose 

the strategy which verifies the following equality:  

( ) ( ){ }= −
11 2

1 2 1 2
d d d

a minmax max f d ,d f d d      (183) 

This criterion is an optimum criterion as well, and it implies a cautious strategic behavior. The criterion 

is based on the following ratiocination: if the decision maker 1 knew that the decision maker 2 will choose the 

strategy 2d , then the maximum value of the gain which could be achieved by the first decision maker would be: 

( )
1

11 2
d
max f d ,d  

 But the first decision maker doesn't really know that the second decision maker will choose the strategy 

2d , therefore he will try to „minimize” in the minmax sense of the deviation.  

  ( ) ( ){ }−
1

1 2 1 2
d
max f d ,d f d ,d      (184) 

 Under uncertainty conditions, we shall have to use the average value maximization criterion, the 

maximum probability criterion and the maximum level criterion.  

 The average value maximization criterion is extremely frequent, but is quite questionable to use it 

when the decisional process is non-repeatable.  

 We assume that the strategy of the decision maker 2 - 2d is a continuous random variable for which we 

know the probability density
2d
f . Obviously, the corresponding probability distribution can be defined as 

follows: 

 ( ) ( )= ∫
1

2 2

d

d 1 d

0

F d f t dt      (185) 

 According to the decision maker 2, the optimum solution *

1d for the first decision maker is the solution 

that verifies the following equality: 

 ( )( ) ( )( )=
2 2

1

*

d 1 d 1
d
maxM f d M f d     (186) 

 The adoption of the above optimum criterion has few weak points.  

 Firstly, the average value is a number which cannot approximate, with an actual error, the result that is 

going to be obtained. Secondly, we cannot say that the result obtained with a high probability equals exactly the 

average value.  

 A version of the law of large numbers comes out in favor of adopting this optimum criterion. 

According to this law, if the decisional process is repeated times and often, then we shall get the result ⋅n m (m 

is the average value) with a very high probability.  

 The maximum level principle assumes the choosing of the specific strategy which verifies the 

following equality: 

 ( )( ){ }< ≥
2

1

d 1
d V
max V : P f d V , fixedα α     (187) 

 Practically, this criterion implies the choosing of the optimum strategy *

1d which allows us to get the 

level V, which can be obtained with a fixed probability α .  
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 The maximum probability criterion will be then analyzed, by taking into consideration some 

conditions that are more general. This criterion is also known as the minimum risk principle and it consist in 

choosing that strategy *

1d which maximizes the probability that the gain achieves a fixed ceiling a: 

  ( )( ) ( )( )≥ =
2 2

1

*

d 1 d 1
d
maxP f d a P f d , a fixed     (188) 

 Obviously, for a sufficiently large, this criterion can be considered as a risk criterion.  

 

3.1.1 The Principle of Stability 

According to this principle, the optimum strategic behavior consists in the adoption of these strategies which 

are equilibrium points. 

 According to this principle, the optimal strategy to be adopted is one that has the property that any 

deviation from it of any decider will lead to lower earnings.  

For example, in the case of a decisional process with two decision makers the strategy 

( )∈ ×1 2 1 2d ,d D D  is an equilibrium point if the following conditions are met:  

( ) ( )≥ ∀ ∈1 2 21 1 1 1 1f d ,d f d ,d , d D
                

(189) 

( ) ( )≥ ∀ ∈1 2 12 2 2 2 2f d ,d f d ,d , d D
                

(190) 

If ( ) ( ) ( )+ = ∀ ∈ ×1 1 2 2 1 2 1 2 1 2f d ,d f d ,d 0, d ,d D D is a zero-sum game, then due to the notation 

= = −1 2f f f , the previous inequalities become:  

( ) ( ) ( ) ( )≤ ≤ ∀ ∈ ×2 1 2 11 2 1 2 1 2f d ,d f d ,d f d ,d , d ,d D D
   

(191) 

The equilibrium point in this case is called saddle point while the previous double inequality represents 

the inequality that characterizes a saddle point in a zero-sum two-person game.  

In addition, under certain algebraic and topological conditions for 1 2f ,D ,D , one can demonstrate [31] 

[82] that this double inequality is equivalent to the following equality (minmax equality).  

( ) ( )=
1 2 2 1

1 2 1 2
d d d d
maxmin f d ,d maxmin f d ,d

    
(192) 

In the case of a game with m decision makers where =j jf ,D , j 1,m  represents the efficiency function, 

namely the set of strategies for the decision maker j, then ( )1 2 nd ,d , ,d…  is an equilibrium point if the 

following inequalities occur:  

( ) ( )
( ) ( )

( ) ( )

1 2 n 2 n1 1 1 1 1

1 2 n 1 n2 2 2 1 1

1 2 n 1 2m m n 1 1

f d ,d , ,d f d ,d , ,d , d D

f d ,d , ,d f d ,d , ,d , d D

f d ,d , ,d f d ,d , ,d , d D

 ≥ ∀ ∈

 ≥ ∀ ∈




≥ ∀ ∈

… …

… …

⋮

… …

   

(193) 

In the case of the sequential decision problem in which the transition equations are (36), the strategy 

( )= ∈1 2 m

n n n n nd d ,d ,...,d D (corresponding to the state nx ) is an equilibrium point provided the following 

inequality is verified: 

( ) ( ){ } ( ) ( ){ }∈ ≥ ≥ ∈ ≥
n n nn n n

j j j jf x ,df x ,d
P x X u x a P x X u x a   (194) 

for any ∈j M , ( )− += ∈1 j 1 j j 1 m

n n n n n n nd d ,...,d ,d ,d ,...,d D . 

Necessary and sufficient conditions for the existence of the equilibrium points have been shown in 

chapter 2. 

We shall be in the state ∈nx X \ X  and in the position of decider ∈i M . We are thus led to a situation 

of non-cooperative game for which we shall specify the main result. 

 The evolution of the decisional process through the recurrence relation:  
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( )+ = ∈ ∈ ∈ ∈ 0n 1 n n n n n n 0 0x f x ,d , x X , d D ,n , x X , xℕ ensures the fulfillment of set X at one point but it 

does not complete the target set iX for a certain decider ∈i M . This is why every ( )n 0B x set built through the 

previous recurrence relation is assigned a set of efficiency functions ( )n n n n

1 2 mG G ,G , ,G… for determining 

precisely the state nx  from ( )n 0B x . Basically, according to the optimal criteria which are adopted by each 

decider, one can determine the actual position from ( )n 0B x  (fig.4)  

 
Figure 4 

 

If { }=M 1,2 , then 1 2

n nd ,d  shall denote the strategies of the two deciders in the state nx and 

( ) ( ) ( )1 1 1 2 2 2 n n n

1 2 1 2 1 2G G ,G ,G G ,G , ,G G ,G… …  shall denote the set of efficiency functions taken into consideration 

in this state ∈n ℕ .  

In order to make a convenient presentation, we shall use a case that is stationary = = =1 2 n

1 1 1G G G⋯  

and = = =1 2 n

2 2 2G G G⋯ . As a consequence, the criteria adopted for each stage 1 2 nx ,x , ,x…  will be described by 

pairs of functions ( )1 2G ,G .  

For a certain state ( )∈k k 0x B x , the pair of strategies ( )1 2

k kd ,d  represents the equilibrium (saddle point) 

if the following inequalities can be met:  

( ) ( ) ( ) ( )≤ ≤ ∀ ∈ ×
2 1 2 11 2 1 2 1 2
k k k kk k k k k kG d ,d G d ,d G d ,d , d ,d D D    (195) 

It can be demonstrated that in case ( ) ( ) ( )1 2 1 2 1 2

1 1 2 2 n nd ,d , d ,d , , d ,d…  are equilibrium points 1 2 nx ,x , ,x… , 

then under certain conditions [47], there will be an equilibrium strategy ( )+ +
1 2

n 1 n 1d ,d corresponding to the 

state +n 1x . In addition, if =*

n
n

x lim x , then the following properties are described:  

∈* *x X , x is an equilibrium state for the two decision makers. 

Looked upon as a special case of sequential decision processes, stochastic games were introduced in 

1953 by Shapley [77]. In [77], the existence of equilibrium points is demonstrated for stochastic games with 

pauses and Gillette [30] demonstrated the existence of equilibrium points for stochastic games with 

actualizations and without pauses. 

In the case of the zero sum two-player games, the finding of the equilibrium points is equivalent to the finding 

of the saddle points, i.e. to the solving of a minmax problem. 

 Application to a market equilibrium problem  

Assuming that the sequential decisional process described by (36) involves two decision makers, it 

results that ( )= 1 2

n n nd d ,d .  

Consequently, we have  

( )+ = ∈1 2

n 1 n n n n 0x f x ,d ,d , n ,xΝ  
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The state nx is associated with the efficiency function nF ; in our case we shall consider the stationary 

case where = = = =1 2 nF F F⋯ ⋯ and hence their common value will be denoted by F .  

If in the case of states 0 1 nx ,x , x… …  one adopts strategies ( ) ( ) ( )1 2 1 2 1 2

0 0 1 2 n nd ,d , d ,d , , d ,d… …  then the 

efficiency function F is defined as follows (fig.3.2)  

( ) ( )( ) ( ) ( )= − ∈1 2

i i i iF d p ,d p O p C p ,i Ν     (196) 

Where:  

p is the price  

i iO ,C represent the functions of supply and demand corresponding to the state ∈ix , i ℕ   
+ → ∈1 2

i id ,d : , iℝ ℝ ℕ  (fig.5)  

 
Figure 5 

 

It is obvious that the price p represents the equilibrium point in case it is the solution of equation: 

( ) ( )=
1 2 2 1

1 2 1 2
d d d d
maxminF d ,d maxminF d ,d  

or, equivalently, if it verifies the following inequalities: 

( ) ( ) ( ) ( )≤ ≤ ∀ ∈ ×
2 1 2 11 2 1 2 1 2
i i i ii i i i i iF d ,d F d ,d F d ,d , d ,d D D            (197) 

Obviously ( ) ( ) ( )( )=
1 2 1 2
i i i id ,d d p ,d p  

Performing calculations we are led to the following inequalities:  

( ) ( )
( ) ( )

 ≥


≤

i i

i i

O p C p

O p C p
     (198) 

As a consequence p  is the equilibrium price in the state iX  in case it is the solution of equation:  

( ) ( )=i iO p C p       (199) 

 

3.1.2 Entropic Criteria  

 

3.1.2.1 The Maximum Probability Criterion  

If the decision-making process has evolved to the state ∈nx X \ X , the adoption of the criterion of maximum 

probability by decider 1 implies the adoption of the problem [47]: 
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( ) ( ) ( ){ }{ } ( )
=

∈ ∈ ≥ ≥ = ∈ ×∏1 1
n n n nn

m
n 1 1 1 j

i i 1 n n n n nf x ,d ,dd
j 2

P sup P P x X u x a P ,d d ,d D D
ɶ

ɶℝ       (200) 

As decider 1 will decide first and deciders { }∈j M \ 1  adopt the decision simultaneously, the following 

notations will be used: 

=

= =∏
m

1 j

n 1 n 2

j 2

D D , D D  

The following functionals are introduced: 

( ) ( ) ( ){ } ( )× → = ∈ ≥ ∈ ×
n n 1 2

n 1 2 n 1 2 1 1 1 2 1 2f x ,d ,d
F : D D ,F d ,d P x X u x a , d ,d D Dℝ       (201) 

( ) ( ) ( )

( ) ( )

∈ ∈

∈ ∈

 
× → = ∈ ≥ 

 

 
− ∈ ≥ ∈ × 

 

∑ ∑

∑ ∑

n n 1 2

n

n 1 2 n 1 2 i if x ,d ,d
i M i M

x i i 1 2 1 2

i M i M

g : D D ,g d ,d P x X u x a

P x X u x a , d ,d D D

ℝ

  (202) 

and the multivocal application: 

( ) ( ) ( ){ }→ = ∈ ≥n 1 2 n 1 2 2 n 1 2B : D D ,B d d D g d ,d 0P    (203) 

For greater convenience, we shall write F , g , B  instead of nF , ng , nB . ( )
11 DD ,d , ( )

22 DD ,d are 

assumed to be compact metric spaces. 

The following hypotheses are issued: 

1) the forming of a coalition in the sense of maximum probability is allowed (this coalization criterion 

will be described in detail in chapter 3, but the principal matter regarding this criterion is the fact that it implies 

the possibility realizing the transfer of the utility); 

2) if the first decider has adopted the strategy ∈1 1d D , the other decider will adopt only strategies from 

( )1B d . 

Remark 3.1 [49] 

Hypothesis 2) is based on the following argument: if the choice of the pair of strategies 

( ) ( )∈ ×1 2 1 1d ,d D B d  increases in the state +n 1x : 

( ) ( )
{ } { }∈ ∈

  
∈ ≥ 

  
∑ ∑

n n 1 2
j jf x ,d ,d

j M\ 1 j M\ 1

P x X u x a  

then this choice will suit deciders { }∈j M \ 1 . 

If in the state +n 1x , the value: 

( ) ( )
{ } { }∈ ∈

  
∈ ≥ 

  
∑ ∑

n n 1 2
j jf x ,d ,d

j M\ 1 j M\ 1

P x X u x a  

doesn’t increase (as opposed to ( )
{ } { }∈ ∈

  
∈ ≥ 

  
∑ ∑nx j j

j M\ 1 j M\ 1

P x X u x a , but ( ) ≥1 2g d ,d 0 ), then a coalition in the 

sense of maximum probability is formed and deciders { }∈j M \ 1  will be favored again. 

In his turn, decider 1 will be favored as he has the possibility to improve his control over deciders 

{ }∈j M \ 1 . 

Having introduced these notions, we can formulate the problem ( )niP  in the following way: 

( )n1P  yields ( )= ∈ ×* * *

1 2 1 2d d ,d D D  which verifies the equality 

( )
( )

( )
∈ ×

=
1 2 1 2

* *

1 2 1 2
d ,d D D

F d ,d sup F d ,d     (204) 

The solving of the problem ( )niP  represents however, the ideal case for decider 1 as in concrete 

situation it hardly ever happens for all the deciders of the set M  to have the same target set (in other words, all 
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the deciders of the set M  have the same target). 

Let us consider ( )∈ 0,1ε . We assume that in the state nx , the following equality is realized: 

 ( ){ }= ∈ ≥ =
nn x 1 1P P x X u x a ε  (205) 

We shall write as +
nd

n,n 1I  the mean informational gain (in the Renyi sense) obtained through passing on 

form the state nx  to the state +n 1x  as a result of adopting strategy ∈n nd D : 

 
+

+ +
=

=∑
n

n n

dm
n 1, jd d

n,n 1 n 1, j j
j 1 n

P
I P ln

P
 (206) 

We have written: 

( ) ( ){ }+ = ∈ ≥ =n

n n n

d

n 1, j j jf x ,d
P P x X u x a , j 1,m    (207) 

Theorem 3.1 [49] 
If the following conditions are satisfied: 

1) the target sets jX , ∈j M  realize an unfolding of X ; 

2) the strategy sets 1

nD  are compact sets in kℝ , ∀ ∈n ℕ ; 

3) application F  is continuous in both arguments and convex in the second. 

then, there is a finite subset = ⊂
not

1

n 1 1D D D  { }( )= l l

1 1 1D d ,...,d  so that a necessary condition for solving problem 

( )n1P  is the solving of the following problem: 

( ) ( )+ +
∈

+n n

n n

d dn

1 n 1 n,n 1
d

P max H I
D

ɶ      (208) 

in which +
=

= −∑n n n

m
d d d

n 1 n, j n , j

j 1

H P lnP  represents the indeterminacy (Shannon entropy) given by the choice of the 

strategy: 

( ) ( ){ }
=

∈ = × ∈ ≥ = =∏ n

n n n

m
d1 j

n n n n j j n , jf x ,d
j 2

d D D ,P x X u x a P , j 1,mD  

Remark 3.2 

This theorem specifies that there is a finite set 1D  of simple strategies of decider 1 so that a necessary 

condition for solving problem ( )n1P  is the adoption of that strategy’s indeterminacy 

{ }
=

= ∈ ×∏
m

* * * j

n 1n 2n 1 2

j 2

d d ,d D D  which maximizes the sum between the opponents of decider 1 by the choice of the 

strategy *

nd  and the mean informational gain obtained by decider 1 by adopting that strategy. 

Remark 3.3 

If ε  is sufficiently great, we say that decider 1 has a favoring situation in the sense of probability in the 

state ∈nx X \ X . If the strategy 
=

∈ ×∏
m

* j

n 1 n

j 2

d D D  allows the realization of the inequality: 

 ( ) ( )+ ++ ≤ − − − −
* *
n nd d

n 1 n,n 1H I ln 1 ln 1ε ε ε ε  (209) 

then the adoption of the strategy *

nd  in the state nx  allows the favoring situation in the sense of probability to 

be preserved in the state +n 1x . The adoption of the strategy 0

nd , the solution to problem ( )n1P , allows the 

favoring situation in the sense of probability to be preserved even more in the state +n 1x  and ∈n 1
n
lim x X . 

Remark 3.4 

The following cases have been analyzed so far: 

1) the decider i  has got a favorable situation in state nx . In the state +n 1x  decider i  will keep his 

the favorable situation in one of the situations: 

a) =inp ε , ε  being sufficiently close to 1 and in the state +n 1x  the inequality (209) is 
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verified; 

b) the decider i  has a favorable situation even if in the next position there hasn’t been 

adopted the pair of the optimum strategies ( )* *

1 2d ,d ; he has the possibility to correct this “error” which deviates 

him in the following position from +
*

n 1x ; 

2) the decider i  decides the first ( )=i 1 . In this situation, adopting the criterion of the maximum 

profit, he has the possibility, using mixed strategies, to estimate his interval of maximum gain which he can 

obtain in position +n 1x ; in the case ≥1 1V a , the trajectory obtained using this criterion it is convergent in 1X ; 

3) the decider i  decides the last ( )=i m . In these conditions, the criterion of the maximum 

probability is equivalent (cases I and II) with other two entropic criteria. If the inequality (209) is again 

verified, then the obtained trajectory using this criterion is convergent in mX . 

 

3.1.2.2 The Maximum Profit Criterion  

The following hypotheses are supposed to be tested: 

1) the sets of simple strategies are finite: for each ∈j M  there is < ∞jK  so that ( ) =j

n jcard D k  (we 

shall note the set of strategies of decider ∈j M , { }= jkj 1 2

n j ,n j ,n j ,nD d ,d ,...,d ); 

2) deciders will decide successively. 

We shall note j

nD
ɶ  the set of mixed strategies of the decider ∈j M . We assume =i 1  (decider i  will 

decide first) and we shall associate with decider 1 the functional 
=

→∏
m

j

1 n

j 1

R : Dɶ ℝ  defined as follows: 

( ) ( ) ( ){ }
= = = =

= ∈ ≥ −∑∑ ∑ ∑
m1 2 1

m1 2 1 1

n n 1 2 m

1 2 m 1

kk k k
jj j j j

1 1 2 m 1 1 1,n 2,n m,n 1,n 1,nf x ,d ,d ,...,d
j 1 j 2 j 1 j 1

R d ,d ,...,d ... P x X u x a d d ...d d lndɶ ɶ ɶ  (210) 

where ( )
=

∈∏m1 2

m
jj j j

1,n 2,n m,n n

j 1

d ,d ,...,d Dɶ , 

We shall adopt as optimal criterion for decider 1 the maximization of the functional 1R  i.e. the 

maximization of the sum between the mean utility and the indeterminacy contained in the choice of the 

respective strategies. 

We shall adopt the following notation: 

( ) ( ) ( ){ }= ∈ ≥1 2 m
n n n n n

1 2 m

1 n n n 1 1f x ,d ,d ,...,d
u d ,d ,...,d P x X u x a    (211) 

=i ij j

i ,n id d , =i 1,m , =k

n kd d , =k 1,m  

Lemma 3.1 [44] 

The distribution of probabilities ( )1 2 mp , p ,..., p  which maximizes: 

( )
= =

= −∑ ∑
m m

1 2 m i i i i

i 1 i 1

R p , p ,..., p a p p ln p , >ia 0 , fixed, =i 1,m   (212) 

is given by: 

 

=

=

∑

i

j

a

i m
a

j 1

e
p

e

, =i 1,m  (213) 

the maximum value of R  being: 

 
=

= ∑ j

m
a

max

j 1

R ln e  (214) 

Theorem 3.2 [47], [49] 

The following results occur: 

1) If there is ′k , ′< <1 k m  so that the deciders ′2,3,...,k  adopt the mixed strategies ′
0 0 0

2 3 kd ,d ,..,d , and 

the deciders ′ ′+ +k 1,k 2,...,m  adopt a strategic behavior opposed to the maximum profit of decider 1 verifies 
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the inequality: 

( )
( )

{ } { }

′

′+
′ ′+

′+

′ ′+
′ ′= = ∈ ∈ +

′ ′+

 
 
 
 

=

≥

∑ ∑ ∑ ∏ ∏
≥ =∑

k2

i i

k 1 m
2 k k 1 m

m1 k 1

kk
j j0 0

1 1 2 k k 1 m i i1 d d
j 1 j 1 j ,..., j i 2 ,...,k i k 1,...,m

1

0 0 0 0 0

1 1 2 k k 1 m
dd d

... min ...min u d ,d ,...,d ,d ,...,d d dk
0

2

j 1

maxmin ...minR d ,d ,...,d ,d ,...,d

e m d ,d
ɶ ɶ

ɶ ɶ

ɶ ɶ ɶ ɶ ɶ

ɶ ɶ( )′0 0

3 k,...,dɶ

 (215) 

the margin ( )′0 0 0

2 3 km d ,d ,...,dɶ ɶ ɶ  corresponding to the mixed strategy: 

( )

( )

′ ′+

′+
′ ′+

′+

′+
′+

′

′ ′+
′= = = = = = +

′ ′+
= =

 
 
 
 

∑ ∑ ∑ ∑ ∏ ∏

=
∑

k k 1 m2

i i

k 1 m
2 k k 1

k 1

i

k 1 m
k 1

k k kk k m
j jj 0 0

1 2 k k 1 m i i1
d d

j 1 j 1 j 1 j 1 i 2 i k 1

k
jj 0 0

1 2 k k 1 m i1
d d

j 1 i 2

... min ...min ... u d ,d ,...,d ,d ,...,d d d

j

... min...min ... u d ,d ,...,d ,d ,...,d d

e

e

τ
ɶ ɶ

ɶ ɶ

′

′

′

′= = = = +

 
 
 
 

=

=
∑ ∑ ∑ ∏ ∏

∑
k m2

i

2 k m

k kk k m
j
i1

j 1 j 1 j 1 i k 1

1

dk

j 1

, j 1,k   (216) 

2) If decider 1 has no information concerning the strategic behavior of the other deciders, then the 

maximum profit of this decider verifies the inequality: 

( ) ( )
=

≤ ≤ ∀ ∈∏
1

m

1 1 1 2 m 2 2 m j
d

j 2

V maxR d ,d ,...,d V , d ,...,d D
ɶ

ɶ ɶ ɶ ɶ ɶ ɶ    (217) 

( )
{ }= = ∈

=

∑ ∑ ∏
= ∑

m2

k1

2 m
2 m

kk
jj

1 2 m1 k1
d d

j 1 j 1 k 2 ,...,m

1

min ...min ... u d ,d ,...,d dk

1

j 1

V ln e
ɶ ɶ

    (218) 

( )
{ }= = ∈

=

∑ ∑ ∏
= ∑

m2

k

2 m
2 m

kk
j

1 1 2 m k1
d d

j 1 j 1 k 2 ,...,m

1

max ...max ... u d ,d ,...,d dk

2

j 1

V ln e
ɶ ɶ

    (219) 

the margins 1V  and 2V  corresponding to the mixed strategies: 

( )
{ }

( )
{ }

= = ∈

= = ∈

=

∑ ∑ ∏

= =
∑ ∑ ∏

∑

m2

k

2 m
2 m

m2

k1

2 m
2 m

kk
jj

1 2 m1 k
d d

j 1 j 1 k 2 ,...,m

kk
jj

1 2 m1 k1
d d

j 1 j 1 k 2 ,...,m

1

min ...min ... u d ,d ,...,d d

j

2 1
min...min ... u d ,d ,...,d dk

j 1

e
, j 1,k

e

τ
ɶ ɶ

ɶ ɶ

    (220) 

( )
{ }

( )
{ }

= = ∈

= = ∈

=

∑ ∑ ∏

= =
∑ ∑ ∏

∑

m2

k

2 m
2 m

m2

k1

2 m
2 m

kk
jj

1 2 m1 k
d d

j 1 j 1 k 2 ,...,m

kk
jj

1 2 m1 k1
d d

j 1 j 1 k 2 ,...,m

1

max ...max ... u d ,d ,...,d d

j

2 1
max ...max ... u d ,d ,...,d dk

j 1

e
, j 1,k

e

τ
ɶ ɶ

ɶ ɶ

    (221) 

We have got the following scheme (fig.6): 

 

( )
( )

1 2

1 2
,

max ,
d d

P d d ( )
( )

1 2

1 1 2
,

max ,
d d

R d d
ɶ ɶ

ɶ ɶ
1 1V a≥

⇐

⇒

( )*

n
n

x

( )*

n
n

x
*

0
x

*

0
x

1 1V a≥
X

1X
 

Figure 6 
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 We note ( )= =1 2 3 m

n 1 n n n 2d d , d , d , ...,d d  

 According to theorem 1.1 from [49], we have the inequality 

( ) ( )− <
1 2 1 2

1 2 1 1 2
d d d d
maxminP d ,d maxminR d ,d ε

ɶ ɶ

ɶ ɶ    (222) 

where 

=

= −∑
1

1 1

1

K
j j

1 1

j 1

d lndε      (223) 

 If V1 ≥ a1 and ε is sufficiently low, we have the following scheme (fig.7): 

 

 
Figure 7 

 

3.1.3 The Equalization Principle 

 

3.1.3.1 Theoretical Considerations 

The principle of equalization is a principle of optimality which characterizes a principle of cautious strategic 

behavior in the context of decision theory. 

The results which will be presented represent a generalization of several results due to Ghermeier  for a 

decision-making problem with two deciders and incomplete information. 

We assume that the target set iX , =i 1,m  realizes a partition of the set X . We associate with the state 

+ ∈n 1x X \ X  the following elements: 

a) ( ){ } ( ) ( ){ }+ + + + + += = ∃ ∈ = ∈ ≥ =
n n n

n 1 n 1 n 1 n 1 n 1 n 1

1 2 n n n j j jf x ,d
P p p , p ,..., p , d D , p P x X u x a , j 1,mɶ . 

From the condition that the sets iX , =i 1,m  should realizes an unfolding of X , the equality +

=

=∑
m

n 1

j

j 1

p 1  

results directly. 

b) the functionals [ ]+ →n 1

ju : 0,1ɶ ℝ , continuous and monotonously ascending, =j 1,m , +n 1

juɶ  are 

interpreted depending on the partial utility associated with decider j  in the state +n 1x , ∈j M ; 
+ + →n 1 n 1

iu : Pɶ ℝ , ( ) ( )+ +=n 1 n 1

i i iu p u pɶ . 

c) the antagonistic game { }+ +
+ = × ∈n 1 n 1

n 1 iP M ,u ,i MΓ ɶ . For greater convenience, in calculation we 

write + =n 1P Pɶ , + =n 1

j ju u , + =n 1

j jp p , + =n 1

j ju uɶ ɶ , =j 1,m . 
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We consider the problems: 

( ) ( )
∈ ≤ ≤

1 i
p P 1 i n

P maxminu p       (224) 

( ) ( )
∈ ≤ ≤

2 i
p P 1 i n

P minmaxu p       (225) 

and let us take { }0 opt
P , { }opt0P  the set of the solutions to these problems. 

Theorem 3.3 (The Principle of Equalization) [29], [49] 
The following properties are defined: 

1) If ( ) ( )+≤i i 1u 0 u 0 , = −i 1,m 1 , then there is ∈p P  and ≤ −k m 1  so that the following conditions 

should be fulfilled: 

a1) ( ) ( )+
≤ ≤

≤k k 1
1 i k
minu p u 0 ; 

a2) >jp 0 , =j 1,k , =jp 0 , = −j 1,k 1 , ( ) ( )=i ku p u p , ≤ ≤ −1 i k 1 . 

2) If ( ) ( )+≥i i 1u 1 u 1 , = −i 1,m 1 , then there is ′ ≥k i  and ∈p P  so that the following conditions should 

be fulfilled: 

b1) ( ) ( )′ ′+
∈

≥k k 1
p P
minu p u 1 ; 

b2) =jp 0 , ′= −j 1,k 1 , >jp 0 , ′=j k ,m , ( ) ( )′=i ku p u p , ′= +i k 1,m . 

Theorem 3.4 [47], [49] 

If the following conditions are met: 

a1) ′ ≤ ≤k i k  

a2) deciders { }∈j M \ i  adopt either the minmax criterion or the minmax one. 

Then the following properties are defined: 

   1) for any { } { }∈ ∪
opt

0 0 0opt
p P P , there is { } { }′∈ ∪

opt

0 0opt
p P P  so that ′ > 0

1 ip p ; 

2) for any ∈p Pɶ , there is ′′∈p Pɶ  so that ′′≥i ip p , if 
{ }

( )
{ }

( )
′≤ ≤ ≤ ≤ ∈∈

=
00 0

0 optopt

0 0

i i i i
k i m 1 i k p Pp P

min max u p max min u p . (226) 

Theorem 3.5 [47], [49] 

If the following conditions are fulfilled: 

a1) ′ ≤ ≤k i k  

a2) deciders { }∈j M \ i  adopt either the minmax criterion or the minmax one. 

Then the following properties take place: 

   3) for any { } { }∈ ∪
opt

0 0 0opt
p P P , there is { } { }′∈ ∪

opt

0 0opt
p P P  so that ′ > 0

1 ip p ; 

4) for any ∈p Pɶ , there is ′′∈p Pɶ  so that ′′≥i ip p , if 
{ }

( )
{ }

( )
′≤ ≤ ≤ ≤ ∈∈

=
00 0

0 optopt

0 0

i i i i
k i m 1 i k p Pp P

min max u p max min u p . (227) 

Remark 3.5 

Theorems 3.4 and 3.5 generalize a result from [29]. From theorem 3.5, it results that if in a certain 

position, decider i  obtains a favorable situation and the other deciders keep on acting cautiously, strategically 

speaking (in the sense of using the minmax or maxmin criteria of optimality), then decider i  can maintain his 

favorable situation or even improve the situation in the next position according to the following diagram (fig.8): 

 

 

                                                                                                                                                

 

                                                                                        

 

                                               

 

 

 

Figure 8 

(p1, p2, …, pm) (0, 0 ,…, pk’,…,pk, 0, …, 0) 

X  

Xn xn+1 

dn 
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Remark 3.9 

From theorem 3.4 and from [47] and [49] it results directly that a necessary condition for i  to obtain 

and further on maintain a favorable situation in the sense of probability is the coalition of i  in the sense of 

probability and a cautious strategic behavior of the deciders not forming a coalition. 

 

3.1.3.2 The Determination and Interpretation  of Optimal Solutions  

Let us suppose the existence of a portofolio that contains n actives, for which, the following analytical 

expressions of the profitability of these actives are known: 

+ +→ = + =i i i ir : R R , r ( s ) a s b , i 1,k      (228) 

The weights p1,p2,…,pk of these actives in the portofolio structure are also known (obvious 

=

≥ = =∑
k

i i

i 1

p 0,i 1,k , p 1 ). The average profitability of the active portofolio is marked with r .  

 + →kr : R R and it is defined as follows: 

 
=

=∑
k

1 2 k i i

i 1

r( s ,s ,...,s ) p r ( s )      (229) 

Form the economic point of view, it is required that a supplementary condition should be met: 

=

=∑
k

i

i 1

s B , B being a fixed value and also usually signifying a budget.  

The problem may be solved with the help of the financial arbitrage model. Basically, this implies the 

solving of the following optimization problem: 

=

=

=






=



=



≥ ≥ =

∑

∑

∑

k

j j j
s p

j 1

k

j

j 1

k

j

j 1

j j

maxmin p r ( s )

s B
( P )

p 1

p 0,s 0, j 1,k

     (230) 

or, in an equivalent form [23], [29], [47]: 

( ) ( )
=
∑
k

i i i
s p

i 1

P maxmin p r s , where     (231) 

( )
=

= = ≥ =∑
k

1 2 k j j

j 1

s s ,s ,...,s , s B,s 0, j 1,k  

( )
=

= = ≥ =∑
k

1 2 k j j

j 1

p p , p ,..., p , s 1, p 0, j 1,k  

Basically, the solving of the problem (P) implies the determination of the absolute maximum value for 

the existence of financial extraction portfolio, independent of its structure (from the point of view of money 

extraction weight). 

Generally, the solving of the problem (P) is considered to be difficult; however, the easiest way to find 

the solution is using the equalization principle [23], [29]. Without restricting the general framework of the 

problem, we shall number the efficiency functions r1, r2, …, rk so the following condition should be met: 

≤ ≤ ≤1 2 kr (0 ) r (0 ) ... r ( 0 )  

Practically we need to analyze the following situations: 

1. if = =1 ir (0 ) r (0 ),i 2,n , then the optimal solution =* * * *

1 2 ks ( s ,s ,...,s )  that we are searching for, can be 

determined as solution of the following algebraic system: 
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( ) ( )
( ) ( )

( ) ( )

 =


=


 =
 + + + =

1 1 2 2

1 1 3 3

1 1 n n

1 2 n

r s r s

r s r s

r s r s

s s ... s B

⋮      (232) 

 Particular cases 

 Considering the fact that each function can be conveniently approximated by means of a first or a 

second degree polynomial, we shall analyze the following situations: 

     1.1.  ( ) = + =i i i ir s a s b , i 1,k         (233) 

It is obvious that in this case, ( ) ( ) ( )= = =1 2 kr 0 r 0 r 0⋯  

The system (232) can be written: 

+ = +
 + = +

 + = +

 + + + =

1 1 2 2

1 1 3 3

1 1 k k

1 2 k

a s b a s b

a s b a s b

a s b a s b

s s s B

⋮

⋯

 

 The optimum solution ( )=* * * *

1 2 ks s ,s , ,s… can be determined after performing some relatively easy 

calculations: 

 

 =



=





=


*

1

1

*

2

2

*

k

k

B
s

a A

B
s

a A ,

B
s

a A

⋮

where 
=

=∑
k

j 1 j

1
A

a
    (234) 

In this case,  ( ) ( ) ( )= = = = +* * *

1 1 2 2 k k

B
r s r s r s b

A
⋯                   (235) 

1.2.  ( ) = + + =2

i i i i i ir s a s b s c , i 1,k                     (236) 

Because ( ) ( ) ( )= = =1 2 kr 0 r 0 r 0⋯ , the optimum solution can be determined by solving the following 

system: 

 + + = + +


+ + = + +


 + + = + +
 + + + =

2 2

1 1 1 2 2 2 2

2 2

1 1 1 3 3 3 3

2 2

1 1 1 k k k k

1 2 k

a s b s c a s b s c

a s b s c a s b s c

a s b s c a s b s c

s s s B

⋮

⋯

     (237) 

It is relatively difficult to solve the above system; therefore, the solution that we are searching for has 

the following form: 
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=

=

=

=

=

=

 − 
+  

  =  
     
 −  + 

 =
 
   
 




−  + 
  =
 
   
 

∑

∑

∑

∑

∑

∑

k
j 1

j 1 j*

1 k

1

j 1 j

k
j 2

j 1 j*

2 k

2

j 1 j

k
j k

j 1 j*

k k

k

j 1 j

b b
A

a1
s

1a

a

b b
A

a1
s

1a

a

b b
A

a1
s

1a

a

⋮

     (238) 

Remark 3.7 

The following equalities are verified, no matter whether ( )=* * * *

1 2 ks s ,s , ,s… represents the solutions of 

the system (232), or the solutions of particular cases 1.1, 1.2: 

a) ( ) ( ) ( )= = =* * *

1 1 2 2 k kr s r s r s⋯           (239) 

b) ( ) ( )
=

= =∑
k

*

i i i i i
s p

i 1

maxmin p r s r s , i 1,k         (240) 

2. if the condition ≠ =1 ir (0 ) r (0 ),i 2,n  cannot be met, then the following algebraic  

(k-1) systems are successively solved: 

( ) ( )
( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )

 =


=
 =
 =  

=  
+ =  + + = 

 =


+ + + =

1 1 2 2

1 1 3 3

1 1 2 2

1 1 2 2

1 1 3 3

1 2

1 2 3

1 1 n n

1 2 n

r s r s

r s r s

r s r s .
r s r s

, r s r s ,..., .
s s B

.s s s B

r s r s

s s ... s B

   (241) 

We shall find the solutions ( ) ( ) ( )− − −1 1 2 2 2 k 1 k 1 k 1

1 2 1 2 3 1 2 ks ,s , s ,s ,s ,..., s ,s ,...,s  of these systems and we shall 

also determine the n index with the property: 

( ) ( ) ( ) ( ){ }−=n 1 2 k 1

1 1 1 1 1 1 1 1r x max r s ,r s ,...,r s     (242) 

In this case, the optimal solution =* * * *

1 2 ks ( s ,s ,...,s )  that we are searching for has the following 

property: 

+

+

 =≠


≠ = 
 
 
 ≠ = 

**

n 11

* *

2 n 2

* *

n k

s 0s 0

s 0 s 0
               

s 0 s 0

⋮ ⋮
     (243) 

and, consequently,  pn+1 = pn+2 = … = pn = 0. 

Therefore, only the first n components of the portfolio are economically important, the others are 

insignificant because their weights are equal to zero. 

Particular cases 

The efficiency functions have the following form 
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= + =i i i i ir ( s ) a s b ,i 1,k       (244) 

In this case, we have to solve the following (k-1) linear algebraic systems: 

( ) ( )
( ) ( )

( ) ( )

 = − = − = − = − 
⇒ = 

  − = −= 
  + + + =+ + + =

1 1 2 2 1 1 2 2 2 1

1 1 3 3 1 1 3 3 3 1

1 1 n n n 11 1 j j

1 2 n
1 2 j

r s r s a x a x b b

r s r s a x a x b b

              , j 2,k

a x a x b br s r s

x x x Bs s ... s B

⋮ ⋮

…

  (245) 

After performing calculations, we find the solutions of the (k-1) systems, as follows: 

= = =

=

= = =

=

= = =

=

−
+ + −

 = =



 −
 + + −


= =




 − + + −


= =




∑ ∑ ∑

∑∑

∑ ∑ ∑

∑∑

∑ ∑ ∑

∑∑

n n n
j 1 j

1

j 1 j 1 j 11 1 j j j*

1 n

1

j 1 jj

n n n
j 2 j

2

j 1 j 1 j 12 2 j j j*

2 n

2

j 1 jj

n n n
j n j

n

j 1 j 1 j 1n n j j j*

n n

n

j 1 jj

b b bB 1
B b

a a a a a
s

11
a

aa

b b bB 1
B b

a a a a a
s

1  1
a

aa

b b bB 1
B b

a a a a a
s

11
a

aa

⋮

=           n 2,k   (246) 

or, in a concentrated form: 

=

=

−
+

= = =
∑

∑

n
j t

j 1t t j*

t n

j 1 j

b bB

a a a
s ,t 1,n,n 2,k

1

a

     (247) 

If s1
*,1
, s1

*,2
, …, s1

*,k-1
 represents the first component of the solutions for systems 1,2, …, k-1, after an 

immediate calculation we get: 

( )

( )

( ) =−

=

 + +
 =
 +


 + + +

=
 + +





++ + + +
 = =

+ + +


∑

∑

1 2

*,1 1 2
1 1

1 2

31 2

*,2 1 2 3
1 1

1 2 3

k
kk1 2

j 1*,k 1 M1 2 k
1 1 j

1 2 k j 1 j

b b
B

a a
r s

1 1

a a

bb b
B

a a a
r s

1 1 1

a a a

bbb b
BB ...

aa a a
r s

1 1 1 1
...

a a a a

⋮

    (248) 

We calculate the t index with the property: 
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 + + + + + + + + + + ++ +  
=  

 + + + + + + + + +
  

t 3 k1 2 1 2 1 21 2

1 2 t 1 2 3 1 2 k1 2

1 2 t 1 2 1 2 3 1 2 k

b b bb b b b b bb b
B ... B B ...B

a a a a a a a a aa a
max , ,...,

1 1 1 1 1 1 1 1 1 1 1
... ...

a a a a a a a a a a a

   (249) 

Based on [23], the optimal solution of the problem (P) verifies the requirement: s
*
t+1 = s

*
t+2 = … = s

*
k 

= 0, therefore the weights pt+1, pt+2, …, pk are insignificant. 

Economic interpretation 

We use the following notations: 

=

=

 + + + + + + ++ +  
= ⇒ 

 + + + + + +
  

 
+  

⇒ = = 
 
  

∑

∑

3 k1 2 1 21 2

1 2 3 1 2 k1 2

1 2 1 2 3 1 2 k

j

i

i 1 i

jj

i 1 i

b bb b b bb b
B B ...B

a a a a a aa a
m min , ,...,

1 1 1 1 1 1 1 1
...

a a a a a a a a

b
B

a
m min , j 1,k

1

a

  (250)

 

=

=

 + + + + + + ++ +  
= ⇒ 

 + + + + + +
  

 
+ 

 
⇒ = = 

 
  

∑

∑

3 k1 2 1 21 2

1 2 3 1 2 k1 2

1 2 1 2 3 1 2 k

j

i

i 1 i

jj

i 1 j

b bb b b bb b
B B ...B

a a a a a aa a
M max , ,...,

1 1 1 1 1 1 1 1
...

a a a a a a a a

b
B

a
M max , j 1,k

1

a

  (251) 

It is obvious that each value given by the equality (248) belongs to the interval: [ m,M ] . 

From economic point of view, it is extremely important that we can find the index t which has the 

following property: 

 

+ + + +
=

+ + +

t1 2

1 2 t

1 2 t

bb b
B

a a a
M

1 1 1

a a a

⋯

⋯

     (252) 

 In this case, only the first t actives are important within the portfolio structure, because for the other 

−k t actives, the corresponding weights are null, namely: 

+ += = = =t 1 t 2 kp p p 0⋯  

We shall use the following notations: 

 = + + + + t1 2

1 2 t

bb b
B B

a a a
⋯      (253) 

= + + +
1 2 t

1 1 1
A

a a a
⋯       (254) 

Therefore, =
B

M
A

         

Obviously, the following conditions must be met: 
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+

+

+

+
>

+

t 1

t 1

t 1

b
B

aB
,

1A
A

a

  

−

−

−

−
>

−

t 1

t 1

t 1

b
B

aB

1A
A

a

    (255) 

 In order simplify our analysis (without restricting its generality), we shall assume that  

 − +t 1 t 1a , a  are positive values.  

 After performing calculations, we get the following results, starting form the above inequalities: 

  +> t 1

B
b ,

A
  −< t 1

B
b

A
    (256) 

 Therefore, we shall have: 

 − +> >t 1 t 1b M b       (257) 

In the case, =t 2  the optimal solution of the problem (P) is the following: 

− +
 =
 +



− +
 =
 +



 = =

2 1

* 1 1 2
1

1 2

1 2

* 2 1 2
2

1 2

*

t

b bA

a a a
s

1 1

a a

b bA

a a a
s

1 1

a a

s 0,t 3,k

⋮

      (258) 

As a result, the weights p3 = p4 = … = pk = 0, therefore 

= =

=∑ ∑
k n

*

i i i 1 1 i
s p s p

i 1 i 1

maxmin r ( s )p maxmin r ( s )p  

besides    

= =

+ +
= = =

+
∑ ∑

1 2

n 2
* * * 1 2

1 1 i 1 1 i 1 1

i 1 i 1

1 2

b b
B

a a
r ( s ) p r ( s ) p r ( s )

1 1

a a

   (259) 

 

3.1.3.3 The Solution of a Ruination Problem 

Let us consider a sequential decision problem in which the deciders involved are coalited in two coalitions 1C , 

2C  having the final state sets 1X , 2X , which form a partition for X : ∪ =1 2X X X , ∩ =∅1 2X X . 

We also consider the model of the following market phenomenon: in their struggle for supremacy in 

taking hold of a certain commodity market, the deciders from 1C , intending to eliminate the deciders from 2C  

which control the market, want in a first stage to take hold of at least one strategic point of the existing k  in 

this market. Having once penetrated the commodity market, the deciders in 1C  will try the complete 

elimination of the deciders in 2C  by ruining them. 

We interpret the decision process of the first stage as a game made up of k  simultaneous periods. We 

assume that in this stage, the capital of each coalition is A  and B respectively; each decider from 2C  can ruin 

jm  monetary units of the capital A in the game j , =j 1,k . 

Let j

1D , j

2D  be the set of the strategies of 1C  and 2C  respectively, in the game j , =j 1,k , for any 

( )
=

∈∏
k

1 2 k j

1 1 1 1

j 1

d ,d ,...,d D , ( )
=

∈∏
k

1 2 k j

2 2 2 2

j 1

d ,d ,...,d D  we shall have: ≥j j

1 2d ,d 0 , =j 1,k , 
=

=∑
j

j

1

j 1

d A , 
=

=∑
j

j

2

j 1

d B . 
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We introduce the utility function 
= =

× →∏ ∏
k k

j j

1 2

j 1 j 1

u : D D ℝ : 

( ) ( )
=

= −∑
k

1 2 k 1 2 k 1 j

1 1 1 2 2 2 j 2 1

j 1

u d ,d ,...,d ,d ,d ,...,d min m d d ,0    (260) 

Let us calculate the guaranteed optimum strategy for 2C  (maxmin strategy) as well as the maxmin 

value of the non-cooperative game between 1C  and 2C . 

We shall use the results given by [29]: 

( ) ( )
≤ ≤

=

 
= − = − 

 
∑

2 1 2

k
i i i

2 i 2 1 i 2
d d d 1 i k

i 1

V maxmin min m d d ,0 maxmin m d A   (261) 

By introducing partial utility function iuɶ , →ii 1u : Dɶ ℝ , ( ) = −i i

i 2 i 2u d m d Aɶ , we shall have 

( ) ( )= − =i 1u 0 A u 0ɶ  hence it results that among the optimum strategies there will be strategies of the form 

( )j

2d ,0,....,0  (where j  is determined from the condition ( )
≤ ≤

− = −j i

j 2 i 2
1 i k

m d A min m d A  so that ( )= j

2 j 2V u d . It will 

result directly that the guaranteed optimum (simple) strategy for 2C  will be 
=

= ∑
k

j

2

i 1i i

B 1
d

m m
, the maxmin value 

being  

=

 
 
 = −
 
 
 
∑

2 k

i 1 i

B
V min A,0

1

m

     (262) 

For the demonstration of the guaranteed optimum strategy for 1C  (minmax strategy) as well as of the 

minmax value we shall first observe that the u  efficiency function is convex in ( )= 1 2 k

2 2 2 2d d ,d ,...,d  as so the 1V  

minmax value will be equal to the value of the game [29], [47]: 

( ){ }
≤ ≤

= −1 i
1 i k

V min min m B A ,0      (263) 

The minmax (mixed) strategy will be: 

=

= =∑
k

1

i 1j i

1 1
d , j 1,k

m m
      (264) 

as for any 
=

∈∏
k

i

2 2

i 1

d D  we have: 

( )
= =

= = =

   
   

−   − ≥ = − =
   
   
   

∑ ∑
∑ ∑ ∑

ik k
i i 2

i 2 1k k k
i 1 i 1

i i

j 1 j 1 i 1j j j

A m d1 B
max A m ,d ,0 max max A ,0 V

1 1 1
m m

m m m

 (265) 

Remark 3.7 

As a result of the concavity of the u  functional is relation to ( )= ∈1 2 k k

2 2 2 2d d ,d ,...,d B  the V  value of 

the game between the two coalitions will be equal to 2V  and consequently a decision-making behavior for 2C  

which is based on keeping decisions secret does not favor this coalition. It is very important for 2C  to obtain 

additional information on the strategic behavior of 1C . 

Remark 3.8 

The optimum solution of 1C  consist in the concentration of the forces in a single game (in the 0j  game 

in which the condition { }
≤ ≤

=
0j j

1 j k
m min m  is realized), keeping the secret about the game in which it concentrates 

its forces. If 2C  has no information on 1C , it has to distribute its forces uniformly. 
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After the first stage, the remaining capital reserves being ⊂1 1A ,B ℕ , the second stage, the ruining 

stage proper, takes place an a particular sequential process: 

{ }
{ }
{ } { }

= ∈ + = +

=

= + ∪ +

1 1

0 1 1

1 1 1 1

X a,b , a,b , a b A B

X A ,B

X A B ,0 0,A B

ℕ

 

If ∈nx X , ( )= n n

n 1 2x a ,a  we shall have: 

( ) ( )+ +
+ = =n n n 1 n 2

n 1 n n 1 2 1 2x f x ,d ,d a ,a     (266) 

where: 

( ) ( ) ( ){ } ( )+ + ∈ + − − + ∀ ∈ ×n 1 n 2 n n n n n n n n

1 2 1 2 1 2 1 2 1 2a ,a a 1,a 1 , a 1,a 1 , d ,d D D  

Remark 3.9 

The sequential process described before consists in a series of null sums; a coalition means its having to 

concede to the winning coalition a monetary unit out of the available capital. 

In this stage, there arises the problem of determining the mean duration of the decision-making process 

as well as the probabilities of getting ruined for the coalitions if it is known that the probability of mining the 

game for the 1C  coalition in the nx  state is =p constant , ∈n ℕ . 

It results that ( )n1 n
a  is a Markov chain homogenous with the states = +1 10,1,2,...,C A B  and with the 

passing matrix [47]: 

 
 
 
 = = −
 
 
 
 

1 0 0 0 0 0

q 0 p 0 0 0

M ,q 1 p

0 0 0 q 0 p

0 0 0 0 0 1

⋯

⋯

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯  

The potential matrix R  is given by: 
−

  
  
  
  = −
  
  

    

1

0 p 0 0 0 0

q 0 p 0 0 0

R I

0 0 0 0 0 p

0 0 0 0 q 0

⋯

⋯

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯  

the elements of this matrix being: 

( ) ( )

( )
( )

−

− −

         − − ≤                 ≠
             − − = − − >            
                 


 − ≤ 

=
− > 

j A i

C i C i j 1

i , j

p p
1 1 , j i

q q1 1
, p

2p p p p
2 p 1 1r 1 , j i

q q q q

j C i , j i2 1
, p

C 2i C j , j i

 

The mean duration of the decision-making process will be: 
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( )

−

=

     
 −    
      − ≠   −  = =   −     

 =


∑

1C B

1C 1 C

m A,l
l 1

1 1

p p

q q1 1
A , p

2 p 1 2pD r 1
q

1
A B , p

2

 

The ruining probability of the 1C  coalition is given by 1C

rP , where: 

Besides, if ≠
1

p
2

 

 
( )

( )( )
−

= −
− −

1 1 1B A A

n 1C C

p p q
D A

p q p q
     (267) 

If 

 
− 

 
     

+ + + −−     
     ≠ = = =

         
+ + + + + − −         
         

−

1

1 1

1

1

B

2 B B

C

r 2 B C C C

p
1

qp

p p p ppq 11
q q q q1 q

p , P
2 p p p p p p

1 1
q q q q q qp

pq
1

q

…

… …

 

If 
−

= = = = −1C 1 1 1
r

B C A A1
p , P 1

2 C C C
 

 Besides 

 
− 

  ≠  =  −   

 − =


1

1

B

C
C

r

1

p
1

q 1
, p

2pP 1
q

A 1
1 , p

C 2

     (268) 

and the ruining probability of the 2C  coalition will be: 

= −2 1C C

r rP 1 P  

 

3.2 Cooperative and Partial Cooperative Cases 
 

3.2.1 Requisite Conditions of Coalization in the Maximum Probability Sense 

The forming of coalitions in cooperative decision-making, competitive-conflicting processes (or partially 

competitive-conflicting ones) is a problem that is still insufficiently studied. 

The realization of a ⊂C M  coalition (M  being the set of deciders) is largely dependent on the concept 

of characteristic function based in its turn on the concept of guaranteed optimum profit in the zero-sum two-

players game between C  and M \C . The M \C  coalition is artificially formed and the deciders belonging to it 

are supposed to the interests of the deciders in C . 

This paragraph will present the contribution of the author to the introduction of a more general concept 

of coalition than the one based on the concepts of characteristic function and compensation. 

The concept of cooperation which will be introduced will use two elements of reference coalition 

operator and the excess functional. 
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The coalition operator will associate with every [ ]∈ 0,1α  a set (written Tα ) of coalitions, each with 

the probability of achieving the decision process in one of the positions of the associated fixed target set, equal 

to α . 

The concept of excess will occur both at the moment of the coalition formation and at the moment of 

the distribution of the final gains. In this case, the excess will be connected with the generalization of the 

notions of imputation from the theory of cooperative games in Neumann’s sense [57] and of his immediate 

extensions. 

For the beginning, let us consider B , Γ – algebra of subsets in X  ( ≠ ∅X ) and { } ∈
= i i

H γ
ℕ

 a 

numerable family of submeasures on B . 

To each submeasure ∈i Hγ  we will associate its extension ( ) [ )→ ∞*

i : X 0,γ P  defined as follows: 

( ) ( ){ } ( )= ⊆ ∈ ∀ ∈*

i iE inf A E A , E Xγ γ B P    (269) 

It is known [20], [47], *

iγ  is a submeasure on Γ – algebra ( )XP , the ( )( )∆ ∩X , ,P  triplet is a Γ – 

ring on Γ – algebra ( )XP  and if HΩ  is the subset family of ( )XP  on form: 

 ( ) ( ){ }= ∈ < ∈*

K , iE X E ,i Kε γ εV P     (270) 

where ⊂K M , K – finite, > 0ε , then there is a single topology HΓ  on ( )XP  and thus ( )( )∆ ∩ HX , , ,ΓP  is 

a topological ring (written as ( )( )H XP ), HΩ  being a base of proximities of 0  for HΓ , ( )H B  will be the B  

topological subring of ( )( )H XP . 

It was shown in [20] that there is a finite submeasure γ  on B , so that ≡H γ  that is H  is absolutely 

continuous with respect to γ  and γ  is also absolutely continuous with respect to H . Noting ( ) ( )= Hγ B B , 

( )γ B  is a complete semimetric space, where the semimetric perimeter is: 

( ) ( )= ∆ ∀ ∈d E,F E F , E,Fγ B      (271) 

Let ⊂0B B  be the class of measurable γ  sets. It is known from [20] that 0B  is a Γ – algebra, the 

restriction of γ  in 0B  is a complete and positive measure and 0B  with the topology induced from ( )( )Xγ P  is 

a completely separable semimetric space with the same semimetric parameter „d ”, defined by the γ  measure 

on 0B . The equivalent relation „∼ ” will be introduced on 0B , so that: 

( )⇔ ∆ =E F E F 0γ∼       (272) 

The set of equivalence classes will be noted with ( )0 γB  and it makes up a Γ – complete and separable 

metric algebra related to the usual operations among the classes of equivalent sets. Let us consider ( )∈ 0E γB  

and ∈x, y E . As ( )=x yγ , abbreviating through ( )Eγ , ( )i Eγ , ∈i ℕ  we will understand ( )xγ  and ( )i xγ , 

∈i ℕ , ∀ ∈x E  respectively. 

Let ( )o γB
E  be the class of the Borellian sets from the ( )0 γB  metric space and Pɶ  a measure of 

probability defined on ( )o γB
E . Suppose ⊂A ℝ  and 

( ) ( ){ }= ∈ ∈ ∀ ∈A 0 i 1E E A, Hγ γ γA B     (273) 

Theorem 3.6 [20] 

We have the following properties: 

1. ( )∀ > ∃ ⊂ 00, Cεε γB , compact: 

( )( ) <0P \C
2

ε

ε
γBɶ       (274) 

2. ( )∀ ⊂ ∈
0

AA , γB
A Eℝ , the subsets 1A  and 2A  exist from ℝ : 

a) ⊆ ⊆1 2A A A  

b) ( ) ( ){ }∈ ∈ = ∀ ∈0 1 2 1P E E A \ A 0 , iγ γBɶ ℕ  
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We shall further on consider the problem of sequential decision described in (36), in which we shall 

modify according to the condition of the existence of several deciders. 

In this situation Γ – algebra B  will be Γ – algebra xB  generated by the trace of the topology of the 

space X  on X . 

Let ∈x X \ X  an intermediate position in the space of the positions. In this position, the elements *

iγ  of 

the H  family will be defined by means of the probability measure xP  as follows: 

( ) ( ){ }= ∈ ≥ ∀ ∈ ∈*

i x i i X
E P x E u x a , E ,i Mγ B     (275) 

If M  is finite, { }=M 1,2,...,m  we shall define *

iγ  for >i m  as follows: 

( ) ( ){ }
=

= ∈ ≥ ∀ ∈∑
m

*

i x j j X
j 1

1
E P x E u x a , E

m
γ B     (276) 

We shall note (for the sake of facility and when there is no risk if confusion) = xP P  and =*

i iγ γ , 

∈i M . 

Definition 3.1 

Suppose [ ]⊂A 0,1 ; the condition ( )∈A γ0B
A E  will be called a condition of the first order of coalition in 

the sense of maximum probability associated to A  and M  or in short, the condition of the first order 

associated to A  and M . 

On the basis of the theorem, it results that if for the set [ ]⊂A 0,1  the condition of the first order is 

fulfilled, there exists the Borelian sets 2A  from [ ]0,1  so that following properties should be verified: 

( ) ( ){ }
( ) ( ){ }{ }

⊆ ⊆

∈ ∈ ∀ ∈ =

= ∈ ∈ ≥ ∈ ∀ ∈ =

1 2

0 j 2 1

0 j j 2 1

1) A A A

2 ) P E E A \ A , j M

P E P x E u x a A \ A , j M 0

γ γ

γ

B

B

ɶ

ɶ

     (277) 

Let us analyze the following situations: 

a) ia  is the certain maximum profit of the decider ∈i M . 

In this case, if we note 
∞

=

=M i

i 1

X X∩ , for { }=A 1  and ≠∅MX  from theorem 3.1, it follows 

immediately that we shall have: 

( ){ } ( ) ( ){ }{ }∈ ⊂ = ∈ ∈ ≥ = ∀ ∈ ≠0 M 0 j jP E X E P E P x E u x a 1, j M 0γ γB Bɶ ɶ  (278) 

In other words, the end of the decision-making process is achieved with a non-null probability in one of 

the position in MX . 

b) Let us suppose that =i jX X , ∈i, j M , ≠i j  and suppose: 

( ){ }= ∈ ≥ ∈j jP x X u x a , j Mα     (279) 

In that case, for { }=A α , from theorem 4.1 it results that we shall have: 

( ){ } ( ){ }{ }∈ ⊂ ∈ = ⊂ ∈ ≥ = ≠0 j j jP E X E, j M P E X P x E u x a 0γ αBɶ ɶ  (280) 

That means that if the community of interests of the deciders runs very high (in the case under 

consideration they have the same target set) then the class of the Borelian sets containing the iX  set is on a 

non-null Pɶ  measure and consequently the deciders are interested in a strategic behavior achievement of the end 

of the decision-making process set. The concept of coalition witch will be introduced is based on this result. 

Definition 3.2 

Suppose ( ]∈ 0,1α . We say that ( )∈C MP  is a coalition of the order α  (and we note by α  the order 

of ( )C ) in the sense of maximum probability if the following conditions are fulfilled: 

a) the conditions of the first order for [ ]=A ,1α  and C  is verified; 
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b) ( ] ( ) ( ){ }{ }
∈

∈ ∈

   
= ∈ ∈ ≥ ≥ ≥ ∈ ≥   

   
∑ ∑i i i i

i B
i B i B

sup 0,1 P x X u x a max P x X u x aα α α , ∀ ⊆B C , B  

finite. 

The b) condition will be called the condition of the second order of coalition in the sense of maximum 

probability associated to A  and C  or in short, the condition of the second order associated to A  and C . 

Remark 3.10 

This definition express the fact that when condition 1 is fulfilled for A  and C , whoever the deciders of 

coalition C  might be, trough transfer of utility they increase their probability of obtaining together a profit at 

least as high as the sum of the associated ceiling values. 

Definition 3.3 

( )∈C MP  is a coalition formed in the sense of maximum probability if there is ( ]∈ 0,1β  so that: 

( )= ord Cβ       (281) 

Remark 3.11 

If B  and C  are coalitions formed in the sense of maximum probability and ⊆B C , then 

( ) ( )≤ord B ord C . The set of coalitions that can be formed in sense of maximum probability will be noted with 

W . We suppose ≠ ∅W . 

We shall associate to the measurable space ( )( ),W P W  the measure of probability P  with which we 

shall define the applications ( )→i : Mγ P ℝ  given by: 

( )

{ }
{ }

{ } { }
=

 ∈ ∈ ⊂ ∈ =

 ∈ ∈ ⊂ = ≠∅
 =  

∈ ∈ ⊂ > = 
 
 =∅

∑
mi

i 1

P C i C A ,i M , if M

P C i C A ,i 1,m ,if A

A
1

P C i C A ,i m ,if M 1,2,...,m
m

0 ,if A

γ

W

W

W

ℕ

  (282) 

Proposition 3.1 

iγ  is a submeasure, ∀ ∈i M . 

Remark 3.11 

It can be shown that iγ  is really a measure, ∈i M , but in order to organize ( )MP  as a topological ring 

[20] it is enough to show it is a submeasure. 

Proof 

For any ∈i M , the following properties must be shown: 

1) ( )∅ =i 0γ  

2) ( ) ( )≤ ∀ ⊆ ⊆i iA B , A,B M ,A Bγ γ  

3) ( ) ( ) ( )∪ ≤ + ∀ ⊆i i iA B A B , A,B Mγ γ γ  

Property 1) follows from definition of iγ . 

We demonstrate property 2). 

Suppose ⊆A,B M , ⊆A B . The following possibilities occur: 

i) there is no coalition in B , formed in the sense of maximum probability; if such is the case, nor are 

there in A  coalitions formed in the sense of maximum probability and consequently we shall have: 

( ) ( )= =i iA B 0γ γ  

ii) there is ⊂C B , ⊄C A , ( ) =ord C α . 

In this case we have: 

( ) ( ) ( )= < = ≤i i iA 0 C Bγ α γ γ  

iii) there are coalitions in A  formed in sense of maximum probability. If such is this case, they will 

also exist in B  and consequently according to remark 3.11 the following inequality takes place: 

( ) ( )≤i iA Bγ γ  
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Property 2) has been demonstrated. 

Property 3) results immediately if the equality: 

( )∪ = ∪A B A B\ A  

is taken into account. 

As ( )∩ =∅A B\ A , ( ) ( )( ) ( ) ( ) ( ) ( )∪ = ∪ = + ≤ +i i i i i iA B A B\ A A B\ A A Bγ γ γ γ γ γ . 

We have shown that iγ  is a submeasure whatever ∈i M  might be. 

 

3.2.2 The Excess of Coalitions Formed in the  Maximum Probability Sense 

We shall associate with the family { } ∈
=1 i i M

H γ  the submeasure γ , absolutely continuous in relation to 1H  

and finite. 

Thus ( )( )Mγ P  becomes a complete semimetric space with the semimetric 

( )( ) ( )( )× →d : M Mγ γP P ℝ , given by: 

( ) ( ) ( )( )= ∆ ∀ ∈d E,F E F , E,F Mγ γ P    (283) 

We assume below that the following hypothesis is verified if for any ∈i M , 

{ }∈ ∈ ⊂ =P C i C E \ F 0W , { }∈ ∈ ⊂ =P C i C F \ E 0W , then =E F  ( ( )( )∈E,F Mγ P ). 

Remark 3.12 

From the way in which submeasures iγ , ∈i M  were defined, it results that d  is a metric (as the 

following condition is verified: ( )( )∀ ∈E,F Mγ P , ( ) = ⇒ =d E,F 0 E F ). Thus ( )( )Mγ P  becomes a Γ – 

metrical and complete algebra. 

Definition 3.4 

The following operator is called coalition operator: 

[ ] ( )( )( )
( )( ) ( ){ }

{ }{ }∈

 ∈ = ≠
→ = 

= i M

C M ord C , 0
T : 0,1 M ,T

i , 0

γ α α
γ α

α

P

P P   (284) 

Definition 3.5 

The following functional is called excess associated with the coalition operator: 

[ ] ( )( )× →R : 0,1 Mγ Pɶ ℝ , given by: 

( ) ( )
∈

= − ∂∑ j

j C

R ,C z Cααɶ ɶ      (285) 

where ( )∂ C  represents the certain maximum gain of the C  coalition. 

{ }( )
 ∈ ≠ ∅

= 
∂ =∅

j

j

a , if i T
z

j , if T

α

α
α

α
     (286) 

ja
α  represents the ceiling associated to the decider ∈j C , if ≠∅Tα  and ∈C Tα  (we assume that ( ]∀ ∈ 0,1α  

and ∀ ∈C Tα , 
∈

< ∞∑ j

j C

zα ). 

{ }( )∂ j  represents the certain maximum profit of the decider ∈j C . 

Remark 3.13 

For fixed ( ) [ ] ( )( )∈ ×,C 0,1 Mα γ P , the value ( )R ,Cαɶ  will be called excess of order α  associated 

with T  and it represents a generalization of the notion of excess from the games theory. 

For ≠∅Tα  it can be noticed that ( ) ≥R ,C 0αɶ , ∀ ∈C Tα . 

With the help of the d  metric from the space ( )( )Mγ P  we shall construct Hausdorff’s metric: 

( )( )( ) ( )( )( )× →d : M M ,γ γP P P Pɶ ℝ  

( ) ( ) ( ){ } ( )( )( )= ∀ ∈d A,B max A,B , B,A , A,B Mρ ρ γP Pɶ    (287) 
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where 

( ) ( )
∈ ∈

=
x A y B

A,B su pinf d x, yρ      (288) 

Further on, we assume that for any ( ]∈ 0,1α , ≠∅Tα . 

Let > 0ε  be sufficiently small (but fixed) and Pɶ  a measure of probability defined on ( )( )Mγ PE . 

On the basis of theorem 3.6, the compact ( )( )⊂C Mε γ P  so that ( )( )( ) <P M \Cεγ εPɶ . 

Let us take: 

[ ] ( )
{ } ( ){ }
{ }{ }

[ ]

∈

×

 ∈ = ≠
→ = 

=

=

i M

0 ,1 C

C C ord C , 0
T : 0,1 C ,T

i , 0

R R
ε

εε ε
ε

ε

α α
α

α
P

ɶ ɶ

  (289) 

[ ] ( ) ( ) ( ) ( )
∈ ∈

→ = =1 1 1 1
i T i T

R ,R : 0,1 , R inf R ,i , R inf R ,i
ε

ε ε

α α
α α α αɶ ɶℝ   (290) 

[ ] ( ) ( ) ( ) ( )
∈ ∈

→ = =2 2 2 2
i T i T

R ,R : 0,1 , R sup R ,i , R sup R ,i
ε

ε ε

α α
α α α αɶ ɶℝ   (291) 

It should be noted that functionals 1R , 2R  associate with every [ ]∈ 0,1α  represent the inferior margin 

and the superior margin, respectively, of the α  order excess corresponding to T . 

A problem in connection with the actual realization of the coalitions in the sense of maximum 

probability is whether the decider taking part in the decision process know the interval within which the excess 

varies. 

With a view to solving this problem, we shall formulate two theorems referring to the reaching of the 

margins of the excess. 

Theorem 3.7 

The following results take place: 

1) If Rεɶ  is s.c.i., T ε  is closed and for any [ ]∈ 0,1α , T εα  is compact, then there is [ ]∈* 0,1α  so that 

( )
[ ]

( )
∈

=1 * 1
0 ,1

R min Rε ε

α
α α . 

2) If Rεɶ  is s.c.i., T ε  is s.c.s. and for any [ ]∈ 0,1α , T εα  is compact, then there is [ ]∈* 0,1α  so that 

( )
[ ]

( )
∈

=1 * 1
0 ,1

R min Rε ε

α
α α . 

Proof 

To avoid ambiguity, we shall specify each time the case in which the semicontinuity is the one for 

univocal applications of the one for multivocal ones. 

1) Let us take ( ) [ ]⊂n n
0,1α , =n 0

n
limα α . 

From the fact that Rεɶ  is s.c.i. (as a univocal application) and T εα  is compact for any [ ]∈ 0,1α , it 

results that there is ∈0ni Tα  so that: 

 ( ) ( ) ( )
∈∈

= =
n n

n n

0

n n n n n n
i Ti T

inf R ,i min R ,i R ,i
εε

ε ε ε

αα

α α αɶ ɶ ɶ  (292) 

As ( ) ( )
∈

=
n n

1 n n n
i T

R inf R ,i
ε

ε ε

α
α αɶ , the following equality results from (292): 

 ( ) ( )= 0

1 n n nR R ,iε εα αɶ  (293) 

If we consider the sequence ( )0n n
i , ∈0n ni T εα , as Cε  is compact, it results that the sequence ( )0n n

i  will 

contain a highly convergent subsequence ( )
kn k
i . 

Let us take =
k0 n

k
i limi . (For convenience, we shall use the sequence ( )n n

i  instead of the subsequence 

( )
kn k
i ). 

We shall have: 
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 = = ∈ ∀ ∈0 0

n 0 n 0 n n
n n
lim , limi i , i T , nεα α α ℕ  (294) 

As T ε  is closed, it results on the basis of definition 3.5 and of (289) that ∈0 0i T εα . 

Rεɶ  being s.c.i. (as a univocal application) we have: 

 ( ) ( ) ( ) ( )
∈

≥ ≥ =
0

0

n n 0 0 0 1 0
i Tn

limR ,i R ,i min R ,i R
ε

ε ε ε ε

α
α α α αɶ ɶ ɶ  (295) 

From (293) and (295) the following inequality results directly: 

( ) ( )≥1 n 1 0
n

limR Rε εα α  

which proves that 1R
ε  is s.c.i. (as a univocal application) and, consequently, there is [ ]∈* 0,1α  so that: 

 ( )
[ ]

( )
∈

=1 * 1
0 ,1

R min Rε ε

α
α α   (296) 

2) In order to demonstrate this property it is enough to show that 1R
ε  is s.c.i. (as a univocal application). 

Let ( ) [ ]⊂n n
0,1α , =n 0

n
limα α . 

Just as in the previous point, it can be shown that there is ∈0n ni T εα  so that: 

 ( ) ( ) ( )
∈

= =
n n

0

1 n n n n n
i T

R min R ,i R ,i
ε

ε ε ε

α
α α αɶ ɶ  (297) 

Considering the subsequence ( ) ( )⊂
kn n nk

α α  which has the properties [47]: 

 ( ) ( )= =
k k

0

1 n 1 n n 0
k kn

limR limR ,limi i
ε εα α  (298) 

T εα , [ ]∀ ∈ 0,1α  being closed and T ε  s.c.s. it results directly that ∈0 0i T εα . 

Consequently, the following equality occurs: 

 ( ) ( )≥0 0 1 0R ,i Rε εα αɶ  (299) 

Taking into account (294) and the fact that Rεɶ  is s.c.i. (as a univocal application), we obtain: 

 ( ) ( ) ( ) ( )= ≥ ≥
k k

0

1 n n n 0 0 1 0
kn

limR limR ,i R ,i R
ε ε ε εα α α αɶ ɶ ɶ  (300) 

so that ( )
[ ]

( )
∈

=2 * 2
0,1

R min Rε

α
α α . 

Corollary 3.7.1. 

If T ε , Rεɶ  are continuous, it can be show that 1R
ε  is also continuous. 

Demonstration is immediate. 

Indeed, Cε  being compact, in order to demonstrate the continuity of 1R
ε  it is sufficient to show that it is 

s.c.i. and s.c.s. 

The inferior semicontinuity of 1R
ε  results directly from theorem 3.7 (property 2) and the superior 

semicontinuity is immediate. 

Remark 3.14 

Generally, the conditions of inferior semicontinuity and of superior semicontinuity are not sufficient to 

ensure continuity in the case of multivocal applications. If X , Y  are metric spaces, Y  is also compact, then 

the multivocal application ( )→1T : X YP  is continuous only if it is s.c.i. and s.c.s. 

Theorem 3.8 

If for [ ]∈ 0,1α , T ε
α  is compact, then the following results take place: 

1) if T ε  is closed (as a multivocal application), Rεɶ  is s.c.s. (as a univocal application), then there is 

[ ]∈* 0,1α  so that ( )
[ ]

( )
∈

=*

2 2
0,1

R max Rε ε

α
α α ; 

2) if T ε  is continuous (as an multivocal application), Rεɶ  is continuous (as a univocal application), then 

there is [ ]∈* 0,1α  so that ( )
[ ]

( )
∈

=2 * 2
0 ,1

R min Rε ε

α
α α , ( )

[ ]
( )

∈
=*

2 2
0,1

R max Rε ε

α
α α . 

Proof 

Let us show that 2R
ε  is s.c.s. (as a univocal application). 
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Let us take ( ) [ ]⊂n n
0,1α , =n 0

n
limα α . 

Considering the fact that nT εα  is compact, ∀ ∈n ℕ  there is ∈0n ni T εα , ∈n ℕ  so that the following 

equalities take place: 

 ( ) ( ) ( )
∈∈

= =
n n

n n

0

2 n n n n n
i Ti T

R sup R ,i max R ,i
εε

ε ε ε

αα

α α αɶ ɶ  (301) 

Similarly to the previous theorem, from the compactness of Cε  and T ε  being closed (as a multivocal 

application) it results that there is ∈0 0i T εα , ( ) ( )=
k

0 0

n n nk
i i  so that: 

=
k

0

n 0
k
limi i  

(For the sake of convenience, we shall use the sequence ( )0n n
i  instead of the sequence ( )

k

0

n
k

i ). 

On the basis of the s.c.s. of R  we shall have: 

 ( ) ( ) ( ) ( )
∈

≤ ≤ =
n

n n 0 0 0 2 0
n i T

limR ,i R ,i max R ,i R
ε

ε ε ε ε

α
α α α αɶ ɶ ɶ  (302) 

From (301) and (302) it results directly that: 

( ) ( )≤2 n 2 0
n
limR Rε εα α  

which means that 2R
ε  is s.c.s. and consequently property 1 takes place. 

3) In order to demonstrate property 2, we can either proceed as in the previous theorem (property 2) or 

we can demonstrate the continuity of 2R
ε  directly (in fact we shall do so). 

Let us take ( ) [ ]⊂n n
0,1α , =n 0

n
limα α . 

From the fact that nT εα  is compact, ∀ ∈n ℕ  it results that there is ∈0n ni T εα  so that we shall have: 

 ( ) ( ) ( ) ( )
∈∈

= = =
n n

n n

0

2 n n n n n n n
i Ti T

R sup R ,i max R ,i R ,i
εε

ε ε ε ε

αα

α α α αɶ ɶ ɶ  (303) 

T ε  being continuous, it means that it will be s.c.s. and closed (as a multivocal application) and 

consequently there is ∈0i Tα , so that =0n 0
n
limi i . 

Passing to the limit in (303) we obtain: 

( ) ( ) ( ) ( ) ( )
∈

= = = =
0

0

2 n n n 0 0 0 2 0
n n i T

limR limR ,i R ,i max R ,i R
ε

ε ε ε ε ε

α
α α α α αɶ ɶ ɶ  

and so 2R
ε  is continuous, which demonstrates property 2. 

Remark 3.15 

Theorems 3.7 and 3.8 specify the conditions of existence of the excess margins. From a practical point 

of view, the deciders knowledge of the interval ( ) ( ) 
 

*

1 * 2R ,Rε εα α  is of an utmost importance as the possession 

of this information can influence them in their choice for the coalition in the sense of maximum probability. 

Theorem 3.9 

If for any [ ]∈ 0,1α , the set Tα  contains only one coalition, then the following properties take place: 

1) [ ]∀ ∈, 0,1α β , ≥ ≥2α β α , we have the inclusion ( )⊂ −T \T Tα β α β ; 

2) let us take ( )∈C MP ; if there is [ ]∈ 0,1α  so that =C Tα , T  being continuous in the topology 

generated by Hausdorff’s metric, and ( )( )Mγ P  is compact in this topology, then the following equalities take 

place: 

[ ]{ } [ ]{ }= ∈ ⊂ = ∈ ⊆inf 0,1 C T sup 0,1 T Cα β β δ δ  

Proof 

1) If = = 0α β , from the definition of T  it results that ( )= − =∅T \T Tα β β α . Suppose ≠, 0α β . 

Let us take ∈0i T \Tα β . It results then that ∈0i Tα , ∉0i Tβ  and then there is ∈
0i
P ℝ , 

( ){ }= ∈ ≥
0 0 0i i iP P x X u x a  so that the following inequalities are verified: 
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 ≥ <
0 0i iP ; Pα β   (304) 

Property 1) can be demonstrated trough reduction ad absurdum. 

Supposing that ( )∉ −0i T β α , the following inequalities takes place: 

 > −
0i
P β α   (305) 

From (304) and (305) and the inequalities ≥ ≥2α β α , we have: 

 ≥ + ≥ ≥ + > +
0i

3 2 Pα β α α α β α  (306) 

From the inequalities (306) it results that ≥
0i
Pβ , but that contradicts inequality >

0i
P β  from (306) 

hence the supposition is false. 

So, ∈0i Tβ  and then ( )∈ −0i T β α . 

2) Let us take [ ]{ }= ∈ ⊆1 inf 0,1 C Tα β β . That means that there is a sequence ( ) [ ]⊂n n
0,1β  so that 

=1 n
n
limα β , ⊆

n
C Tβ . 

From the compactness of ( )( )Mγ P , it result that there is a subsequence ( ) ( )⊂
kn n nk

β β  and 

[ ]∈0 0,1β  so that: 

=
k0 n

k
T limTβ β  

T  being continuous, it means that ( )=
k0 n

k
T T limβ β , and ⊆ 0C Tβ  so = ≥1 0α β α  and considering the 

way in which 1α  was defined it results directly that =1α α . Similarly, the following equality can be 

demonstrated: 

[ ]{ }= ∈ ⊆sup 0,1 T Cα δ δ  

 

3.2.3 The Case of Finite Coalitions 

A basic result of this subchapter is the fact that in the case when compensation is allowed and the coalitions are 

finite, the concept of coalition in the sense of maximum probability is more general than the concept of 

coalition in the sense of characteristic function. 

The other results refer to the necessary conditions of coalition in the sense of maximum probability, to 

the existence of non-ordinary coalitions as well as to certain properties of the mixed strategies of two deciders 

for which the problem of coalition is interpreted as a game problem. 

The existence of non-ordinary coalitions will be demonstrated under the conditions of the 

generalization of the notion of imputation from the theory of cooperative games in the Neumann sense and of 

his immediate extensions. 

 

3.2.3.1 The  Properties of  Coalitions Formed in the  Maximum Probability Sense 

From what has been shown so far ,obviously the underlying element in the realization of the coalition in the 

sense of maximum probability is represented by the fact that through the transfer of utilities, deciders increase 

their probability of realizing the end of the decisional process in one of the positions of the fixed target set. 

Let us take coalition { }= ⊂1 2 nC i ,i ,...,i M . 

Theorem 3.10 

If the following conditions are realized: 

1) ( ){ } ( )∈ ≥ ∈ =
j ji iP x X u x a 0,1 , j 1,n ; 

2) for any ⊂A,B C , the sets of the type: 

a) ( )
∈ ∈

 
= ∈ ≥ 
 

∑ ∑1 i i

i A i A

M x X u x a , ( )
∈ ∈

 
′ = ∈ ≥ 

 
∑ ∑1 i i

i B i B

M x X u x a ; 

b) ( )
∈ ∈

 
= ∈ ≥ 
 

∑ ∑2 i i

i A i A

M x X u x a , ( )
∈ ∈

 
′ = ∈ < 

 
∑ ∑2 i i

i B i B

M x X u x a , 
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( )
∈ ∪ ∈ ∪

 
′′ = ∈ ≥ 

 
∑ ∑2 i i

i A B i A B

M x X u x a  

c) ( )
∈ ∈

 
= ∈ < 
 

∑ ∑3 i i

i A i A

M x X u x a , ( )
∈ ∈

 
′ = ∈ ≥ 

 
∑ ∑3 i i

i B i B

M x X u x a , 

( )
∈ ∪ ∈ ∪

 
′′ = ∈ ≥ 

 
∑ ∑3 i i

i A B i A B

M x X u x a  

are independent in relation to P , then a necessary condition of coalition in the sense of maximum probability 

of the deciders in C  is the realization of the condition: 

( ){ }∈ ≥ ≥ =
j ji i

1
P x X u x a , j 1,n

2
 

Proof 

In order to demonstrate this theorem, we shall start from the idea that the realization of the coalition C  

can be done through the successive coalition of the deciders: a first decider from C  forms a coalition with 

another, then the newly formed coalition coalites with a third decider from C  and so on until coalition C  is 

formed. As ∈1 2i ,i C  we shall have: 

( ) ( ){ } ( ){ } ( ){ }{ }∈ + ≥ + ≥ ∈ ≥ ∈ ≥
1 2 1 2 1 1 2 2i i i i i i i iP x X u x u x a a max P x X u x a ,P x X u x a  

Let us take the sets: 

( ) ( ){ }= ∈ + ≥ +
1 2 1 2i i i iA x X u x u x a a  

( ){ } ( ){ }= ∈ ≥ ∩ ∈ ≥
1 1 2 21 i i i iA x X u x a x X u x a  

( ){ } ( ){ } ( ) ( ){ }= ∈ < ∩ ∈ > ∩ ∈ + ≥ +
1 1 2 2 1 2 1 22 i i i i i i i iA x X u x a x X u x a x X u x u x a a  

( ){ } ( ){ } ( ) ( ){ }= ∈ > ∩ ∈ < ∩ ∈ + ≥ +
1 1 2 2 1 2 1 23 i i i i i i i iA x X u x a x X u x a x X u x u x a a  

From the way in which the sets A , 1A , 2A , 3A  have been made, the following properties are verified: 

 = ∪ ∪ ∩ =∅ = ≠1 2 3 i jA A A A , A A ,i, j 1,3,i j  (307) 

We shall write: 

( ){ }= ∈ ≥
1 1 1i i iP P x X u x a  

( ){ }′ = ∈ >
1 1 1i i iP P x X u x a  

( ){ }= ∈ ≥
2 2 2i i iP P x X u x a  

( ){ }′ = ∈ >
2 2 2i i iP P x X u x a  

( ) ( ){ }= ∈ + ≥ +
1 2 1 21,2 i i i iP P x X u x u x a a  

From (307) and from conditions 2 from the enunciation of the theorem we have: 

( ) ( )′ ′= + − + −
1 2 1 2 2 11,2 i i i i 1,2 i i 1,2P P P 1 P P P 1 P P P  

Hence we obtain: 

( ) ( )
=

′ ′− − + −
1 2

1 2 2 1

i i

1,2

i i i i

P P
P

1 1 P P 1 P P
    (308) 

As the coalition is realized in the sense of maximum probability we shall have: 

{ }≥
1 21,2 i iP max P ,P  

From ≥
11,2 iP P , considering condition 1 from the enunciation of the theorem and the fact that ′≥

1 1i iP P , 

′≥
2 2i iP P , it results that: 
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( ) ( )
( ) ( ) ( ) ( )

( )

 ′ ′≥ − − − − ⇒ 

′ ′⇒ ≥ − − − − ≥ − − − − = − + − ⇒

⇒ − ≤ −

1 2 1 1 2 2 1

2 2 1 1 2 1 2 2 1 1 1 2 2

1 2 1

i i i i i i i

i i i i i i i i i i i i i

i i i

P P P 1 1 P P 1 P P

P 1 1 P P 1 P P 1 1 P P 1 P P 1 P 2P P P

1 P 2P 1 P

 (309) 

From (309) we obtain ≥
2i

1
P

2
 (the simplification was possible as ( )∈

1i
P 0,1 ). 

Similarly from condition ≥
21,2 iP P  it results that ≥

1i

1
P

2
. 

As ∈3i C , there is ( )∈1,2,3P 0,1  so that: 

 
( ) ( ) ( ){ }

( ){ }{ } { }

= ∈ + + ≥ + + ≥

≥ ∈ ≥ ≥

1 2 3 1 2 2

3 3 1 2 3

1,2,3 i i i i i i

1,2 i i i i i

P P x X u x u x u x a a a

max P , x X u x a max P ,P ,P
 (310) 

where: 

( ){ }= ∈ ≥
3 3 3i i iP P x X u x a  

Following the former procedure through which we have constructed the sets A , 1A , 2A , 3A , 

considering condition 1 from the enunciation of the theorem and (310), we shall be led (after a calculation 

similar to the previous one) to the inequalities: 

( )− ≤ − ⇒ ≥
3 2 3i i i 1,2

1
1 P 2P 1 P P

2
 

( )− ≤ − ⇒ ≥
3 31,2 i 1,2 i

1
1 P 2P 1 P P

2
 

Following this procedure, after −n 1  stages we shall reach the following conclusions: 

( )
{ } { }

−
∈ ∈

  
= ∈ ≥ ≥ 

  
∑ ∑

n n

1,2,...,n 1 i i

i C\ i i C\ i

1
P P x X u x a

2
 

( ){ }= ∈ ≥ ≥
n n ni i i

1
P P x X u x a

2
 

We have shown that: 

( )
∈ ∈

  
≥ = ∈ ≥ ≥ 

  
∑ ∑ji j j

j C j C

1 1
P , j 1,n, P x X u x a

2 2
   (311) 

Consequently, provided that the requirements 1 and 2 from the enunciation of the theorem are 

observed, deciders can form a coalition in the sense of maximum probability if ≥
ji

1
P

2
, =j 1,n . 

Remark 3.16 

From theorem 3.10 results that this concept of coalition advantages these deciders with relatively great 

chances of fulfillment of their proposed objectives. 

Theorem 3.11 

If the deciders of the { }=M 1,2,...,m  set form a coalition in the sense of maximum probability and the 

following conditions are verified: 

C1) ( ){ }∈ ≥ =i iP x X u x a 1          (312) 

C2) ( ){ } { }∈ ≥ ≤ ∀ ∈j jP x X u x a 1, j M \ i        (313) 

then coalition M  can also be formed in the sense of the characteristic function, compensation being allowed. 

Proof 

1) If ( ){ }∈ ≥ =j jP x X u x a 1 , for any ∈j M , then the application ( )→: Mν P ℝ , defined as: 
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( ) ∈

 ≠ ∅
= 
 =∅

∑ i

i S

a , S
S

0 , S

ν  

is a characteristic function. 

Indeed, from the way in which application ν  has been defined, the equality ( )∅ = 0ν  takes place. As 

M  is a coalition formed in the sense of maximum probability, on the basis of definition 3.2, the following 

equalities occur: 

( ) ( )= = ∀ ⊂1 1ord M 1,ord M 1, M M  

Let us take ⊂1 2M ,M M , ∩ =∅1 2M M . 

 ( ) ( ) ( )
∈ ∪ ∈ ∈

∪ = = + = +∑ ∑ ∑
1 2 1 2

1 2 i i j 1 2

i M M i M j M

M M a a a M Mν ν ν  (314) 

From the equality ( )∅ = 0ν  and (3.126) it results directly that ν  is a characteristic function. 

2) We assume that ( ){ }∈ ≥ <j jP x X u x a 1 , { }∀ ∈j M \ i . 

From ( ){ }= ∈ ≥ =i i iP P x X u x a 1 , it results directly that for any ⊂1M M  which contains i , we 

have: 

( )
∈ ∈

  
= ∈ ≥ = 

  
∑ ∑1

1 1

M i i

i M i M

P P x X u x a 1  

Let us take the application ( )→: Mν P ℝ , given by: 

( ) ( )
∈ ∈

       ∈ ∈ ≥ = ≠∅    
=       


=∅

∑ ∑i i

i S i S

min a ,sup V P x X u x V 1 , S
S

0 , S

ν
ℝ

  (315) 

From the definition of ν , the property ( )∅ = 0ν  results directly. 

Let us take ⊂1 2M ,M M , ∩ =∅1 2M M . 

If one of the 1M , 2M  subsets contains i  (we assume that 1M  had this property) then we have: 

( )

( ) ( ) ( )

∈ ∪ ∈ ∈

∈ ∈

∪ = = + ≥

     
≥ + ∈ ∈ ≥ = = +   

    

∑ ∑ ∑

∑ ∑

1 2 1 2

1 2

1 2 j j j

j M M j M j M

j j 1 2

j M j M

M M a a a

a sup V P x X u x V 1 M M

ν

ν νℝ

  (316) 

If none of the 1M  and 2M  sets contains i , considering the fact that the deciders from M  form a 

coalition in the sense of probability, we shall have to analyze the following situations: 

1) ∉ 1i M , ∉ 2i M , the ∪1 2M M  coalition will reach its target set with the probability: 

( )
∈ ∪ ∈ ∪

  
= ∈ ≥ = 
  

∑ ∑
1 2 1 2

i i

i M M i M M

P x X u x a 1  

In this case, we shall have: 

( ) ( )
∈

     
= = ∈ ∈ ≥ =   

    
∑

1

1 1 i

i M

M V sup V P x X u x V 1ν ℝ    (317) 

( ) ( )
∈

     
= = ∈ ∈ ≥ =   

    
∑

2

2 2 i

i M

M V sup V P x X u x V 1ν ℝ    (318) 

( ) ( ) ( )∪ = + ≥ + = +1 2 1 2 1 2 1 2M M a a V V M Mν ν ν     (319) 

2) ∉ 1i M , ∉ 2i M , the ∪1 2M M  coalition can reach its target set with the probability: 
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( )
∈ ∪ ∈ ∪

  
= ∈ ≥ < 
  

∑ ∑
1 2 1 2

i i

i M M i M M

P x X u x a 1  

In this case, we shall have: 

( ) =1 1M Vν  

( ) =2 2M Vν  

( ) ( ){ }{ }∪ = = ∈ ∈ ≥ =1 2 1,2 iM M V sup V P x X u x V 1ν ℝ    (320) 

From = +1,2 1 2V V V  the following equality results: 

( ) ( ) ( )∪ = +1 2 1 2M M M Mν ν ν     (321) 

Therefore, ν  is a characteristic function. 

The case where except decider i , there are also other deciders which fulfill condition C2), through 

equality (but not all), is treated similarly. 

Definition 3.6 

It is called imputation of order α  ( ( )∈ 0,1α ) any element ∈ nz ℝ  which verifies the condition: if 

∈C Tα , { }= 1 2 nC i ,i ,...,i  then >
k ki iz a , =k 1,n  (we have supposed that for any ( )∈ 0,1α  and ∈C Tα , 

=card C n  if C  is not ordinary or total). 

We shall call imputation of order 1, the imputation introduced in §1.2.3. 

Let Zα  be the set of imputations of order α , associated with the set of coalitions of order α , 

( )∈ 0,1α ; we assume the M  set of being finite. 

Application × →e :T Zα αα ℝ , given by: 

( )
( )

( )

= =

=


− ∈

= 
− + =


∑ ∑

∑

k k k

k

n n

i i i

k 1 k 1

n

i

k 1

a z , 0,1

e C,z

C z , 1

α

α α α

ν α
    (322) 

is called excess of order α  associated with Tα  (we have assumed { }= 1 2 nC i ,i ,...,i , ( )=
1 2 ni i iz z ,z ,...,z , 

( ){ }= ∈ ≥
k k ki i iP x X u x aα , =k 1,n ). 

Theorem 3.12. 

If there is ∈*z Zα  so, that the following condition is realized: 

 ( ) ( )
∈ ∈ ∈

= *

z Z C T C T
maxmine C,z mine C,z

α
α αα α

 (323) 

then there are no ordinary coalitions in T . 

Proof 

If { }= 1 2 kC ,C ,...,CC  is the set of coalitions in Tα  which realizes the condition: 

( ) ( )
∈

= =i
C T
mine C,z e C ,z , i 1,kα αα

 

then condition (323) can be written under the equivalent form [25]: 

 ( )
∈ ∈

∈

 
− = 

 
∑ *

i i
C T C

i C

maxmin z z 0
α C

 (324) 

We assume ≠ 1α . 

We first show that C  contains no ordinary coalitions. 

Indeed, if there were ∈j M  so that { }∈j C , then there would always be a ∈z Zα  imputation so that: 

 ( ) ( )> *e j,z e j,zα α  (325) 

Taking into account the way in which the eα  functional from (325) has been defined, we obtain: 

− > − ⇒ − >* *

j j j j j j j ja z a z z z 0α α α α  

and so condition (324) is not verified. 
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That means that in C  there are no ordinary coalitions. 

We show, by reduction ad absurdum, that there are no ordinary coalitions in T \α C  either. 

If there were ∈j Tα , ∉ ij C , =i 1,k , it would mean that for any ∈C C  (we assume { }= 1 2 nC i ,i ,...,i ), 

{ }∪ ∈C j C  and consequently: 

 { }( ) ( )∪ >* *e C j ,z e C,zα α   (326) 

Performing the calculation in (326), we shall have: 

 
= = = =

+ − − > −∑ ∑ ∑ ∑k k k k k k

n n n n
*

i j i i j j i i i

k 1 k 1 k 1 k 1

a a z z a zα α α α α α  (237) 

From (327), we obtain the inequality > *

j j ja zα α  and so > *

j ja z  which is impossible, *

jz , being an 

imputation of α  order. 

That means that decider j  belongs to a coalition and consequently there are no ordinary coalitions in 

Tα . 

We assume = 1α . 

We show by reduction ad absurdum, that in Tα  there are no ordinary coalitions. 

If { }∈j Tα , ∉ ij C , =i 1,k , then { }( ) ( )∪ >* *e C j ,z e C,zα α , ∀ ∈C C , { }= 1 2 nC i ,i ,...,i  and so: 

 { }( ) ( )
= =

− ∪ + + > +∑ ∑k k k

n n
* * *

i j i

k 1 k 1

C j z z C zν ν  (328) 

From (328) we have the inequality: 

{ }( ) ( ) { }( )∪ < +C j C jν ν ν  

and therefore, the property of superadditivity of ν  is not verified. So, in T \α C  there are no ordinary 

coalitions. 

If { }∈j Tα  existed, then ∈z Zα  would exist so that { }( ) { }( )− > −*

j jz j z jν ν , so >*

j jz z  and consequently 

condition (328) is not verified. 

That means that for = 1α  there are no ordinary coalitions in Tα , either. 

Corollary 3.12.1. 

If the eα  functional has saddle points on ×T Zαα , then there are no ordinary coalitions in Tα . 

 

3.2.3.2 Choosing the Probability of Coalization 

An important problem in forming coalitions in the sense of maximum probability is that of settling the ceiling 

for each decider. Even if the transfer of payments is allowed, for high ceilings chosen by decision makers, it is 

possible for the intersection of the target sets to be void and so, the coalition cannot be realized. 

We make the following hypothesis: if coalition { }=C 1,2,...,n  is realized in the sense of the maximum 

probability, its formation is realized through the successive coalition of the deciders (a first decider forms a 

coalition with another, then this coalition will form a new one with another decider and so on until coalition C  

is formed). Just as in the case of non-cooperative games, we shall interpret each intermediary coalition as a 

decider and, for this reason, we can interpret the problem of the formation of a partial coalition as a game 

problem with two deciders [ ] [ ]( )=J 0,a , 0,b ,F  with the pay function: 

( )
( )
( )

 ≤ ≤ ≤
= 

≤ ≤ ≤

L x, y ,0 x y 1
F x,y

M x,y ,0 y x 1
     (329) 

where strategy ( )x, y  represents the pairs of probabilities (of realization of the target sets chosen by two 

deciders) on the basis of which the formation of an intermediary coalition is attempted. 

We assume that ( ) ( )<L x,x M x,x , [ ]∀ ∈x 0,1 , L , M  are continuously increasing in respect with y , 

decreasing in respect with x , Lipschitzian of C  constant and that there exists [ ]→H : 0,1 ℝ  so that 

( ) ( )=H 0 F 0,0 , ( ) ( )=H 1 F 1,1 . [25] 
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Let ∈n ℕ  be sufficiently great and 
− = + 

 
n

1 2 n 1
0, , ,..., , 1
n n n

∆  partition of the segment [ ]0,1  built with 

the help of n . 

We also make the hypothesis that the strategies of the two deciders will be elements of n∆  (even if the 

two deciders choose a finite set of strategies whose elements do not belong to n∆ , an *n  can be chosen and *n
∆  

can be built accordingly, so that the sets of strategies of the two deciders should be included in *n
∆ ). 

Let us consider the discrete game where the utility function is  ( ) − − =  
 

i 1 j 1
F i, j F ,

n n
, = +i, j 1,n 1  

On the basis of the properties of L  and M , this game will have equilibrium poits in mixed strategies. 

Let ( )= 1 2 np p , p ,..., p , ( )= 1 2 nq q ,q ,...,q  be any point of equilibrium. 

Theorem 3.13 [16], [25] 

If ∈A ℝ  and [ ]∈1x 0,1 , the following inequality takes place ( ) ( )− ≥M x,x L x,x A  for any [ ]∈ 1x 0,x , 

and the inequalities form below are verified: 

≤ =
−

i 0

C 1
p ,i 3,4,...,i

Cn
A

n

 

where 
[ ] + <

= 
=

1 1

0

1

x ,n 1, if x 1
i

n ,if x 1
 ( [ ]a  represents the whole part of ∈a ℝ ). 

Theorem 3.14 [16], [25] 

If ∈A ℝ  and [ ]∈1y 0,1  and the inequality is verified: ( ) ( )− ≥M y,y L y,y A , [ ]∀ ∈ 1y 0,y , then 

<
−

j

C 1
q

Cn
A

n

, = 0j 3, j , ≤2
4C

q
An

, where 
[ ] + <

= 
=

1 1

0

1

n,y 1, if y 1
j

n , if y 1
. 

Remark 3.17 

Theorems 3.13 and 3.14 show in fact that for a sufficiently great n  in the mixed strategies of the two 

deciders, only the first two components and the components of indices higher than 0i  and 0j  respectively are 

significant. In other words, any optimum strategy of the first decider has − +0n i 2  significant components and 

any optimum strategy for the second decider has = +0n j 2  significant components or − +0n j 1  significant 

components. 

From a practical point of view, these significant components of the point of equilibrium ( )p,q  imply 

the use of either the very small simple strategies (which usually have high ceilings), or of the very great simple 

strategies (which usually have low ceilings). 

 Remark 3.18 

We have the following starting elements:  

● 1 2 na ,a , ,a… represent the ceilings associated with the decision makers that take part in the decisional 

process 

● 1 2 np , p , , p… refer to the probabilities of achieving these limits, namely  ( ){ }= ∈ ≥i i ip P x X :u x a  

According to the coalition in the context of maximum probability it is obvious that ≥i
1

p
2

 (i.e. this 

coalition criterion applies only in situations when all decision makers stand good chances of getting the 

proposed minimum gain).  

It is important to know which are the decision makers that decide, in the end, the coalition forming.  

Since this criterion allows the transfer of utility, information on probabilities 1 2 np , p , , p…  can be 

obtained from the condition that the weighted sums of the modules of deviations of gains for the decision-

makers in relation to the gain of each decision maker should be a fixed constant.  

Denoting this constant with k , the conditions are expressed algebraically as follows:  
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⋅ =A P K  where the matrices A,P and K are the following: 

 − − −
 

− − − 
=  
 
 − − − 

1 1 1 2 1 n

2 1 2 2 2 n

n 1 n 2 n n

a a a a a a

a a a a a a
A

a a a a a a

…

…

…………………………

…

 

 
 
 =
 
  
 

1

2

n

p

p
P

p

⋮
     ,      

 
 
 =
 
  
 

1

2

n

k

k
K

k

⋮
 

It is obvious that we have a matrix equation equivalent to the following linear algebraic system:  

 ⋅ + − + + − =


− + ⋅ + + − =


 − + − + + − =

1 1 2 2 1 n n

2 1 1 2 2 n n

n 1 1 n 2 2 n n n

0 p a a p a a p k

a a p 0 p a a p k

a a p a a p a a p k

…

…

⋮

…

    (330) 

For the sake of calculations easiness (and without affecting the final result) we suggest 

≥ ≥ ≥ ≥1 2 3 na a a a…   

Under the circumstances, the algebraic system from above becomes:  

( ) ( )
( ) ( )

( ) ( )

 ⋅ + − + + − =


− + ⋅ + + − =


 − + − + + ⋅ =

1 1 2 2 1 n n

1 2 1 2 2 n n

1 n 1 2 n 2 n

0 p a a p a a p k

a a p 0 p a a p k

a a p a a p 0 p k

…

…

⋮

…

                       (331) 

The solution of this system is the following:  

= =
−1 n

1 n

k
p p

a a
 ,  −= = = =2 3 n 1p p p 0⋯  

Therefore, only two decision makers are important in making the coalition, the probabilities of 

achieving their objectives are equal. Practically only the decision maker with the higher ceiling and the one 

with the lowest ceiling are involved in forming the coalition. In other words, only the decision maker with the 

best possible chances and the decision maker with the poorest chances are actually making the coalition, as a 

first step. During the next step, if the coalition is made by other successive coalitions, decision makers 1 and n 

shall be taken into account (they are already considered to be acting as a partial coalition) and they shall 

interact with one of the decision makers 2,3,…,n-1. This process continues until the entire coalition is 

completed. 

Remark 3.19 

If the matrix K takes the form 

 
 
 
 
  
 

1

2

n

k

k

k

⋮
, then the system (x) becomes: 

( ) ( )
( ) ( )

( ) ( )

 ⋅ + − + + − =


− + ⋅ + + − =


 − + − + + ⋅ =

1 1 2 2 1 n n 1

1 2 1 2 2 n n 2

1 n 1 2 n 2 n n

0 p a a p a a p k

a a p 0 p a a p k

a a p a a p 0 p k

…

…

⋮

…

    (332) 

This system is extremely difficult to solve.  

If =n 3 , the solution of the system: 
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( ) ( )
( ) ( )
( ) ( )

 ⋅ + − + − =


− + ⋅ + − =
 − + − + ⋅ =

1 1 2 2 1 3 3 1

1 2 1 2 2 3 3 2

1 3 1 2 3 2 3 3

0 p a a p a a p k

a a p 0 p a a p k

a a p a a p 0 p k

     (333) 

is the following: 

( ) ( ) ( )( )( )

( ) ( ) ( )( )( )

( ) ( ) ( )( )( )

 = − + − − − −



= − + − − − −



= − + − − − −

1 3 1 2 2 1 3 1 2 3 2 3

2 1 2 3 3 1 2 2 1 3 1 3

3 2 1 3 1 2 3 3 1 3 1 3

1
x k a a k a a k a a a a

1
x k a a k a a k a a a a

1
x k a a k a a k a a a a

∆

∆

∆

   (334) 

where  

( )( )( )= − − −1 2 1 3 2 32 a a a a a a∆     (335) 

In the particular case = =1 2 3k k k , if we use the notation k for their common value, then 

= =
−1 3

1 3

k
x x

a a
 , =2x 0      (336) 

Remark 3.20 

From behavioral point of view, if one of the decision makers knows that reaching the target set is done 

with a certain probability between the lowest and the highest probability of the participating decision makers, it 

is preferable to have a waiting policy. Practically he will wait until the decisional process will lead to a situation 

where his chance of reaching the target set is the best or the poorest. 

Remark 3.21 

The problem gets complicated if the ceilings 1 2 na ,a , ,a… are not fixed and therefore the target sets 

1 2 nX ,X , ,X… vary during the decisional process. 

 

3.2.3.3 The Entropic Solution of a Cooperative Game 

The cooperative games occupy a special place in the conflictual model theory, by their very content; 

determining the solution of a cooperative game is, in the last analysis, a distribution problem, whose solution 

must be optimal for all decision-makers. Several solution (Shapely value, negotiation set, stable sets a.s.c.) are 

remarked in the games theory, as the notion of optimum is linked to the use of an optimality criterion; each of 

the above mentioned solutions presents obvious drawbacks, connected either to the lack of generality of the 

obtained solution, or to the very conceptual framework of approaching the problem. 

We present further on a concept of solving cooperative games, which leads finally to a non-linear 

programming problem. 

Let us suppose that coalition C  is formed n  decision-makers: quantities iV  and ia  are attached to each 

decision-maker i , =i 1,n  and their significances are as follows: 

- iV – maximin utility, i.e. the certain gain value 

- ia – coalition utility. 

There are following possibilities, in this situation, if we denote by iX  the total gain of decision-maker 

i : 

- ≤i iX a , if the total gain 
=

≤∑
n

i

i 1

X a , =i 1,n  (fig.9) 

- >i iX a , if the total gain 
=

>∑
n

i

i 1

X a , =i 1,n . (fig.10) 

We consider the non-determination function – Watanabe’s inaccuracy: 

( ) ( ) ( ) ( ) ( )−  = − − − − + + − − ∈ 
1

F x, x ln x 1 x ln 1 x x 1 x 1 , 0,1
α α αα αα

α α
α

 (337) 
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Definition 3.6 

The solution of the cooperative game is the vector ( )1 2 nX ,X ,...,X  which minimizes the total non-

determination: 

( ) ( )
=

=∑
n

1 2 n i

i 1

F x ,x ,...,x , F x ,α αɶ      (338) 

where 1 2 nx ,x ,...,x  are built according to the procedure indicated in [47]: 

−
= =

−
i i

i

i i

X V
x , i 1,n

a V
     (339) 

Remark 3.22 

The significance of the above introduced solution is connected to the fact that, as the decision-makers 

make up a coalition with a certain organization degree W , it is rational to distribute to each decision-maker a 

gain such that the deviations from the distributed gains and the theoretical ones give a minimal total inaccuracy, 

a fact which can be achieved with the help of function Fɶ . 

On the other hand, as we shall see, function Fɶ  can be well approximated through function: 

( )
=

+ −
= +∑

n
*

1 2 n i

i 1

1 3n 3 n
F x ,x ,...,x , H

α α
α

α α
   (340) 

where iH  is the gain non-determination for the player i , =i 1,n . 

Proposition 3.2 

a) The approximate solution of the cooperative game, in the case 
=

≤∑
n

i

i 1

X a , is given by: 

( )= − + =0

i i i i iX x a V V , i 1,n  

where ( )0 0 0

1 2 nx ,x ,...,x  is the solution of the problem: 

 

( )

=


=


 ≥ =

∑

*

1 2 n

n

i i

i 1

i

minF x ,x ,...,x ,

C x Y

x 0, i 1,n

α

  (341) 

b) The approximate solution of the cooperative game, in the case 
=

>∑
n

i

i 1

X a , is given by: 

−
= + =i i

i i0

i

a V
X V ,i 1,n

x
      (342) 

where ( )0 0 0

1 2 nx ,x ,...,x  is the solution of the problem: 

 

( )

=


=


 > =

∑

*

1 2 n

n
i

i 1 i

i

minF x ,x ,...,x ,

C
Y

x

x 0, i 1,n

α

  (343) 

We denoted by = −i i iC a V , 
=

= −∑
n

i

i 1

Y X V . 

iV iX ia
 

iV iXia
 

Figure 9   Figure 10 

Proof 

Case a) corresponds to the distribution in fig.9. 
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Denoting by ( )−
= ⇒ − = −

−
i i

i i i i i i

i i

X V
x x a V X V

a V
 as 

= =

− = ⇒ = −∑ ∑
n n

i i i i i i

i 1 i 1

a V C C x X V  and as 

= =

− = ⇒ =∑ ∑
n n

i i i

i 1 i 1

X V Y C x Y , the constraints of problem (341) result immediately. 

Case b) corresponds to the distribution in Fig.10. 

Denoting 
=

− −
= ⇒ − = ⇒ =

− ∑
n

i i i i i
i i i

i 1i i i i

a V a V C
x X V Y

X V x x
, the constraints of problem (2), result 

immediately. 

Remark 3.23 

Case a) corresponds to the situation when the decision-makers of the coalition obtain smaller gains than 

the proposed ones, and case b) corresponds to the situation when the decision-makers obtain higher gains than 

the proposed ones. These two situation are unique and they result by comparing quantities X  and 
=
∑
n

i

i 1

a . 

Both cases lead to a non-linear programming problem, which easily to solve in comparison with the 

above mentioned difficulties, associated to the solution of a cooperative game. 

Let us prove the following proposition, before proving that *F  is a good approximation of Fɶ . 

Proposition 3.3 

( ) ( ) ( )− −− ∂ −
= − −

∂
H 1 H 11 1

F x, e e
α αα α

α
α α α

 

H  being the entropy in Renyi’s sense: 

( )
( )

( ) ( )

  + − ≠  −= 
− − − − =

1
ln x 1 x , 1

1H x,

xln x 1 x ln 1 x , 1

αα α
αα

α
    (344) 

Proof 

( )
( ) ( ) ( )

( )

( ) ( )
( )

 + − − ′ = + − + =   −− + −  

 − −
= + 

− + −  

2

x ln x 1 x ln 1 x1 1
H ln x 1 x

11 x 1 x

x ln 1 x ln 1 x1
H

1 x 1 x

αα
αα

α αα

αα

αα

α

 

( ) ( ) ( ) ( ) ( )

( ) ( )

− − −

− −

− −′= + − − − =

− ∂ −
= − −

∂

H 1 H 1 H 1

H 1 H 1

1 1
F x, e He H 1 e

1 1
e e

α α α
α

α α

α α
α α

α α
α α

α α α

   (345) 

quod erat demonstrandum. 

We shall denote now by iH  the gain entropy of decision-maker i  (it is obvious that iH  shall be 

Rênyi’s entropy). 

( ) ( ) ( ) ( )− −

= = = =

− ∂ −
= = − −

∂∑ ∑ ∑ ∑i i

n n n n
H 1 H 1

1 2 n i

i 1 i 1 i 1 i 1

1 1
F x ,x ,...,x , F x , e e

α αα α
α α

α α α
ɶ  (346) 

(after an immediate calculation). 

Remark 3.24 

We shall consider further down <
1

2
α , from the considerations exposed in [48], and we shall neglect 

the products between overunitary powers of α  and iH , as well as the overunitary powers of iH , =i 1,n . We 

shall have then: 
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( )−

= = =

+ + +
=

+ + +
∑ ∑ ∑

i

i

i

2

i i
Hn n n

H 1

H 2 2
i 1 i 1 i 1 i i

H H
1 ...

e 1! 2!e
H He

1 ...
1! 2!

α
α α α

    (347) 

According to remark 3.24, relation (347) can be approximated through: 

( )
( )

=

− = =

= =

=

+

+

+ + −
≈

+

∑

∑ ∑
∑ ∑

∑
i

n
i

i 1 i

n n

i in n
H 1 i 1 i 1

n
i 1 i 1

i

i 1

1 H

1 H

n H n 1 H

e

1 H

α

α

α

α

    (348) 

We take into account (348) and the remark 3.24 for determining 
( )−

=

∂
∂ ∑ i

n
H 1

i 1

e
α

α
. 

Finally, we obtain: 

( )
( ) ( )

= = =− = =

=

= =

′   
− − −+ + −    ∂ ∂    ≈ =

∂ ∂ + +

∑ ∑ ∑∑ ∑
∑

∑ ∑
i

2
n n nn n

i i ii in
i 1 i 1 i 1H 1 i 1 i 1

n n
i 1

i i

i 1 i 1

1 H H Hn H n 1 H

e

1 H 1 2 H

α α

αα

α α α α
 

( )*

1 2 nF x ,x ,...,x ,α  can be, at last, determined, by neglecting all terms wherein there appear products 

between the powers of α  and the subunitary quantities 
=
∑
n

i

i 1

H , 
=

′ 
 
 
∑
n

i

i 1

H
α

 (excepting those products which 

contain, besides the mentioned factors, also the powers of n ). We obtain finally, after an immediate 

calculation: 

( )
( )

=

+ −
= −

∑
n

i
* i 1

1 2 n

1 3n 3 H
n

F x ,x ,...,x ,

α α
α

α α
 

We can draw immediately the conclusion from the form of *F , that minimizing *F  is equivalent to 

minimizing the sum of the non-determinations of the gain of the n  players; in other words expressed, 

( )0 0 0

1 2 nx ,x ,...,x  is the solution of the given problem in the context of the constraints of cases a) or b), and so we 

have: 

( ) ( )
= =

=∑ ∑
n n

0

i i

i 1 i 1

H x , min H x ,α α      (349) 

Remark 3.25 

Taking into account that the organization degree in Watanabe’s sense is 
=

= −∑
n

i

i 1

W H H , H  being the 

non-determination of the aggregate formed by the n  decision-makers, in the case when we know the 

organization degrees of the system formed by n  gamblers, and the optimal distribution determining problem 

becomes: 

Case a)     Case b) 

( )

=

 +  


=


 ≥ =

∑

1 2 n

n

i i

i 1

i

min x ,x ,...,x , W

C x Y

x 0, i 1,n

αH

  

( )

=

 +  


=


 > =

∑

1 2 n

n
i

i 1 i

i

min x ,x ,...,x , W

C
Y

x

x 0, i 1,n

αH
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We are also led to two non-linear programming problems, whose numerical solving can be made with 

the help of known methods which, in their turn, can be transposed into an algorithm; this algorithm can be 

easily programmed by using the computer. 

One of the most difficult problems in connection with the use of this concept of distribution of 

individual gains is the specification of the α  parameter. From the calculation easiness point of view, the most 

convenient choice is = 1α , but the choice of this parameter must take into account the real framework of the 

problem under consideration. 

 

Application 

Three banking units from different countries cooperate in realizing a common target with the following 

weights: 0.25; 0.35; 0.40 of the whole investment. 

Initial calculations show the possibility that the three banking units should obtain a guaranteed profit of 

50 million monetary units, the individual contributions being of 10, 14, 16 million monetary units. 

Unfavorable and unexpected circumstances in the international situation have led to a total profit of 42 

million monetary units. How much will get each banking unit? 

Solution 

The data of the problem in the context of the given model are the following: 

= = =

= = =

−− −
= = =

1 2 3

1 2 3

31 2
1 2 3

V 10,V 14,V 16

a 12, a 18, a 20

X 16X 10 X 14
x , x , x

2 4 4

 

From = 1α , we are led to the following non-linear programming problem: 

 

( ) ( )( )
=

=

 
− + − − 

 


=


 ≥ =

∑

∑

3

i i i i

i 1

3

i i

i 1

i

min x ln x 1 x ln 1 x

C x B

x 0, i 1,3

 (350) 

where: 

=

= − = = − = = − =

= − =∑

1 1 1 2 2 2 3 3 3

3

i

i 1

C a V 2,C a V 4,C a V 4

B 42 V 2
 

Problem (350) becomes: 

( ) ( )( )
=

 
− + − − 

 
+ + =


≥

∑
3

i i i i

i 1

1 2 3

1 2 3

min x ln x 1 x ln 1 x

x 2x 2x 1

x ,x ,x 0

    (351) 

The solution of the problem (351) is: 

= = =1 2 3x 0,12 ; x x 0,22  

Accordingly, the profits of each banking unit will be: 

= = =1 2 3x 10,14 ; x 14,88 ; x 16 ,88  

It should be noted that if it had been admitted as cooperation conditions the repartition of profits, above 

the investments made, proportional to the contribution of each banking unit, the solution of this problem would 

have been: 

= = =* * *

1 2 3x 10,5 ; x 14,7 ; x 16 ,8  

By comparison with this solution which favors considerably the first and the last banking unit, the 

solution ( )1 2 3x ,x ,x  favors the participation of the second banking unit. 

Let us also calculate the Shapley solution [77] ( )* * *

1 2 3X ,X ,X . 
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= + = + = +* * *

1 1 2 2 3 3X 10 X , X 14 X , X 16 X     (352) 

where: 

( ) ( ) ( ) { }( )
⊂
∈

− −
 = − = ∑i

T C
i T

i 1 ! n i !
X T T \ i , i 1,3

n!
ν ν  

where T  has the property: 

( ) ( )= ∩ ∀ ⊂1 1 1C C T , C Cν ν  

For: 

{ }( ) { }( ) { }( ) ( )

{ }( ) { }( ) { }( ) { }( )

= = = ∅ =

= = = − =

1 2 3 0

1 1
1,2 , 2,3 1, 1,3 , 1,2,3 2

3 3

ν ν ν ν

ν ν ν ν
 

we shall have: 

= = =* * *

1 2 3X 10,33 ; X 15 ; X 16,16  

It should be noticed that the differences between the three solutions are minor. 

 

3.3 The Analysis of Coalitions Stability 
The partial results regarding this problem have been presented in paragraph 3.2.3.2. 

With the help of fixed ceilings 1 2 na ,a , ,a…  one can immediately determine the probability of reaching 

this limits: ( ){ }= ∈ ≥i i ip P x X :u x a , as well as the target sets iX  of each decision maker: 

( ){ }= ∈ ≥i i iX x X : u x a  , =i 1,m .  

For each decision maker, a field of probability and entropy associated with achieving the target set is 

being built properly:   

( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( ) ( )( )

→ − = − + − −

→ − = − + − −

→ − = − + − −

1 1 1 1 1 1 1

2 2 2 2 2 2 2

m m m m m m m

1 p ,1 p ; H p ln p 1 p ln 1 p

2 p ,1 p ; H p ln p 1 p ln 1 p

m p ,1 p ; H p ln p 1 p ln 1 p

⋮
 

For the sake of calculations easiness, we assume that the target sets 1 2 mX ,X , ,X… form a partition of 

the target set X .  

In this case, 
=

=∑
m

i

i 1

p 1  and the degree of organization of the decision makers set 

{ }=M 1,2, ,m… becomes: 

( ) ( )
=

= − − −∑
m

i i

i 1

W 1 p ln 1 p  

Since ( )
=

−
= − −∑

m
i

i

i 1 i

1 p
W ln 1 p

p
, we shall apply further on the principle of equalization in which the  

efficiency function ir is defined by the following equality: 

( ) −
= =i

i i

i

1 s
r s , i 1,m

s
 

Obviously, ir  is monotonically increasing since >'ir 0 .  

Further on, the following systems will be solved:  
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( ) ( )
( ) ( )
( ) ( )

( ) ( )
( ) ( )
( ) ( )

( ) ( )
( ) ( )

 =  =
 =  

= =  =  
=   

+ = =   + + =   + + + =+ + + = 

1 1 2 2 1 1 2 2

1 1 2 2

1 1 3 31 1 2 2 1 1 3 3

1 1 3 3

1 2 1 1 4 4

1 2 3

1 2 m1 2 3 4

r s r s r s r s
r s r s

r s r sr s r s r s r s
, r s r s ,

s s 1 r s r s
s s s 1

s s s 1s s s s 1

…
⋮

…

 

The solutions of these systems and the efficiency function values are as follows: 

( ) ( )

 = = 
= = = 

 =
  =



*

1

*

1
* * *

1 1 2 1 1

*

2
*

3

1
s

1 3
s

1 1 22
,r s ln ; s ,r s 2ln

1 2 3 3
s

12
s

3

 

( )

 =

 =

=
 =


 =


*

1

*

2
*

1 1

*

3

*

4

1
s

4

1
s

34
,r s 3ln

1 4
s

4

1
s

4

    (353) 

( ) ( )

 =

 = −

= −


 =

*

1

*

*2

1 1

*

m

1
s

m

1
s n 1

,r s n 1 lnm
n

1
s

m

⋮

⋮

    (354) 

We have = −
1

ln 0,69
2

; = −
4

ln 0,81
9

; = −
27

ln 0,86
64

 ; = −
256

ln 0,87
625

 ; …  

; ( )
− −

−− −   − = = − = = −   
   

n 1 n 1

1

n n n

n 1 n 1 1
lim n 1 ln limln lnlim 1 lne 1

n n n
 

The natural number t which has the property: 
− − − −    =     

     

t 1 n 1
t 1 1 4 n 1

ln max ln ,ln , ln
t 2 9 n

…  is =t 2 . 

Obviously, the optimum number of decision makers in a coalition equals two. Therefore, this is a 

theoretical answer to the fact that in practice the number of decision makers in a coalition does not exceed 

three, in principle.  

Remark 3.26 

For >n 3 , the sequence ( )na n , in which the general term is 

−
− =  

 

n 1

n

n 1
a ln

n
, slowly converge to -1.  

Moreover, the previous result is consistent with the findings of the last part of paragraph 3.2.3.2. which 

states that the number of decision makers in a coalition is equal to two.  

Remark 3.27 

If the weighted Guiaşu entropies (presented in Chapter 1) had been taken into account instead of the 

unweighted entropies 1 2 4H ,H , H… , then the degree of organization would have been: 
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( ) ( )
= =

= − − − +∑ ∑
m m

i i i i

i 1 i 1

W 1 p ln 1 p p u  

In this case, one can apply the equalization principle with efficiency functions as follows: 

( ) ( )−
= − + =i

i i i i

i

s 1
r s ln 1 s u , i 1,m

s
 

In the event that =i iu s  (as is the case of informational energy), the systems admit the following 

solutions: 

( ) ( ) ( )
 = = 

⇒ = − + 
+ =  =



*

1
1 1 2 2 *

1 1

*1 2
2

1
s

r s r s 1 12
; r s ln

1 2 2s s 1
s

2

   (355) 

( ) ( )
( ) ( ) ( )

 =
 = 
 

= ⇒ = = − + 
 + + = 

=


*

1

1 1 2 2

* *

1 1 3 3 2 1 1

1 2 3
*

3

1
s

3r s r s
1 2 2

r s r s s ; r s 2ln
3 3 3

s s s 1
1

s
3

   (356) 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

 = = 
 =  = − 

⇒ = − − + 
 = 
 + + + = = 

*

11 1 2 2

1 1 3 3 *

*2

1 1

1 1 m m

*
1 2 m

m

1
sr s r s

m
r s r s 1

s m 1 1
; r s m 1 lnm

m m
r s r s

1s s s 1 s
m

⋮

⋮

⋮

…

  (357) 

t is the index searched, for which the maximum M is achieved:  

( ) − = − − − − 
 

1 1 1 2 1 m 1
M max ln ; 2ln ; ; m 1 ln

2 2 3 3 m n
…  

where the index t which verifies the property:  

( ) −
− − =
1 t 1

t 1 ln M
t t

 

equals 2 and therefore the optimum number of decision makers at a certain time during the decisional process  

is the same as in the previous case.  

Remark 3.28 

If the degree of organization of the system is defined with the help of Guiasu entropy then the 

efficiency function ir is defined as follows: 

( ) = i
i i

i

u
r s ln

s
 

In this case of the above system, the corresponding solutions are: 

( ) ( ) ( ) ( )

 = = + 
⇒ = + 

+ =  =
 +

* 1
1

1 1 2 2 1 2 *

1 1 1 2

* 21 2
2

1 2

u
s

r s r s u u
; r s ln u u

us s 1
s

u u

   (358) 
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( ) ( )
( ) ( ) ( ) ( )


= + + =

 
= ⇒ = = + + 

+ + + + = 
=

+ +

* 1
1

1 2 3
1 1 2 2

* *2
1 1 3 3 2 1 1 1 2 3

1 2 3

1 2 3
* 3
3

1 2 3

u
s

u u u
r s r s

u
r s r s s ; r s ln u u u

u u u
s s s 1

u
s

u u u

  (359) 

( ) ( )
( ) ( )

( ) ( )
( )

=

 = = + + +
=  =    + + +⇒ =   

  = 
 + + + = = + + +

∑

* 1
1

1 1 2 2
1 2 m

1 1 3 3 * 2 m
2 *

1 2 m 1 1 i

i 1

1 1 m m

* m1 2 m
m

1 2 m

u
s

r s r s u u u

r s r s u
s

u u u ; r s ln u

r s r s

us s s 1
s

u u u

⋮

…

…⋮

⋮

…

…

  (360) 

Obviously, in this case the determination of index t having the property:  

( ) ( ) ( ){ }
=

 
= + + + + + + 

 
∑
t

i 1 2 1 2 3 1 2 m

i 1

ln u max ln u u ,ln u u u , ,ln u u u… …  

depends on the efficiency values 1 2 mu ,u , ,u… .  

If ≥1 2 mu ,u , ,u 0… , then =t m , thus all deciders form a coalition. 

If there is a negative efficiency among 1 2 mu ,u , ,u… then the index t cannot be determined with certainty.  

For example, if = = = − = − =1 2 3 4 5u 3 ,u 2 ,u 1 ,u 2 ,u 3 ,then there are two indices, =t 2 , =t 5  for 

which we have the equalities:  

( ) ( )
( ) ( ) ( ) ( ){ }

+ = + + + + =

+ + + + + + + + + +

1 2 1 2 3 4 5

1 2 1 2 3 1 2 3 4 1 2 3 4 5

ln u u ln u u u u u

max ln u u ,ln u u u ,ln u u u u ,ln u u u u u
 

 

3.4 Bibliographical Notes and Comments 
The first paragraph of this chapter is an extension of some results from [49]. It emphasizes the principle of 

equalization, a less known optimality principle owed to Ghermeier [29]. A central result related to the use of 

this principle within the decision theory is that a decision maker can improve the decisional process without 

adopting a strategic risk behavior in case other decision makers adopted a cautious behavior (in maxmin or 

minmax sense).  

The coalition criterion is based on the notion of characteristic function and on the possibility of utility 

transfer. In fact, if one keeps the notations established by the probability theory, where the events are 

incompatible and independent the following equalities occur: 

( ) ( ) ( ) ( )∪ = + − ∩P A B P A P B P A B  

( ) ( ) ( ) ( ) ( )( ( ) ( )) ( )P A B C P A P B P C P P A B P B C P C A P A B C∪ ∪ = + + − ∩ + ∩ + ∩ + ∩ ∩  

The following equality results from calculations:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2P A B C P A B P A C P B C P A B P A C P B C 2P A B C∪ ∪ = ∪ + ∪ + ∪ + ∩ + ∩ + ∩ + ∩ ∩  

Therefore, it seems logical that decision makers be interested in making together an income that would 

increase individual gains. Obviously, this way of making a coalition does not exclude the problem of 

distributing the final gains (an open question in cooperative game theory).  

The degree of generality of this coalition concept has been studied and the notions of gain repartition 

and excess have been expanded (the term excess was first introduced in [47]).  

The problem of coalition stability analysis is less studied although it is of great importance from 

practical point of view. The explanation derives from the different ways of forming (the concept of coalitions). 
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The analysis of coalition stability has been approached from algebraic and entropic point of view. From 

algebraic point of view, the analysis was made based on a result from [25] related to the games on a square unit 

and it was extended to an algebraic solution of the problem so that the weighted sum of the gain deviation of 

the players should be constant. The entropic solution has an interesting approach; it is consistent with the 

algebraic solution, adding that in a coalition (with players organized according to the probability of reaching 

the target set) only the top three decision makers are important.  

The entropic solution of the distribution of the final gain is actually the solution of an optimization 

problem. The given example shows that it is slightly different from the solution formulated by Shapley. But 

generally, we cannot say that it is the best or the least good solution than other solutions of a cooperative game. 

There are different points of view regarding the coalition formation [47], [63], [77] and, consequently, there are 

different results and interpretations. 

The multitude of different theorizations of the way of making up coalitions and of distributing the gains 

among deciders can be accounted for through the different way in which the notion of cooperation is 

formulated. 

The Neumann – Morgenstern theory and its immediate extensions accept the notions of characteristic 

function and of imputation as notions of great importance. 

Generally, the transfer of utilities is accepted within these theories. A weak point of view of this theory 

is the following idea: if M  is the set of deciders, the formation of the coalition ⊂C M  is indispensably linked 

with the formation of the coalition M \C  and of the zero sum game between C  and M \C . 

The interpretation of the decisional process as a zero sum two players game has obvious calculation 

advantages but it doesn’t correspond altogether to real situations. Firstly, the formation of the C  coalition 

doesn’t necessarily baring about the formation of the M \C  coalition. Secondly, such a decisional model leads, 

theoretically, to low gains for deciders. 

According to Shapley [59], the formation of coalitions is based upon the notion of characteristic 

function and upon up the total coalition. Each decider is associated with a value, which represents his 

negotiating power (i.e. what he can claim from the gain of the total coalition). In comparison with the Neumann 

– Morgenstern theory, Shapley’s theory has the advantage of dealing with the determination of the concrete 

value of the profit of each decider. 

Caplow [11] associates with each decider taking part in the decisional process a certain weight (called 

the deciders force). According to Caplow’s theory, the coalition which is made up must dispose of a least half 

of the total force (in case that several coalitions comply with this requirement, the coalition with the least total 

force is made up). A weak point of view of this theory is represented by the total coalition (which according to 

this point of view shouldn’t be made up). 

The theory elaborated by Vickray [86] is based on the notions of characteristic function and imputation, 

the existence of a set of imputations is assumed which corresponds to an accepted standard of behavior and 

depending on this set of imputations a classification is made of all the sets of imputations on the basis of their 

stability. 

Aumann ad Maschler [3] were not concerned with the conditions in which a coalition i  is actually 

made up; starting from the fact that formation of the coalition is an accomplished fact, they elaborated a theory 

concerning the determination of the solution of the game and which is based on the notion of configuration. 

According to Aumann ad Mascher the target of the players in a coalition is not to obtain the maximum gain 

each (in this case there will never be an agreement), but to reach a certain stability which is also supposed to 

express the force of each player. 

Other concepts of coalition and distribution of the profits can be found in [44] and [63]. 

The concept of coalition introduced in this chapter belongs to the author and as it follows from the 

results of this chapter it is of a more general nature than the concept of coalition based on the notions of 

characteristic function and compensation. Besides, if the conditions of the corollary 3.121 are observed, there 

will be no ordinary coalitions and all coalitions made up in the sense of maximum probability will have equal 

excesses. 
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APPLICATIONS OF MINMAX EQUALITIES AND EQUILIBRIUM POINTS IN THE 

CONTEXT OF ANALIZING THE OPERATION SAFETY OF THE SYSTEM 

 

 

From probabilistic point of view, these quantitative characteristics are in fact statistical indicators associated 

with the random variable characterizing the evolution of the system until the first failure or between two 

consecutive failures.  

 

4.1 Optimal Minmax Analysis of Failure Moments for a System 
 

4.1.1 The Probability of Safety Operation within a period of Time and Around a Fixed Moment 

Let us consider T the time until the failure occurs (obviously T is a random variable and F is the corresponding 

distribution function).  

There are two ways of describing the reliability of a system in a given period of time [12], [90]:  

a) during period (0, t). 

The probability of system failure during this period is determined with the help of the distribution function F 

defined by the equality: 

= <F( t ) P(T t )        (361) 

If = −R 1 F is the function representing the reliability of the system, then the probability of functioning without 

failure at a point during period (0, t) is given by  

= ≥ = −R( t ) P(T t ) 1 F( t )                                                                    (362) 

b) during period >1 2 1( t ,t ), t 0 . 

The determination of the probability of failure and of operation without failure during period 1 2( t ,t ) , is 

possible using conditional probability formula: 

≤ < + + −
= =

≥
1 1 2 1 2 1

1 2

1 1

P( t T t t ) F ( t t ) F( t )
F( t ,t )

P(T t ) R( t )
     (363) 

           
> + +

= =
≥
1 2 1 2

1 2

1 1

P(T t t ) R( t t )
R( t ,t )

P( T t ) R( t )
     (364) 

The graphs of functions F and R are shown in figure 11: 

)(tF

)(tR

t

F, R

1

 
Figure 11 

 

Practically, it arises the problem of "local" behavior around a fixed time t. From analytical point of view, this 

behavior of the physical system analyzed can be described by using two indicators [12], [55]:  

a) the density of probability 
This indicator describes system behavior around the time t regardless of the behavior of the system until that 

time.  

The density of probability is denoted by f and it is defined as: 

 
→

≤ < +
=

t o

P( t T t t )
f ( t ) lim

t∆

∆
∆

     (365) 
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If we take into consideration the characteristics of the distribution function and the definition of the function 

derivative at a certain point, the equality (365) becomes: 

→

+ −
′= =

t 0

F( t t ) F( t )
f ( t ) lim F ( t )

t∆

∆
∆

    (363) 

It must be noted that the density of probability at time t was defined as the ratio between the probability of 

failure during period +( t ,t t )∆  and the length of this period, when →t 0∆ .  

By direct calculation we may immediately get the equality:  

= = −∫ ∫
t t

0 0

F( t ) f ( x )dx, R( t ) 1 f ( x )dx      (367) 

b) the failure rate 
This indicator describes the behavior around time t on condition of proper functioning until that time. 

The failure rate is denoted by z and it is defined as follows: 

→

+ −
=

t 0

F( t t ) F( t )
z( t ) lim

R( t ) t∆

∆
∆

     (368) 

Performing calculations in (368) we get: 

′ ′
= = =−

f ( t ) F ( t ) R ( t )
z( t )

R( t ) R( t ) R( t )
     (369) 

From the last equalities, we can deduce the relationship between the reliability of the system, the density of 

probability and the failure rate: 

− −∫ ∫= =
t t

0 0
z( x )dx z( x )dx

R( t ) e , f ( t ) z( t )e                              (370) 

By representing both probability density and the rate of failure in the same reference system, we obtain the 

graph from figure 12: 
zf ,
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Figure 12 

 

4.1.2 The Determination of Failure Moments of a System 

The aim of this chapter is to present a benchmark for operational safety analysis of a system. Actual knowledge 

of the moments of failure of a system is useful in order to present both theoretical results, which make the 

subject of the next chapter and an economic analysis related to the minimum consumption of electricity for 

some types of activities used in mining. 

Failure times are calculated differently depending on the diversity of situations that may be encountered under 

practical conditions. 

 

4.1.2.1 Minmax Optimal Determination of Failure Moment for the Global Statistic Model 

The results presented in this paragraph characterize the global statistical model (and thus the structure of the 

system is not taken into account, while the analysis is performed without taking into consideration the 

possibilities of renewing the system) and they turn out to be important for further analysis of the problem 

studied.  

It starts from some statistical considerations: from experimental data and through verifying some important 

laws of probability theory, we can determine both the average operation time m and the dispersion D  (or 

equivalently, the standard square deviationσ ).  

The efficiency function adopted is the average operation time (Ghermeier [29]) 
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 = +∫
x

0

f ( x, p( t )) p( t )dt m p( x )      (371) 

where: x – represents the failure moment of the system; 

 p  – represents the failure function of the system (characterized by the average value m and dispersion 

D). 

Remark 4.1 

Obviously, the following conditions are necessary:  
∞ ∞

= = = +∫ ∫ 2

0 0

p( 0 ) 1, p( t )dt m, 2 t p( t )dt m D     (372) 

Actually, the efficiency function introduced by Ghermeier derives from studying a system during operation, for 

which duplication is possible.  

Without restricting the generality of the problem discussed below and (mostly) without influencing the final 

result, the efficiency function can be practically used for any system for which we analyze the operational 

safety (Ghermeier [29]).  

Since we are interested in the maximum safe operation time of system analyzed, we are led to solving the 

following optimization problem [53]: 

(P) 
x p( t )

max min f ( x, p( t ))  

Remark 4.2 

The interpretation of this problem is as follows: because practically there is an infinite number of failure curves 

that have an average value m and the dispersion D (m and D are known quantities), we are interested in 

determining the maximum safe operation time of the system analyzed, regardless of system failure (that is to 

say, regardless of the operating conditions of the system). As we are interested in adopting decisions according 

to which the operating conditions of a system must be, if not optimal, at least continuously improved, it is 

extremely important to know the minimal extremity failure curve (fig.13). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13 

 

The solution of problem 
x p( t )

max min f ( x, p( t )) is found by using a method which is characteristic to the game 

theory [29], [53] and it yields the following results: 

1. The optimum safe operation time 0x  is the solution of the equation below: 

− − − + =4 2( x m ) 2Dx( m x ) D 0      (373) 

There are the following possibilities: 

 1.1 <2m D ; in this case, equation (373) does not have a real solution 

 1.2 < <2 7
D m D

4
; in this case, equation (373) has two real roots * *

1 2x ,x  placed in the following 

intervals: 
 

∈ −  
 

*

1

D
x m ,m ,

2

 
∈ +  
 

*

2

D
x m,m

2
 

 p 

(0,1) 

minimal extremity falling curve 

Real falling curve 

maximum safe 
operation time  

t 
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1.3 >2 7
m D

4
; in this case, equation (216) has two roots 

 
∈ −  
 

*

1

D
x 0, m ,

2

 
∈ + +  
 

*

2

D
x m ,m D

2
. 

 It is obvious that practically the optimum solution 0x  sought is the smallest of the roots corresponding 

to cases 1.2 and 1.3.  

 The actual determination of the optimal solution sought 0x  is possible by using a special technique for 

solving algebraic equations based on the so-called "contraction principle" of Banach. 

− + −
= −

2

0

D D( 4m 3D )
x m

2
     (374) 

2. the extremity failure curve 0p  has the following analytical representation: 

 
−

>
=
 ≤

0

t0
m

0

0 ,t x

p ( t )

e ,t x

      (375) 

Remark 4.3 

Practically the system operates safely up to the moment 0x  regardless of the failure curve.  

The worst system failure curve is 0p  and it is of exponential type. It can be observed that although exponential 

distributions are most commonly used in the theory of safety, they are often (as in the case of the analyzed 

system) the worst. Of course, there are situations where the use of exponential distributions is justified.  

Remark 4.4  

In terms of energy loss analysis, determining moment 0x  represents in fact the knowing when energy 

consumption reaches the maximum value.  

 

4.1.2.2 The Case When the System Consists of Identical Distributed Components  

The results obtained in the previous paragraph involves major changes in the situation when the analyzed 

system consists of a large number of identically distributed components (in probabilistic terms).  

Such situations occur when high-capacity belt conveyors are used in mining operations (as a specific design 

feature is the large number of rolls).  

Suppose that the system is composed of n  identically distributed components and for each component we have 

determined the average value m  and the dispersion D  ( p  denotes the failure function).  

Also, for each component we must determine maximum operating time 0x  (based on equality 373) and the 

maximum-type curve (given by equality 375).  

We shall use notations nm  and nD for the average value and the dispersion of the system. Calculating these 

quantities is extremely difficult (especially the calculation of nm ), but knowing them is essential in analyzing 

the operation safety and the power consumption of the system studied.  

Quantity nm is actually a solution to the following optimization problem [29]: 

(P1) 
∞

= ∫ n

n
p( t )

o

m min p ( t )dt      (376) 

and it is calculated using Pontreaghin maximum principle. 

Hence it results that: 
−   

 ≥  − + −    =
 −

− < − −

n 1n 2 2

2

n
2 2

m 2n m m
, if D

2 2n 1 m D 2n 1
m

( n 1) m
m D , if D

2n 1 2n 1

    (377) 

 It is obvious that in the case of ≥
−

2m
D

2n 1
, when n is high enough we get 
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−
 

≈  + 

n 1
2

n 2

m m
m e

2 m D
      (378) 

 Calculations to determine nD  are relatively immediate; it is essential that the determination of nm and 

nD  makes us aware of the safe operating time n

0x of the system, as well as of the extremity maxmin curve n

0p   

which characterizes the system: 

  
− + −

= −
2

n n n nn

0 n

D ( 4 m 3 D )D
x m

2
     (379) 

−
 ≤=
 >

n

t

m n
n

0
0

n

0

e ,t xp ( t )

0 ,t x

      (380) 

Remark 4.5  

Since the quantity 0x can be determined only if >2m D , it is clear that the optimum time n

0x can be determined 

only in the situation > −2m ( 2 n 1)D  and, therefore, the equality (379) occurs only if 
−

= −
−

2

n

( n 1)
m m D

2 n 1
. 

Remark 4.6  

Although a full analysis of energy consumption is made in the next paragraph, knowing the optimum moments 

ox  and n

0x leads to the following interpretations from practical point of view:  

- The moment 0x signifies the end of the period when the consumption of energy is acceptable. 

- The moment n

0x  refers to the maximum downtime (when the system practically does not work), fig.14. 

 

Extremity maxmin type failure curve of the  first component 

Extremity maxmin type failure curve of the system 

Failure moment of the first component 

System failure 
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Figure 14 

 

- The period of time in which there is an increase of electricity consumption up to the system failure  

−
− ≈n n

0 0

D ( n 1)
x x

2
       (381) 

The significance of the relationship (381) is extremely relevant: practically, the period of time in which the 

electricity consumption increases up to the failure of the system depends on two components: 

- a component nD that takes into account the operational safety of the system ( nD represents the system 

reliability as a specific element); 

- a component n  that takes into account the structure of the system.  

Remark 3.7 

If the components are not identically distributed, by solving a stochastic optimization problem [68] component 

failure functions can be approximated through a single failure function based on the following equality: 
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−

= ≠

=

= =

− −

=
−

∑ ∏
∏

∑∏

m
i 1

i jm
i 1 j ii

i nn
i 1

j

i 2 j i

1
( 1) X (1 a )

m
X m m

( a 1)

     (382) 

where:  

iX  is the random variable associated with the operation of the component =i, i 1,n ; 

im  is the average value of variable =iX , i 1,n ; 

m  is the average value of variable X ; 

The constants 1 2 na ,a ,...,a are determined from the condition = 2

i i i iM( X ,X ) a m , where i iM( X ,X )  represent 

the average of the product of random variables i iX ,X . 

Remark 4.8  

 We are led to this result if we take into consideration the following problem:  

 Let us determine the random variable �X  which has the following property: 

 � − ≤ − =
2 2

iM X X M X X , i 1,n      (383) 

(This represents a stochastic optimization problem which calls into requisition the method of least squares). 

The error ε  resulting from the approximation of X by �X is a minimal quadratic error, which is given by the 

following equality:  

�= −
2

2 M X Xε  

 The problem (1) leads us to a stochastic system which has the following solution:  

 �

( )( ) ( )
( )( ) ( )

( )( ) ( )
( )( ) ( )

=

1 1 1 2 1 n 1

2 1 2 2 2 n 2

n 1 n 2 n n n

1 2 n

X ,X X ,X X ,X X

X ,X X ,X X ,X X
1

X

X ,X X ,X X ,X X

X ,X X ,X X ,X 0

Γ

…

…

…………………………………

…

…

    (384) 

where: ( )= 1 2 nX ,X , ,XΓ Γ …  is the Gramm determinant of the system, given by the following equality:  

 

( )( ) ( )
( )( ) ( )

( )( ) ( )

=

1 1 1 2 1 n

2 1 2 2 2 n

n 1 n 2 n n

X ,X X ,X X ,X

X ,X X ,X X ,X

X ,X X ,X X ,X

Γ

⋯

⋯

………………………………

⋯

     (385) 

 The average quadratic error 2ε  can be computed as follows: 

 
( )
( )

= 1 2 n2

1 n

X ,X , ,X ,X

X ,X , ,X

Γ
ε

Γ

…

…
      (386) 

 Taking into consideration the fact that the random variables 1 2 nX ,X , ,X…  are independent, the 

following equalities will take place: 

( ) ( ) ( )⋅ = =i j i jM X X M X M X , i, j 1,n  

 Let us denote by 1 2 nm ,m , ,m… the average values of the random variables 1 2 nX ,X , ,X… and by m the 

average value of the random variable X .  

 We shall mark with 1 2 na ,a , ,a… the real numbers which have the following property:  

( ) = =2

i i i iM X X a m , i 1,n  

 The random variable �X  is determined based on the equality (384). First, we shall compute the 

following determinant:  
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( )( ) ( )

( )( ) ( )
( )( ) ( )
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∆

…
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…

      (387) 

Let us develop this determinant by the last column: 

( )( ) ( )

( )( ) ( )
( )( ) ( )

= −

2 1 2 2 2 n

1

n 1 n 2 n n

1 2 n
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X
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…
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            (388) 

 Let us perform calculations within relation (388); we shall also take into consideration the properties of 

determinants. After an immediate calculation we shall obtain:  

  ( )−

== ≠

 
= − − 

 
∑∏ ∏

n n
2 i 1

i i j

i 1i 1 j ii
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D m m ( 1) X 1 a
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    (389) 
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 Relations (389) and (390) yield the analytical expression of the random variable�X : 

  �

( ) ( )

( )

−

= ≠

=

= =

 
− − 

 =
−

∑ ∏
∏

∑∏
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i 1

i jn
i 1 j 1

i nn
i 1

j

i 1 j 1

1 X 1 a

X m m

a 1

     (391) 

 Knowing the analytical expression of the random variable�X , we can easily determine the average 

value �m : 
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  �
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 
− − 

 =
−

∑ ∏
∏

∑∏

n
i 1

jn
i 1 j 1

i nn
i 1

j

i 1 j 1

1 1 a

m m m

a 1

     (392) 

 

4.1.2.3 The Determination of Failure Moments by Taking into Account the Structure of the System and 

its Probability of Renewal  

The purpose of this paragraph is to present some very important results related to the study of the safety in the 

system functioning and hence the study of energy losses within the system.  

The results are important due to the new elements and to the extremely general conditions in which they have 

been obtained.  

 

4.1.2.3.1 The Determination of the Availability of a System and the Determination of the Unavailability 

Depending on Each Component of a System 

Practically, it starts from the consideration that the analyzed system S  is composed of n subsystems 

i 2 nS ,S ,...,S and that the failure of any of these subsystems leads to the failure of system S .  

Renewals and failures of subsystems =iS ,i 1,n are described by continuous random variables the probability 

densities of which can be defined by: 
−= ≥ = ≥ =i ia x .r xi i

1 i 2 if ( x ) a e , x 0; f ( x ) re , x 0, i 1,n      (393) 

In this case, failure and renewal rates are the quantities ia and =ir , i 1,n , respectively.  

Remark 4.9 

The assumption that the probability distributions characterizing both defects and renewals of subsystems 

=iS , i 1,n  are of exponential or approximately exponential type has its justification in practical reasons [12], 

[49].  

We shall note i

1m  and i

2m the average operation time and the renewal time, respectively, corresponding to 

subsystem iS  and 1 2m ,m the average operating time and renewal time corresponding to system S . 

If state 0 represents the state of good working conditions of system S  and if states 1,2,...,n represent  the states 

of failure of the system, corresponding to the n components, system S  can be associated with the following 

graph (figure 15). 
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Figure 15 

 

If we use 0P  to denote the availability of the system and iP  for its unavailability due to component i , the graph 

above is assigned a system of finite difference equations [12], [49]: 
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i 1

P( t t ) P ( t )a t P( t )(1 r t ), i 1,n

P ( t ) P( t ) 1

∆ ∆ ∆
    (394) 

This system of equations with finite difference leads to first-order differential equations: 

+ − = =i
i i i 0

d P
r P a P , i 1,n

dt
      (395) 

on the initial condition =0P ( 0 ) 1 . 

Applying Laplace transformation we get:  

=

= −∑
n

* *

i 0

i 1

1
P ( s ) P ( s )

s
      (396) 

and hence we have [49], [53], the Laplace transformation of the availability of the system 

=

=
 

+ 
+ 

∑

*

0
n

k

k 1 k

1
P ( s )

a
s 1

s r

                              (397) 

as well as the Laplace transformation of the unavailability of the system due to component i :  

=

+
= =

+  
+ 

+ 
∑

i

* *i i
i 0

n
i k

k 1 k

a

a s r
P ( s ) P ( s )

s r a
s 1

s r

                       (398) 

Given the analytical expression of Laplace transformations *

0P  and *

iP  (having rational forms), and the actual 

calculation 0P and iP  is done through very difficult computation [49], [53]: 
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−

=
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     (399) 

where 

= ⋅
+

i i 1

i i 1 2

a a m

B r m m
 

+
=

+ −
i i 1 2

i 1 i 2

B r ( m m )

A 1 m rm
 

 

4.1.2.3.2 The Determination of Failure Moments as Equilibrium Points 

Failure moments 1 2 nt ,t ,...,t  of system S due to components 1 2 nS ,S ,...,S  as equilibrium points system are in fact 

solutions to the equations below:  

= =iR( t ) P( t ), i 1,n              (400) 

or in an equivalent form: 

−−  
= − = 

 
 

i

i1

Bt
t

Am i

i

a
e 1 e , i 1,n

B
     (401) 

 Let us suppose that the following equalities take place: 

> > >
+ + +

n1 1 2 1 1

1 1 2 2 1 2 n 1 2

aa m a m m

r m m r m m r m m
…  
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We note 
−

i

t

m
e  which leads to solving the equation: 

 ( )= − D1
x 1 x

C
  (402) 

where   = i

i

B
C

a
  = i

1

i

B
D m

A
 

 Appling  the method of successive approximations, after a relatively easy calculation, we obtain the 

solution *x  of the equation (401) 

 =
+

*

i

i i

1
x

A
1

a m

  (403) 

 which leads to the solution of the equation (402): 

 
 

= + 
 

i
i 1

i 1

A
t m n 1

a m
ℓ   (404) 

 

 Practically, the failure moments of the system are obtained by solving of an equation type (401) for 

each subsystem. 

 If we take into consideration that ≈i i 1A B m  from (404) it results: 

 

 
  

≈ + +  
  

i 2
i 1

i 1

r m
t m n 1 1

a m
ℓ   (405) 

 

If is obvious that relation (405) shows the dependence between the failure moments, reliability elements 1 2m ,m  

of the analyzed system and reliability elements i ia ,r  of the subsystems. 

 

The approximate values, obtained by linearization method, 1 2 nt ,t ,...,t  are the following [49], [53]: 

+ −
= =

+ − +
1 1 i 2

i 2

i 1 1 i 2

m (1 m r m )
t , i 1,n

a m m r m 1
      (406) 
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Remark 4.10 

The determination of failure moments presents the following advantages from economic point of view: 

1) interventions to the system are performed taking into consideration only the costs and not the times and 

costs;  

2) periods of maximum energy loss coincide with moments of failure; the problem of analyzing the optimal 

energy consumption can be partially solved by analyzing the reliability of the system.  

 

4.2 Optimal Analysis of the Dependence between the Energy Consumption of Systems and their 

Operation Safety 
The paragraph approaches a very difficult problem with major technical-economic implications. 

The known results from literature, apparently numerous, did not solve completely the problem, and the 

multitude of partial results, reflecting usually different points of view, lead to different conclusions and 

interpretations. 

The starting reference point of this paragraph is represented by the dependency between the electrical energy 

consumption W and the system reliability function R [29], [49]. 

This dependency can be observed practically, following the data related both to the increase of the electrical 

energy consumption over time during electrical actions, and to the decrease of their reliability over time. 

The time moments that characterize the increase of the electrical energy consumption present (analytically 

speaking) two components: one of them dependant of the base indicators of the reliability m and D (average 

value and dispersion), while the other component is dependant of the system structure. The component 

dependant of the system structure admits different analytical expressions, depending of the type of the studied 

system. 

The efficiency function that will be adopted further was Ghermeier’s work and admits the following analytical 

expression: 

 

∞  
= + 

 
∫ ∫

x

0 0

F( R,W ) W( t )dt mW( x ) dR( x )     (407) 

with the following conditions: 

 
∞ ∞

= = +∫ ∫ 2

0 0

R( t )dt m, 2 tR( t )d m D      (408) 

 The efficiency function F represents the average energy consumption during system’s safe operation 

and is built based on the reliability function of the system, R, and on the specific consumption of electrical 

energy W. 

 

4.2.1 The Determination of Failure Moments as Equilibrium Points and the Determination of Maximum 

Levels of Energy Consumption 
The failure function ti of the system, based on the component Si, is determined by intersecting the reliability 

function R(t) of the system with the failure of the system due to the component Si (401). 

 
−−  

= − = 
 
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i1

i

Bm t
Ait

i

a
e 1 e , i 1,n

B
     (409) 

 The approximate solution of the equation is: 

 
  

= + + =  
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i 2
i 1

i 1

r m
t m ln 1 1 , i 1,n

a m
    (410) 

where ai, ri represent the failure rate, respectively the recurrence rate of the component Si, while m1, m2 

represent the average operating time, respectively the average recurrence time. 

The equilibrium point of the system te is determined on the intersection between the optimal curves Rmax and 

Wmin (the curve of maximum reliability and the curve of minimum consumption). 

 These extreme curves represent solutions of the following optimization problem: 

 (P) 
R W

max min F( R,W )      (411) 

 This problem can be solved by using Pontriaghin [29] maxim principle. 

 The analytical expressions of the extreme curves Rmax and Wmin are: 
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  (413) 

where k is a constant of integration.  

The following equality appears immediately:  

( ) ( )= =max 1 min 2R t 1, W t 1  

The graph of functions maxR and minW are presented in fig.17. 

 
Figure 17 

 

 The searched equilibrium point is the solution of the following equation: ( ) ( )=max minR t W t , besides 

 

−
−     −

= − − + −    
−      

1 2 1 1t t t t tt
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e 1 k e e k e e
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    (414) 

where  − −= = +z z

1 2t me ,t m z me ,z  represents the solution of the equation  − −+ + − =z z z

2

D
e 2ze 1 0

m
  

 The last equation can only be approximated. It is most convenient to use the linearization method, but 

the results are influenced by the point in which Mc Laurin series are developed.  

For example, if this development is carried out, then the equation is written as follows:  

( ) ( )− + − = −
2

2

D
1 z 2z 1 z 1

m
 

and has a positive solution =
D

z
m

. 

As a consequence we have:  
−= = −z

1t me m D  

= + =2 1t t mz m  

− = =2 1t t mz D  

The equilibrium point represents the solution of the equation:  
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( )+ − − =2kt t D m mD 0  

that is to say 
( )− ± − +

=
2

1 2

m D m D 4mDk
t ,t

2
        (415) 

It is obvious that the solution depends on the value of the integration constant k.  

For example, if =k 0 , hence it results that = −t m D and if =k 1 then: 

( )− + − + − + +
= =

2
m D m D 4mD m D m D

t
2 2

, therefore =t m  

If the linearization is made at a point different from 0, one can use the result [49] according to which the 

approximated solution of the equation − − −+ + + − =2 z z z

2

D
e 2ze 2ze 1 0

m
 is

 = − − 
 2

1 D
z ln 1

2 m
. 

 The approximate value of the equilibrium point is 
 

≈ + 
 

e

1
t m 1

e K
. 

 Correspondent to the found equilibrium point, it can be determined immediately both the value of the 

electrical energy consumption and the value of the reliability function in this point: 

 
−

−= ≈
2

D

2m D

e eR( t ) W( t ) e       (416) 

 For te ≈ m, it results immediately 

( ) ( )e eR t W t 0.55= ≈  

 Practically, when the electrical energy consumption becomes 
−

−2

D

2m De , it is obvious that this will be 

followed by the fast increase of the consumption and the fast decrease of the system reliability. 

 The moment te marks the time when one must intervene on the system (for increasing the technical 

performances, for example type BRP), or he is announced that he needs to intervene on the system in the 

immediate period (not higher than t2 – te). 

 We notice that the moments t0 and te are very close, practically 

 
− + −

− ≈
2

e 0

D D( 4m 3D )
t t

2
     (417) 

 Also, the real moment of system failure treal is found in the interval [t0,t2], and because  

− ≈
−

2

2 0

D
t t

2m( 2m D )
, it is obvious that the real analysis of the interventions that can be done on the system 

must take into consideration the points t0 or te (obviously it is preferred the point te because of its economic 

significance, and also because it allows an easier analytical expression). 

 An important problem related to the analysis of the optimal consumption of electrical energy is its 

effective calculation in the intervals [0,t2] and [0,te] corresponding to the optimal curve Wmin. 

 The knowledge of these values is essential economically, because it allows that the interventions on the 

system (for increasing its performances) to be done not regarding the time and cost, but only the cost (because 

the time moments of interventions are known). 

 After some difficult calculations it results: 
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where z is the solution of the equation 

 − −+ + − =2z z

2

D
e 2 z e 1 0

m
      (418) 

therefore,  = = −
2

1 D
z ln ,a 1

ma
       

It is obvious that we are interested in the ratio  = 1

2

r
R

r
, where  

= =∫ ∫
e 2t t

1 min 2 min

o 0

r W ( t )dt , r W ( t )dt .     (419) 

From calculations, it results  
− −

= 
 

2
z1 e

R
z

 and it is obvious that the graphic of R depends on m and D (the 

graphical representation of the function 
− −

= 
 

2
z1 e

R( z )
z

is shown in figure 18). 
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Figure 18 

 

 For =0

1
z

a
, it results 

−
≈

2

2

2m D
R

2m
, so ≈ −

2

D
R 1

2m
. 

 

 Practically, the moment t0, when the intervention on the system is recommended, is characterized by 

the fact that the ratio between the consumption done until that moment and the consumption that could be done 

until the system failure moment t2 is about  −
2

D
1

2m
. 

 In case of small dispersion (situation that is eventually not found during electrical actions in mining 

exploitations) we have R ≈ 1, so the intervention moment is quite equal to the failure moment of the system. 

 

4.2.2 The Determination of the Influence of Reducing Electric Energy Consumption and Intervention 

Costs upon the System 
The reduction of electrical energy consumption and the calculation of costs of intervention on the system are 

analyzed regarding the equilibrium points (of the components and the system) and also regarding the operation 

safety increase acquired after interventions. 

 Practically, there are the following situations: 

a) Interventions on the system components are done in the equilibrium point of the system (basically in 

the situation when the equilibrium moments of the components are about the same as the equilibrium 

moments of the system). 

 The reduction of the electrical energy consumption because of the operation safety increased in 

moment te (the moment of intervention on the system) with Cs is represented in figure 19 by the shaded area 

(the area of the curved trapezium ECt’te): 
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 The reduction of the electrical energy consumption is noted with Sr and may be determined based on 

the following equation: 

 ( )
′

′= −∫
et

r min

t

S W ( t ) t dt       (420) 

where t′  is the solution of the equation: 

 = +max min e sR ( t ) W ( t ) C       (421) 

After a short calculation it results: 

 
 

′= +  
+ 

1

min e s

1
t t mln

W ( t ) C
     (422) 

therefore, 

 = − −
−

s
r s2

C
S ( 2 2 a C )S

( a 1)
     (423) 

where S represents the area of the triangle OteE. 

 By the same token, the reduction coefficient of electrical energy consumption - R is: 

 = = − −
−

sr
s2

CS
R ( 2 2 a C )

S ( a 1)
     (424) 

meaning that ≈ −s sR 4C (1 C ) . 

 The relation ≈ −s sR 4C (1 C )  represents a fundamental result of this paragraph, as it expresses precisely 

the dependency between the reduction of electrical energy consumption and the increase of system operation 

safety. 

 The graphic of the function ≈ −s s sR( C ) 4C (1 C )  on the interval [0, ½] (only here as the operation 

safety increase is done starting with the value Rmax(te) ≈ 0.55) is shown in figure 20. 
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 An important problem, related to the dependency between the reduction of the electrical energy 

consumption and the increase of system operation safety in the analyzed system, is the determination of the 

consumption reduction when the system’s safety increase is one percent. 

 From a short calculation, we get: 

 ( ) ( ) ( )s s sR C 0.01 R C 0.04 1 2C+ − = −      (425) 

and, consequently it results: 

 ( )sR(0.44 0.01) R(0.44 ) 0.004 R C 0.01+ − = < + − ( )sR C 0.04 R(0 0.01) R(0 )< = + −  (426) 

from which we can conclude that operation’s safety increase by one percent ensures a linear variation of the 

consumption within 0,4% and 4%. 

 This variation of the reduction of energy consumption is obviously influenced by the increase of 

reliability level Cs and we observe that the reduction is higher as the one percent variation of operation safety 

starts from a lower value of Cs. 

 In conclusion, the results obtained are the following: 

- the increase of operation safety: 
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- the reduction of electrical energy consumption: 

 = −s sR 4C (1 C )      (428) 

- the cost of intervention on moment te: 

 

−

=+
=

∑
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i

r
n
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e
m m

C( t )
m n

     (429) 

 

b) Interventions on system components are done up to the equilibrium moment of the system (in case the 

equilibrium points of the components are spread around the equilibrium moment of the system). 

 In this case, the interventions (and the possibilities of grouping them) are analyzed regarding the costs. 

 The increase of operation safety admits the following expression: 

=
−

2

0
s 0

0

n
C ( n

3n( n 1)
 represents the number of components object of interventions) 

 The reduction of electrical energy consumption has the following form: 

−
≈ 0 0

s 2

4n ( 3n n )
R( C )

9n
      (430) 

c) Interventions on the n-n0 components are done above the equilibrium point of the system. 

 In this case we recommend a global intervention on a moment close to the failure moment of the 

system t2. 

 The purpose of studying this situation is to analyze only the interventions done on moments above the 

equilibrium point of the system. Basically, the intervention moments may be chosen randomly; the single 

requisite regarding these interventions that decision makers must comply with is not to get over the failure 

moment of the system t2. 

d) Calculation of the reduction of electrical energy consumption when the intervention is done in a 

random moment. 

 If Cs represents the safety gain obtained through interventions in equilibrium moments (of the 

components) below the system equilibrium point, we have: 
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  (431) 
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Since the ratio R(t) has constant denominator (as the system will not fail until the moment mi), the analysis of 

the reduction of electrical energy consumption, after the intervention in the moment t, can be done regarding 

only the numerator of R(t). 

Considering that a ≈ 0.55, while Cs varies between 0 and 0.45, there can be established the dependency between 

the reduction of electrical energy consumption and the increase of system operation safety, but also important 

conclusions particularizing the moment t. 

If we note 

( )( )= − + −i 1 iC m m 2m t m ,  

we shall have: 

 ( )  
= − + − − − 

s
1

mC1
R t ( t m ) 3m t t

C a 1
     (432) 

 The graphic of the function R is shown in figure 21. 

We notice that the maximum reduction Rmax is realized on moment = + −
−

s 1
0

mC t
t 2m

2( a 1) 2
 and has the following 

value: 
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 We can mark out immediately some important consequences: 

- If the moment t0 is done with a maximum increase of operation safety (Cs = 0.45), then, after a short 

calculation we get 
−

= ⋅ 0
max

n n1
R

4 n
, so the maximum reduction is 25%. The maximum increase of operation 

safety is obtained obviously when the intervention is done in moment t0 on all the components that were not 

object of intervention until the moment te (n0 represents the number of the components object of intervention 

until the equilibrium moment te). 

- The case Cs = 0.45 refers actually to a specific situation (when there were few interventions until the moment 

te, and no interventions in the moment te). 

 If we consider that the interventions until the equilibrium moment may lead to an increase of operation 

safety with maximum 33%, the intervention in the moment t0 leads to a reduction of the consumption 
2

0
max 2

0.052m n n
R

0.4 m n

− =  
 

, and consequently, the maximum reduction is 13%. 

 The explanation of this result is that the previous successive interventions already lead to an increase of 

system operation safety and, as a consequence, to a reduction of electrical energy consumption. 
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 - For a = 0.55 and Cs between 0 and 0.33, after a short calculation results that te is between 1.2m and 

1.3m, so very close to t2. As a result, it is recommended that the intervention to be done on all system 

components in a moment quite close to its failure moment. 

 Depending on the number of components already object of intervention and on the previous gain in 

operation safety, the intervention on all components in the moment t0 (close to t2) varies between 
− 0n n

13 %
n

 

and 
− 0n n

25 %
n

. 

e) Calculation of the system intervention cost 

 Since it is recommended the intervention in the moment t0 on all components that were not object of 

intervention until the system equilibrium moment, the cost of the intervention may be calculated as average of 

all corresponding costs for the n-n0 components. 

 The cost of intervention in the moment t0 may be calculated as a cost of renewal type BRP. 

 The cost Ci(t0) of the intervention on the component Si is given by the following equation: 
− −

− −

= −
−

i i i i
0 0

i i

B a B a
t t

A Ai i
i 0 0

i i i

B B
C ( t ) t e e

A B a
     (434) 

After a short calculation it results: 
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     (435) 

 Therefore, the total cost C(t0) admits the following expression: 
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 We observe that this cost (that actually represents the share of intervention cost in system’s purchase 

cost) depends explicitly both on system’s reliability elements and on the component’s object of intervention 

reliability elements. 

 

4.2.3 The Dynamic Aspect 

An important aspect, but extremely difficult to calculate, is represented by the dynamic analysis of the 

approached problem. Practically, the equilibrium moments evolve in time based on specific rules, and all 

calculations related to establishing the increase coefficients of operation safety, reduction of electrical energy 

consumption and evaluation of costs suffer major changes. 

 The analysis of the reduction of electrical energy consumption by increasing the operation safety may 

be detailed if we effectively calculate the coefficients Cs
1
, Cs

2
, …, Cs

k
, …, which represent the increase 

coefficients of the system reliability after the interventions in the moments t1, t2, …, tk, … . 

 Taking into consideration the system with a the serial type structure, we have 

 

= −1

s 2 1 3 1 n 1 1 1C R ( t )R ( t ).....R ( t )( 1 R ( t ))  

= − −2

s 3 2 4 2 n 2 2 2 1 2 1C R ( t )R ( t ).....R ( t )(1 R ( t ))R ( t t )  

= − − −3

s 4 3 5 3 n 3 3 3 2 3 22 1 3 1C R ( t )R ( t ).....R ( t )( 1 R ( t ))R ( t t )R ( t t )    (437) 
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s k 1 k k 2 k n k k k k 1 k k 1 k 2 k k 2 1 k 1C R ( t )R ( t )...R ( t )( 1 R ( t ))R ( t t ) R ( t t )....R ( t t )  

 We can write these equations into a concentrated form: 
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after a short calculation, we obtain: 
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 If the intervention moments on the system t1, t2, …, tn are also equilibrium type, after calculations it 

results: 

− − −
≈

km 1
k

m 2
sC e        (440) 

 Because k

s0 C 0.55, k 1,n≤ ≤ = , it results immediately the following possibilities: 

a)  =k

sC 0,55 , so  
−

≈
1

k 2
sC e  resulting  = km

k
m

. Since k ≥ 1, this mean that mk ≥ m. 

b)  =k

sC 0 , therefore  
+

= k2m m
k

2m
. Since k ≥ 1, it results that mk ≥ m/2. 

 Knowing that the equilibrium point of the system te is around the value m, the analysis of the extreme 

values of Cs
k
, leads to the following results: 

1. In the interval (0,t1] the system operates with high safety (basically the reliability is close to 1) and the 

electrical energy consumption is low; 

2. In the interval (t1,1/2 te), there may appear failures in the system, but its renewal may be done with high 

safety, which leads to low energy consumption; 

3. In the interval [1/2 te, te) any system failure because of one component leads to a low possibility to increase 

the reliability after the intervention on the component. It is basically the same as case b) analyzed previously. 

 In this case, because the reliability of the system maintains relatively low, it is obvious that we will 

have relatively high consumption of energy in the analyzed interval. 

4. If the intervention on the system is done around the equilibrium point, then the system safety may be 

maximized, which leads to a minimum consumption of electrical energy.  

 Regarding the dynamic analysis, considering that the successive interventions on the system lead to a 

continuous movement of the equilibrium points towards right, the recurrence relation between two consecutive 

equilibrium type moments is: 

−
−

 
= + 

+ − 

n n 1

e e n 1 n

e s 1

m
t t 1

t mC t
      (441) 

 Because ≈ −1

D
t m

2m
, for m very large in comparison with D, we can consider that ≈1t m .  

 For the sake of calculus easiness, we shall consider that n

sC 0.5 , n 1≈ ≥ , because we know that the 

value of these coefficients is at most equal to 0.55.  

 Consequently, the sequence ( )n

s n
t , defined by the recurrence relation (441) can be written in the 

following form: 
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 Hence, we shall have: 
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 By means of mathematical induction method, we can prove that: 
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 This final relation can be considered extremely important from the perspective of determining the 

moments of interventions that have to be made upon the system.  

In the particular case where the interventions are done only around equilibrium type moments, this recurrence 

relation becomes: 

 −= +n n 1

e et t m        (444) 

so te
n
 ≈ ( )+n 1 m ; this outcome bears out the situations observed practically. 

 In conclusion, the maximum reduction of electrical energy consumption is 

2s
max 1

mC
R m t , a 0.55
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     (445) 

while the total cost of the intervention is 
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 The calculation of the increase coefficient of operation safety Cs gets complicated when the number of 

renewed components is high or when the interventions in the intermediate equilibrium moments on the system 

are grouped. 

 More precisely, if in the moment tK is done an intervention on the component i, then the increase 

coefficient of operation safety Cs
K
, may be easier determined by using the following relation: 

 ( )− += −K i

s 1 K i 1 K i 1 K n K i eC R ( t ).....R ( t )R (T )....R ( t ) 1 R ( t )     (447) 

 We noted with te
i
 the equilibrium moment of the component i, and with tK the difference between the 

renewal moment tK and the moment of the last renewal of the component i. 

 In case of individual or grouped interventions, their costs may be determined easier. For example, if in 

a random equilibrium moment there is done an intervention on the component i, the cost of this intervention 

may be approximated by the cost of a renewal type BRP: 
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 For the latest relation we noted with ai and ri, the failure rate, respectively the renewal rate of the 

component i. 

  

  

4.3 Bibliographical Notes and Comments  
In specialized literature [5], [12], [90], the term reliability/operating safety has the following senses: science, 

interdisciplinary field, general property of systems. 

Regarded as a science, the reliability emphasizes the malfunctioning laws of technical equipment; practically, 

there are three theoretical possibilities of approaching these laws: probabilistically, energetically and spectrally. 

Using the probabilistic methods in analyzing the operating safety of a system represents a natural consequence 

of the fact that the period of time during which the malfunctioning occurs is a random variable. Considering 

Applications of Minmax Equalities and Equilibrium Points in the Context of Analizing the Operation Safety of the System

120



that the probability theory includes a great number of important results, one can immediately motivate that the 

probabilistic approach of operating safety is the most common. 

On the other hand, using the probabilistic methods in studying the reliability issue has a disadvantage: it is 

impossible to determine exactly when the malfunctioning occurs. 

Therefore, the specialized literature also reveals other methods of analyzing the reliability of a system (it is the 

case of energetic and spectral theories regarding reliability). Unfortunately, the results obtained are not 

conclusive enough [50]. 

Regarded as an interdisciplinary field, the reliability is a relatively recent field (practically, the first important 

results are dated back to the 50s) [12]. 

The elements that encouraged the development of this distinct research field are the complexity of systems, as 

well as the negative effects of mass production upon the quality of products. 

Actually, designing complex technical systems against the background of intense technological development 

from during the last decades brought forward the possibility of relatively frequent malfunctions with unwanted 

consequences. The need to be ensured against such unwanted events led to adopting appropriate technical 

measures (which can guarantee the functioning of systems over well-defined periods of time) and to setting 

rigorous ground rules. 

Another element that encouraged the operating safety as a distinct research field is the acknowledgement of the 

fact that an inappropriate increase of the reliability of products may be highlighted in parallel with the 

development of mass production (a direct consequence of technological development especially, and of 

economic- social development in general). 

An explanation for this failure comes from the fact that around the year 1950 a clear distinction was made 

between the concept of good functioning of a system and the operating safety over longer periods of time by 

repeated interventions (in terms of maintaining the high quality of the operating system) and some specialized 

studies which could show the evolution in time of the performances of the system. 

This distinction could not be made earlier because the traditional disciplines (such as resistance of materials) 

ensured by correct implementation of safety coefficients, the fact that a system would be functioning during 

operation as well as over a long period of time (sometimes longer than the forecasted time). 

The use of safety coefficients method implies persistent experience where there are no spectacular changes 

either in the type of technology used or in the materials used. 

From this point of view, the new techniques (computers, telecommunications, electronics etc.) are characterized 

by dynamism and they don’t have enough experience to produce spectacular performances without the help of 

strictly specialized studies in order to ensure the proper functioning as well as the maintaining of performances 

over longer periods of time. 

Regarded as a general property of systems, reliability is the property of preserving the performances of 

systems [12]. 

This point of view set forth some considerations about the future of material production and of permanent 

increase of reliability alongside with technological development. 

The specialized literature uses two senses of the term reliability; they are: reliability in a limited sense and 

reliability in a broad sense. 

Reliability in a limited sense refers to the classical meaning of operating safety as a property of systems to 

preserve their performances. Practically, the operating safety in a limited sense studies the process of 

performance loss up to the first malfunction. 

Reliability in a broad sense includes the concepts of reliability in a limited sense and maintainability (the 

ability to restore the performances of a system in the long the run) [5]. It is obvious that the maintainability of 

the system depends on both its architecture and on the way of organizing its service: purchasing spare parts, 

training service engineers etc. This is why operating safety in a broad sense (also called efficiency by some 

authors) is more complex and it is characteristic to the study of systems subject to renewal. 

Regardless of its meaning (reliability in a limited sense – for studying the operating safety of systems up to the 

first malfunctioning and reliability in a broad sense  - for studying the operating safety of systems subject to 

renewal) the reliability of a system can be achieved globally or structurally.  

The global reliability of a system is independent of its structure and it is achieved through the global statistical 

model. [12], [89]. 

The structural reliability of a system is achieved with the help of the so-called structural models taking into 

consideration the elements of the system and the relationships among them. These models admit an accurate 
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description of the reliability of the system (the functional model, the logical model, the failure shaft model, 

models based on Markov chains) but they have the following disadvantages: 

a) they cannot always be implemented in the case of systems subject to renewal; 

b) they yield numerous and difficult calculations. 

Whatever the disadvantages may be, in the case of using structural models, one can get results which admit a 

full characterization of the reliability of the systems studied. 

Meeting this challenge is an immediate consequence of the fact that through a structural analysis of the system 

reliability one can establish in fact a relation between the reliability function of the system and the reliability 

function of its components. 

It was acknowledged that achieving the ideal reliability of a complex system is practically impossible. In other 

words, the idea of creating a system that does not degrade over time is unrealistic whatever the investments 

made to ensure maximum reliability may be. 

This is why, in practical situations, the problem of establishing exactly, at a certain time, the real level of 

system reliability arises and according to this the operating period, the maintenance period and the safety 

elements must be determined correctly. The methods for accomplishing this goal are numerous and they are 

part of difficult calculations based on the use of modern mathematical equipment: optimization, operational 

calculations, integral calculations, probabilities and statistics. 

At the same time, knowing the real operating data of the system, one can determine concrete technical 

measures (which make the object of maintainability) so that the operating safety of the system improves. 

Therefore, knowing the optimum level the reliability of a system may reach represents a major problem. 

In specialized literature there are several criteria for determining the optimum level of reliability; the most 

frequently used ones are the economic ones. 
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APPLICATIONS OF MINMAX EQUALITY WITHIN PROBLEMS REGARDING 

CAPITALIZATION OF COMPOUND INTEREST 

 

 

5.1 The Capitalization Polynomial and Types of Optimum Problems 
The general form of capitalization polynomial can be determined from the following elements (figure 22): 

 

 

 

 

 

 

 

 

Figure 22 

 

� At times 0,1,2,…,n the following sums are invested or withdrawn S0,S1,…,Sn; this operation is 

marked by the following symbols =i iS , i 0,nε ,  

                         1, in case money investments are made; 

where =iε        0, in case there are no financial transactions;  

  -1, in case cash is withdrawn. 

 

� i1,i2,…,in represent the unit interests charged during the following intervals 

[ ) [ ) −0,1 , 1,2 ,...,[ n 1,n ) ; 

� Always =0 1ε , and { }n 1,0ε ∈ − , which means that at initially there are cash investments, and at 

the end there are fund withdrawals or no financial operations at all.  

According to the periods of time 0,1,2,…,n the following capitalizations of compound interest will take place: 

− − − −

→ + + +
 → + + +

 → +

 →

0 0 0 0 1 2 n

1 1 1 1 2 3 n

n 1 n 1 n 1 n 1 n

n n n n

S S (1 i )(1 i )...( 1 i )

S S (1 i )(1 i )...( 1 i )

S S (1 i )

S S

ε ε

ε ε

ε ε

ε ε

⋮      (449) 

Under the circumstances, if nP  is the capitalization polynomial, then its analytical expression is the following:  

= = +

= = +∑ ∏
nn

n k k k k k

k 0 j k 1

P ( S , ,k 1,n ) S (1 i )ε ε     (450) 

 In the case = =1 2 ni i i⋯  we shall note the commune value with i.  

If we use the notation = + = =k k
k

0 0

S
u 1 i, a ,k 1,n

S

ε
ε

 for the capitalization factor, then the capitalization 

polynomial can be written as follows: 

−

=

= = = +∑
n

n n k

n k k k 0 0 k

k 1

P ( a , ,k 1,n;i ,k 1,n ) S ( u a u )ε ε    (451) 

 In case = = = =1 2 na a ... a 1(which is equivalent to = = =1 2 nS S ... S ), the analytical expression of the 

capitalization polynomial becomes: 

− −
= + + + + =

−

n
n n 1

0 0 0

u 1
P( S ,n ) S ( u u ... u 1) S

u 1
    (452) 

 Because = +u 1 i (u represents the capitalization factor), the capitalization polynomial can be written by 

taking into consideration the initial invested sum - 0S and the level of the unitary interest – i, as follows:  

0 1 2 3 n-1 n 

i0 i1 i2 in-1 

ε1, S1 ε2, S2 ε3, S3 εn-1, Sn-1 εn, Sn ε0, S0 
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++ −
=

n 1

0 0

(1 i ) 1
P( S ,i ) S

i
     (453) 

When studying the properties of compound interest capitalization, the key issues and the context in which they 

appear are the following: 

 

5.1.1 The Annulment Problem 

In this case, i is constant, n and Sk, =k 0,n  are variable, and the problem that has to be solved represents the 

determination of the solutions of the equation:   

 −

=

+ =∑
n

n n k

k

k 1

u a u 0         (454) 

We shall use the notations * * *

1 2 nu ,u , ,u…  for the solutions of equation (454). 

One can easily demonstrate the following properties: 

1) 
  

≤ + = = 
  

* k
j

0

a
u 1 max , j 1,n , k 1,n ;

a
        (455) 

2) ≤ = =* k
k

j

0

a
u 2max , j 1,n , k 1,n ;

a
       (456) 

3) −≤ + = =* k1
k 1

j

0 1

aa
u max , j 1,n , k 1,n ;

a a
      (457) 

Practically, these increases are not conclusive in many cases. For example, we shall take into consideration the 

capitalization polynomial corresponding to the following data: 

- at times t=0, t=1, we have cash investments =0S 6 monetary units and =1S 1monetary unit, respectively; 

- at time t=2, we have a financial withdrawal =2S 12 monetary units; as a result = + − =2P(u ) 6u u 12 0 . 

The roots of equation + − =26u u 12 0  are = −1

3
u

2
, =2

4
u

3
. 

It is obvious that = −1

3
(u )

2
,  =2

4
(u )

3
,  =1

0

S 1

S 6
,  = − = −2

0

S 12
2

S 6
 

Hence it follows: 

 
+ − = 

 

1 12
1 max , 3

6 6
 

  
= 

  

1 12
2max , 2 2

6 6
 

+ − =
1 12 13

6 6 6
 

Remark 5.1 

The results below prove the importance of the initial investment. 

1) If = = =0 1 nS S S… , the unit interest for which capitalization polynomials are null will be below 1. 

2) If 0 1 2 n 1 nS n,S S S S 1−= = = = = = −… , then there are no solutions to the problem of the capitalization 

polynomial annulment. In other words, the equation − −− + =n n 1 n 2

1 2nu (u ,u , ,u 1) 0… has no solutions. 

Economically, we cannot determine an interest for the cases in which we invest a certain amount given by the 

number of periods, and then, we successively withdraw one monetary unit, every period = = =t 1,t 2, ,t n… .  

Obviously, the problem can be easily generalized in the case when during each time = = =t 1,t 2, ,t n… , there 

are withdrawals which complies with the property:  + + + =1 2 nS S S n… . 

 Obviously, for the particular case −= = = = = = −0 1 2 n 1 n nS 1, S S ... S 0, S 1ε , the equation  
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− =nu 1 0  will have the following roots: = + = −k

2k 2k
u cos i sin , k 0,n 1

n n

π π
.  Of all roots, we shall pick out 

only those roots that have real values.  

 

5.1.2 The Minimum Deviation Problem 

For a function of a single variable →f : [ a,b ] R , the minimum deviation (in respect with 0), can be defined 

by size A, given by the following equality: 

= ∈
x

A sup f ( x ) , x [ a,b]  

 For example, for the function f  defined by the following equality: 

 

  − ∈ +    
= =

 − + ∈ + +   

1
x n, x n,n

2
f n 0,1,2,...

1
x n,x n ,n 1

2

    (458) 

one can establish the following equalities: 

 = = ∈ + =
x x

1
sup f ( x ) , inf f ( x ) 0, x [ n,n 1], n 0,1,2,...

2
   (459) 

 Practically, f ( x ) is defined as the distance between the point x and the nearest point with an integer 

coordinate on Ox axis. We can immediately observe that f is a periodic function which has the principal 

period equal to 1 (fig.23). 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Figure 23 

 

In case of capitalization polynomial, the minimum deviation issue represents an extension of the above 

enunciated problem.  

In this case, n is fixed, i and Sk, =k 0,n  are variable, and the problem that needs to be analyzed is:  

 (P1) 
ɶ

ɶ
k

n
iS

minmax P(i,S )      (460) 

where  ɶ ( )=n 0 1 nS S ,S , ,S…  

 The main results around the analysis of the problem (P1) are the following: 

 1. The minimum deviation of the capitalization polynomial is always greater or equal to the size 
−
0

n 1

S

2
; 

 2. If the capitalization polynomial is of Cebişev type, than the minimum deviation always equals 
−
0

n 1

S

2
. 

  

f 

x 0 1

2
 

1 3

2
 

2 3 

1

2
f =  

5

2
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Remark 5.2 

 Cebişev polynomial of degree n is marked with nT and it can be defined as: 

  − → = ∈n nT : [ 1,1] R,T ( x ) cos( n arccos x ),n N  

 The main properties of this polynomial are the following: 

• the degree of the polynomial is n and the coefficient of nx is −n 12 ; 

• the extreme points are = =k

k
x cos , k 0,n

n

π
; 

• the extreme values are ± 1. 

In cases = = =n 1,n 2,n 3 , the analytical expressions of Cebâsev polynomial are as follows: 

= ≤1T ( x ) x , x 1  

= − ≤2

2

1
T ( x ) x , x 1

2
 

= −3

3T ( x ) 4x 3x  

The corresponding graphs are shown in figure 24, figure 25, figure 26.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 24     Figure 25 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26 

We shall prove that the deviation in relation to zero of any polynomial −
−= + + +n n 1

n 1 n 1 nP ( x ) x a x a x a  can not 

be smaller than 
−n 1

1

2
 on the interval [-1,1] and it equals 

n 1

1

2 −
 only in the case of Cebâsev polynomial.  

y 

x 0 1 

-1 

(0,1) 

(0,-1) 

y 

x 0 1 
-1 

(0, 
1

2
− ) 

y 

x 0 

1 -1 

(0,-1) 

(0,1) 
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Indeed, we shall assume by reduction ad absurdum that there is a polynomial nP which has the form stated 

above, so that: 

( ) −
< ≤

x n 1
x

1
sup P , x 1

2
     (461) 

We shall write the polynomial nR  which is defined by the following equality: 

−
= −n n nn 1

1
R ( x ) P ( x ) T ( x )

2
     (462) 

Hence it results that: 

−

     = − =     
     

n n nn 1

1
R cos k P cos k T k , k 0,n

n n 2 n

π π π
   (463) 

Since ( )knT k 1 , k 0,n
n

π  = − = 
 

, we shall have: 

( )    < > <   
   

2
R cos0 , R cos 0 , R cos 0

n n

π π
…  

and as a consequence, polynomial nR  is null in each of the following intervals: 

     −     
     

2
cos ,0 , cos ,cos , , cos n ,cos( n 1)

n n n n n

π π π π π
…  

From this assertion, we are led to a contradiction with our initial hypothesis.  

Likewise, we shall demonstrate that neither the equality 

( ) −
=

x n 1
x

1
sup P

2
     (464) 

can take place unless  

( ) ( )−
=n nn 1

1
P x T x

2
     (465) 

 

5.1.3 The Equilibrium Problem in Simple and Mixed Strategies 

In the case of simple strategies, we may consider Sk a known quantity, =k 0,n , i and n variable. The problem 

that needs to be solved is the following:  

(P2) =
n i i n

maxmin P( n,i ) minmaxP( n,i )  

This problem has a saddle point in simple strategies; the saddle point is given by the pair ( )n,0 . From 

economic point of view, this case has no importance because it implies the condition that the unitary interest 

equals zero: =i 0 .  

De facto, from minmax optimality conditions we can immediately prove that the unitary interest that we are 

searching for represents the solution of the following equation: 

  ( )+ =
−

n 1
1 i

1 in
      (466) 

 The graphical representations of functions ( ) ( )= +1f i 1 i n  , ( ) =
−2

1
f i

1 in
 (fig.27) show that 

=i 0 represent the unique solution of the above equation.  

In economic practice, for > 0α and sufficiently close to 0, we can approach the problem of using a positive 

value of the interest so that the area of the curvilinear triangle (the shaded part from the graphical 

representation) should be increased by > 0ε - a fixed value which is sufficiently small. Economically thinking, 

we are interested to determine a saddle point -ε ; from mathematical point of view, we must solve the 

following equation: 

 
( ) +

+ −
− =

− +

n 1
1 11 1

ln
n 1 n n 1

α
ε

α
     (467) 
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Figure 27 

 

 It is extremely difficult to solve the above equation in respect ofα , because this is a transcendental 

equation.  

 We can approximate this area by using the quantity S , given by the following equality: 

 

 − − =

1
1

1 4
S

2

α

α
     (468) 

 Therefore, equation (467) becomes: 

 =
2n

2

α
ε       (469) 

 and the interest, approximated by α , results from: 

 ≈
2

i
n

ε
      (470) 

 For the particular case =
1

8n
ε , we get ≈

1
i

2n
 ; this result is known from [50], [54]. The dependence 

between i and n  is shown by figure 28. 

 

 

 

 

 

 

 

 

 

 

 

Figure 28 

5.2 Maxmin and Minmax Capitalization Problems in the case of Variable Interest 
 

5.2.1 The Formulation of the Problem 

We shall start from the following elements: 

� At the moments 1, 2, …, k the following financial operations take place: 

i 

n 0 

f1, f2 

i α  0 

1
,0

n

 
 
 

 

(0,1) 

f1 

f2 
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- we deposit the sums S1, S2, …, Sk, 
=

=∑
k

j

j 1

S A , A being fixed 

- we withdraw the sums s1, s2, …, sk, 
=

=∑
k

j

j 1

s B , B being fixed 

� i1, i2, …, ik represent the unit interest values used for the intervals [0,1), [1,2), …, [k-1,k). 

The problem is to determine the amounts needed to be deposited and withdrawn in order to obtain the 

maximum capitalized sum in the moment k. Because the withdrawal of sums s1, s2, …, sk implies actually the 

withdrawal of 1 2 ks ,s ,...,s  which represent the potential capitalization using compound interest for s1, s2, …, sk 

we get (table 1): 

 

Moment The withdrawn sum  The capitalized sum 

1 
1s  = + + +1 1 2 3 ks s (1 i )(1 i )...( 1 i )  

2 
2s  = + + +2 2 3 4 ks s (1 i )(1 i )...( 1 i )  

⋮  ⋮  ⋮  
t 

ts  
+= + +t t t 1 ks s (1 i )...( 1 i )  

⋮  ⋮  ⋮  
k 

ks  =k ks s  

Table 1 

Remark 5.3 

If we note = + + +1 2 k(1 i )(1 i )...( 1 i )π , then the following equalities take place: 

 = +


= + +




= + + +

1 1

1

2 2

1 2

k k

1 2 k

s s
1 i

s s
(1 i )(1 i )

s s
(1 i )(1 i )...(1 i )

π

π

π
⋮

    (471) 

We mark with f the adopted efficiency function, →2f : R R defined by the following equation: 

{ }
=

= −∑
k

j j j

j 1

f ( S ,s ) max S c s ;0      (472) 

where = =1 2 k 1 2, kS ( S ,S ,...,S ),s ( s ,s ...,s )  

= =
+ + +j

1 2 j

c , j 1,k
(1 i )(1 i )...(1 i )

π
 

Remark 5.4 

Since the efficiency function f is not continuous, it is obvious that it is not differentiable either, so the regular 

operations related to the differential calculation have no effect. The formulated problem may be interpreted as 

an uncooperative game problem with two decision makers where the efficiency functions W1 and W2 admit the 

following analytical expressions: 

{ }
=

= −∑
k

1 j j j

j 1

W ( S ,s ) max S c s ;0      (473) 

{ }
=

= −∑
k

2 j j j

j 1

W ( S ,s ) min S c s ;0      (474) 

We notice that the following relation is verified: 

= −1 2W ( S ,s ) W ( S ,s )       (475) 
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therefore, we are dealing with a zero sum game. This game does not present equilibrium points for simple 

strategies because of the efficiency functions particular forms; consequently the main problem regarding this 

issue is to determine the guaranteed optimal strategies and values. 

 

5.2.2 Solving the Problem and Economic Interpretation 

For the following equations: 

= − =2 2 1
s S s S s S

maxminW ( S ,s ) minmaxW ( S ,s ) minmaxW ( S ,s )   (476) 

= − − = +2 2 1
S s S s S s

minmaxW ( S ,s ) maxmin( W ( S ,s )) maxminW ( S ,s )   (477) 

it is obvious that we need to determine only two guaranteed optimal values (and the corresponding guaranteed 

optimal strategies). Practically, we need to analyze the following problems: 

1 2
s S

( P )maxminW ( S ,s )       (478) 

1 2
s S

( P )maxminW ( S ,s )       (479) 

The problem (P1) is solved using the equalization principle [29], [47]: 

- the optimal solution =* * * *

1 2 ks ( s ,s ,...,s )  that we are searching for, is determined by solving the following 

algebraic system: 

=

 − = − =



=

∑

1 1 j j

k

j

j 1

c s B c s B, j 2,k

s B
     (480) 

After an immediate calculation, we get: 

=

= =

∑
*

j k

j

j 1 j

1 B
s , j 1,k

1c

c

      (481) 

therefore 

 =



=





=


*

1

1

*

2

2

*

k

k

1 B
s

c D

1 B
s

c D

1 B
s

c D

⋮

,          (482) 

where 
=

=∑
k

j 1 j

1
D

c
 

- the minmax guaranteed optimal value is given by the following relationship: 

=

 
 
 = −
 
 
 
∑

2 ks S

j 1 j

B
maxminW ( S ,s ) min A;0

1

c

     (483) 

Obviously, the problem (P2) 2
S s

minmaxW ( S ,s ) is equivalent with the problem (P3) 1
S s

maxminW ( S ,s )  and it can 

be also solved by using the equalization principle [54]. Assuming that ≥ ≥ ≥ ≥1 2 3 kc c c ... c , the optimal solution 

that we are looking for is the following: 

i-1 i-1
* * *1 i
j i i 1 j*

j=1 j=1i 1 i

S S
min B - s ;S c ,s = min B; , if  min B - s ; 0

s = c c

0, contrariwise

     
≥     

     



∑ ∑
   (484) 

The guaranteed optimal solution type minmax is the following: 
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[ ]{ }= −2 i
S s

minmaxW ( S ,s ) min min c B A ;0     (485) 

Remark 5.5 

It is obvious that [ ]{ }= −1 i
S s i

maxminW ( S ,s ) min min c B A ;0      (486) 

Remark 5.6 

Since W1 is convex reported to the s variable, it is obvious that the game value is given by the guaranteed 

optimal value of W1 in minmax sense. 

Taking into consideration the equation =2 1
s S s S

maxminW ( S ,s ) minmaxW ( S ,s ) , the following relation takes place: 

=

 
 
 = −
 
 
 

∑
1 k

s S

i 1 i

B
minmaxW ( S ,s ) max A ;0

1

c

     (487) 

Because 
( )( ) ( )( ) ( )

= = =
+ + + + + +1 2 k

1 1 2 1 2 k

c ,c ,...,c
1 i 1 i 1 i 1 i 1 i ... 1 i

π π π
, after an immediate calculation we shall 

get: 

( ) ( )( ) ( )( ) ( )( )
=

= + + + + + + + + +∑
k

1 1 2 1 2 k

j 1 j

1 1
1 i 1 i 1 i ... 1 i 1 i ... 1 i

c π
  (488) 

and, consequently the optimal strategies that we are searching for are given by the following relations: 

( )( ) ( )
( ) ( )( ) ( )( ) ( )

 + + +
= =  + + + + + + + + + 

1 2 k*

j

1 1 2 1 2 k

1 i 1 i ... 1 i
s B , j 1,k

1 i 1 i 1 i ... 1 i 1 i ... 1 i
  (489) 

 Particular cases 

1) If i1 = i2 = … = ik and we mark with I the common value, then the optimal strategies that we are searching for 

allow the following expression: 

( )
( ) ( ) ( )

+
= =

+ + + + + +

j

*

j 2 k

B 1 i
s , j 1,k

1 i 1 i ... 1 i
   (490) 

hence 

( )
( )

−
+

= =
+ −

j 1

i*

j k

B 1 i
s , j 1,k

1 i 1
    (491) 

If I is small enough, then ( )+ ≈ +
k

1 i 1 ik ; consequently 

( ) −
= + =

j 1*

j

B
s 1 i , j 1,k

k
    (492) 

We can immediately observe that the optimal solutions are given by the product between the ratio 
B

k
 and the 

powers of the capitalization factor (1+i). 

Furthermore, all the optimal solutions are found on the line: 

( )( )= + −
B

s 1 i x 1
k

     (493) 

if we consider that ( ) ( )−
+ = + − =

j 1
1 i 1 i j 1 , j 1,k  

Consequently, if =
B

a
k

, =
B

b i
k

, we have (figure 29): 
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=

= +

= +

= + −

1

2

3

k

s a

s a b

s a 2b

s a ( k 1)b

⋮

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29 

 

 In this case, the optimum guaranteed values are the following [53]: 

a) 
+ = − 

 
1

s S

B(1 i )
minmaxW ( S ,s ) max A ;0

k
       (494) 

 This size must have a non-zero value; this leads us to the condition that the capitalization factor has to 

verify the following inequality: +
A

1 i k
B

≺ ≺ . In other words, the unit interest used must meet the requirement: 

−
A

i k 1
B

≺ . 

b) { }= −1 i
S s i

maxminW ( S ,s ) min min[ c B A];0        (495) 

 This optimum guaranteed value has to be non-zero; in order to meet this condition, it is necessary that 

the unit interest should verify the inequality: 
−
−

A 1
i

B( k j )
≺ . 

 Let us assume that the unitary interests have the following form: 

= = = =
k2 4 2

1 2 3 ki a ; i a ; i a ; ;i a…  

 In this case, we can prove by induction the following equality: 

 ( )( ) ( ) ( )( ) ( )
+

+ − −
+ + + = + + + = + + + =

−

k 1

k k 1
2

2 2 2 2 1

1 2 k

1 a
1 i 1 i 1 i 1 a 1 a 1 a 1 a a a

1 a
… … …   (496) 

 The following equalities will consequently take place: 

a 

a+b 

a+2b 

a+(k-1)b 

s 

x 
1 2 3 4 
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( )( )

( )( )( )

( )( ) ( )

+

+

+

+

 −
+ =

−
 −

+ + =
−

 −
+ + + =

−



− + + + = −



0 1

1 1

2 1

2

k 1

k

2

2
2

2
2 2

2
2 2

1 a
1 a

1 a

1 a
1 a 1 a

1 a

1 a
1 a 1 a 1 a

1 a

1 a
1 a 1 a 1 a

1 a

⋮

…

    (497) 

 Therefore, the optimum strategies that we are searching for have the form below: 

( ) ( ) ( ) ( )
+

+ + + +

−
=

− + − + − + + −

k 1

0 1 1 1 2 1 j 1

2
*

j
2 2 2 2

1 a
s B

1 a 1 a 1 a 1 a…
  (498) 

So 

  
( ) ( )

+

+

−
= =

+ − + +

j 1

1 2 j 1

2
*

j
2 2 2

1 a
s B , j 1,k

j 1 a a a…
   (499) 

 Because the values of interests are smaller than 1, it is obvious that the following sum: 

 
+

+ + + + + +
k 12 4 8 16 32 2a a a a a a… can be written as ( ) ( ) ( ) +

+ + + + +
k 11 2 4

2 4 4 4 32 2a a a a a a… , from 

which, we can keep the first three terms maximum.  

 By performing calculations, we shall get: 

( )
( )

( )
( )

( ) ( )( )

( ) ( )( )

 +−
 = =

+− +


+ + −
= =

+ +− + +

 ≈ =
 − + + − +



 ≈ =
 + − + − + − +



24
*

1 22 4

2 48
*

2 2 42 4 8

*

4 2 4 2 2

*

k 2 4 2 2

B 1 a1 a
s B

2 a2 a a

B 1 a a1 a
s B

3 2a a3 a a a

1 B
s B

5 a a 3 1 a 2 a

1 B
s B

k 1 a a k 1 1 a 2 a

⋮

 

 Obviously, for a sufficiently small, we can consider the following approximation: 

( )( )− + ≈ −2 2 21 a 2 a 2 a  

 

5.2.3 The Ideal Interest 

We assume that at the time =t 0we invest the sum 0S and at times 1,2,...,n no other financial operations take 

place; therefore = = = =1 2 nS S ... S 0 , = = = =1 2 ns s ... s 0 . For each moment t p≻ only fund withdrawals are 

made. The problem which arises aims to determine the unit interest i needed to be used in order to withdraw the 

sum 0S at times = + = +t p 1,t p 2,...(in other words, + += = =p 1 p 2 0s s ... S ).  

 In view of the specific form of this problem, we can find its solution by solving the following equation: 

 − − − −− + + + + =k n p 1 n p 2

0S (u ( u u ... u 1)) 0     (500) 

where = +u 1 i represents the capitalization factor.  

 Practically, this equation can be written as follows: 
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− −

− =
−

k p
k u 1

u 0
u 1

     (501) 

and, accordingly, we are led to solve the following equation: 

 − +
−

− − + =k p p 1 p

k p

1
u ( u u 1 ) 0

u
     (502) 

Because the capitalization factor u is always non-zero and 
−k p

1

u
is sufficiently closed to 0 for k great enough, 

we are led to solve the following higher degree equation: 
++ − + − =p 1 p(1 i ) (1 i ) 1 0      (503) 

where the variable i represents the unit interest that we are searching for. 

 It is obvious that this equation can be written in the following equivalent form: + − =pi( 1 i ) 1 0 and 

admits a single solution ∈i ( 0,1) . 

 Remark 5.7 

 If =p 1 , then the unit interest that we are searching for is the positive solution of the equation 

+ − =2i i 1 0 ; therefore 
− +

= ≈
1 5

i 0.6
2

.  

 Generally, the equation of “the optimum interest” + − =pi( 1 i ) 1 0 is a higher degree equation and it can 

only be solved by means of approximate methods.    

 The most convenient method implies, practically, the linearization of the expression + p(1 i ) . We can 

immediately observe that + ≈ +p(1 i ) 1 ipwhen i is small enough.  

 In this case, the equation + − =pi( 1 i ) 1 0 turns into + − =2i p i 1 0 and the positive solution of this 

equation is the following: 

 
− + +

=
1 1 4 p

i
2 p

      (504) 

 If we linearize the factor + p(1 i ) in an arbitrary chosen point ∈0i ( 0,1) , then the “optimum interest 

equation” becomes: 

  + + + − =0 0 0(1 i )(1 pi i pi )i 1      (505) 

 Because the waiting period p is in inverse ratio to the optimum interest, it is very convenient form 

calculation point of view to consider =
−0

1
i

p 1
. In this case, the previous equation becomes =

−

2 2p i
1

p 1
and, 

therefore, the unit interest that we are searching for is: 

−
=

p 1
i

p
      (506) 

We can immediately observe that for =p 2 , the optimum interests 
−

=
p 1

i
p

and 
− + +

=
1 1 4 p

i
2 p

coincide 

and this result is in concordance with the graphical images of this interests (fig.30). 
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Figure 30 

 

5.3 The Determination of Market Equilibrium Interest 
 

5.3.1 The Case When the Elasticity Coefficients of the Funds Demand and Supply are Linear 

The problem of determining the market equilibrium interest may be approached as an optimum problem type 

maxmin for the capitalization polynomial. In a simplified form, for the moments t=0, t=1, …, t=n we place the 

amount S0 with the unit interest i as composite interest, the capitalized amount is noted with S = S(n,i) and is 

determined as (the capitalization polynomial): 

  ( ) ( )+ −
=

n
1 i 1

S n,i
i

      (507) 

The equilibrium interest i
*
 is determined as solution of the problem 

  ( ) ( ) ( )=
n i i n

P maxminS n,i minmaxS n,i      (508) 

and after calculation, practically, the searched optimal interest is the solution of the following equation. 

  ( )+ =
−

n 1
1 i

1 ni
      (509) 

 On the monetary market, the problem of equilibrium interest may be approached in differential form, 

starting from the following elements: 

� The capitalized sum is denoted by f and depends on the unitary interest i; hence ( )=f f i or, if we 

pertain to  the capitalization factor +1 i , we shall have: ( )= +f f 1 i ; 

� The problem that faces us is to approximate the capitalized sum f by the polynomial nP with the fixed 

degree n. This polynomial will have the following form: 
=

=∑
n

k

n k

k 0

P ( i ) a i and its coefficients 0 1 na ,a ,...,a will be 

undetermined; 

� The efficiency function F is defined by the following equality: 

=

 
= − − = 

 
∑

2
n

k

k 0 1 n

k 0

F( i,a ) f ( i ) a i , a ( a ,a ,...,a )     (510) 

The main results can be synthesized as follows: 

� The following equality will always take place:  

p 1 2 

1

1 1 4

2

p
i

p

+ +
=  

2

1p
i

p

−
=  

1

2
i =  

5 1

2
i

+
=  

i 
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= − −
i a ia

maxminF( i,a ) minmax( F( i,a ))      (511) 

� The function F is a convex function with respect to the variable a, and consequently, we can 

ascertain the following results for the two-person game for which F represents the payoff function: 

o The game has a saddle point; 

o The decision maker which will choose a (as a decisional alternative), will have an 

optimum simple strategy; 

o For the second decision maker, there is an optimum mixed strategy which 

corresponds to at most n+2 simple strategies = +ji , j 1,n 2 . 

� Let us consider += 1 2 n 2P ( p , p ,..., p )a certain mixed strategy for which 

jp represents the probability of using the simple strategy ji ; obviously, 
+

=

≥ = + =∑
n 2

j j

j 1

p 0, j 1,n 2, p 1 . 

If += 1 2 n 2I ( i ,i ,...,i ) represents a vector which consists of various levels of interest, we can consider the game 

with the payoff function 1F , defined as follows: 

+

= =

 
= − 

 
∑ ∑

2
n 2 n

k

1 j j k j

j 1 k 0

F ( P,I ,a ) p f ( i ) a i  

The problem of determining the saddle point for the game with the payoff function 1F consists in solving two 

optimum problems in the following way: if 0 0 0P ,I ,a are the components of the saddle point, then: 

= =1 0 0 0 1 0 0 1 0
a P ,T

F ( P ,I ,a ) minF ( P ,T ,a ) maxF ( P,T ,a )  

 Practically, Cebâşev's approximation issue was written in an equivalent form as a game problem and 

this problem is equivalent with two extremal problems. These problems can be relatively easy solved.  

� A few important conclusions can be drawn: 

o If = 0 1 na ( a ,a ,...,a ) is the optimum vector that we were searching for, then for the efficiency 

function F, there are +n 2 values of unitary interest for which F attains, alternatively, the minimum and the 

maximum value; 

o The modules of the minimum and maximum values coincide.   

1) r1 is the minimum interest at which are constituted the bank deposits and r2 is the minimum interest at 

which the credit is given; 

2) If we apply this interests, we shall note with O0 the value of deposits and with C0 the value of credit 

demand (obviously, O0 and C0 are known values); 

3) e1 is the function of elasticity of saving through deposits, and e2 is the function of elasticity of credit 

demand. We shall consider e1 and e2 as linear functions in respect with interest rate r, where:  

= + =i i ie a r b ,i 1,2  (a1, a2, b1, b2 values are known)   (512) 

4) Both the credit supply O and the credit demand C depend on interest rate r, that is =O O( r ) , =C C( r ) . 

The analytical expressions of functions O and C are known. 

The problem can be solved starting from the definition of elasticity functions e1 and e2. 

The elasticity of credit supply (savings through deposits) e1 is determined based on the following relation: 

=1

O

Oe
r

r

∆

∆
      (513) 

 Otherwise, e1 is the relation between the absolute variations rapports ( O∆ , respectively r∆ ) and the 

reference levels (O, respectively r). 

 If the absolute variations are sufficiently small, the previous equality can write in differential form, like 

this: 

=1

dO

Oe
dr

r

      (514) 
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d being the differential operator. 

 Therefore, we are lead to the first order differential equation [50]: 

= +1 1

dO( r ) dr
( a r b )

O( r ) r
     (515) 

Actually, this is an equation with separable variables. 

If r* is the equilibrium interest level of the market (r* is that interest for which the equality O(r*)=C(r*) takes 

place) and r1 is the minimum interest level at which the bank deposits are constituted, by integrating the last 

equation, we obtain: 

= +∫ ∫
* *

1 1

r r

1 1

r r

dO( r ) dr
( a r b )

O( r ) r
    (516) 

from where immediately results: 

= − +
* *

1 1

r r
*

1 1 1
r r

lnO( r ) a ( r r ) b lnr    (517) 

and the following relation is verified: 

− = − + −* * *

1 1 1 1 1lnO( r ) lnO( r ) a ( r r ) b (ln r lnr )   (518) 

 Taking account of  O(r1)=O0, from the equality (518), we get: 

= + + − −* * *

1 1 0 1 1 1 1lnO( r ) a r b lnr lnO a r b lnr    (519) 

Applying the same technique for the credit demand, we get the following equality:  

= + + − −* * *

2 2 0 2 2 2 2lnC( r ) a r b lnr lnC a r b ln r    (520) 

 Taking into consideration that O(r*)=C(r*), from equalities (519) and (520), it immediately results the 

following equality: 

  + + − − = + + − −* * * *

1 1 0 1 1 1 1 2 2 0 2 2 2 2a r b lnr lnO a r b lnr a r b lnr lnC a r b ln r  (521) 

 If we note: = − + − + −0 0 1 1 2 2 1 1 2 2A lnC lnO a r a r b ln r b ln r , the previous equality becomes:  

− + − =* *

1 2 1 2r ( a a ) ( b b )ln r A     (522) 

 Practically, the equality (521) is an equation that leads us to the values of the searched equilibrium 

interest r*. Because the equation (521) is a transcedentary equation, its solutions can only be approximated, by 

using special techniques of solving these kind of equations. 

 Equation (522) can be written in the following form: 

−
= −

− −
* *1 2

1 2 1 2

a aA
ln r r

b b b b
    (523) 

From the diagrams of functions = *y ln r , 
−

= −
− −

*1 2

1 2 1 2

a aA
y r

b b b b
 , it is immediately noticeable that there exist a 

single root of equation placed in the (0,1) interval, if ≤
−1 2

A
0

b b
, 

−
>

−
1 2

1 2

a a
0

b b
 (figure 31), or placed in the 

 
 

− 1 2

A
1,
a a

 interval, if >
−1 2

A
0

b b
, 

−
>

−
1 2

1 2

a a
0

b b
 (figure 32). 

After the determination of the interval that contains the solution of equation (521), this solution can be found 

immediately by using one of the forenamed methods. 
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Figure 31      Figure 32 

 

Remark 5.8 

 By linearizing the logarithmic function through Taylor’s method, in point r0=1, we obtain = −ln r r 1  

and the equation (522) becomes: 

−
− = −

− −
* *1 2

1 2 1 2

a aA
r 1 r

b b b b
 

 This solution of this equation is: 

+ −
=

− + −
* 1 2

1 2 1 2

A b b
r

a a b b
      (524) 

It is obvious that the solution (524) represents an approximate solution of the equation (523). If we apply the 

method of successive approximation, then the solution that we are searching for - *r - can be determined as the 

limit of the sequence ( )nr n , where 

 ( ) −

 = − + + + + 
 

n n n n 1

1 1 1 1
r A 1

B B B B
⋯     (525) 

and 

 
−

= =
− −

2 1

1 2 1 2

a aA
A , B

b b b b
     (526) 

Because =*

n
n

r limr  , after performing calculations, we shall get: 

 
+ − −

= +
− − + −

* 1 2 1 2

1 2 1 2 1 2

A b b b b
r

a a b b a a
    (527) 

and, consequently: 

 

+ + −
−

= +
− − + −

1

2

r

0 1
1 1 2 2r

* 0 2 1 2

1 2 1 2 1 2

C b
ln ln a r a r
O b b b

r
a a b b a a

  (528) 

Particular cases 
 The equilibrium interest can be determined immediately in some particular cases of supply elasticity, 

respectively of demand elasticity. 

 Case I: We analyze the following situation: = =1 2b b 0  

 In this case, we have =1 1e a r,  =2 2e a r , and the equilibrium interest is solution of the following 

equation: 

− =*

1 2r ( a a ) A .      (529) 

y 

*ln ry =  

*
21

21

21

r
bb

aa

bb

A
y

−

−
−

−
=

y 

*ln ry =  

*
21

21

21

r
bb

aa

bb

A
y

−

−
−

−
=  

r
* 

r
* 
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 Accordingly, it results:  

+ −
= =

− −

0
1 1 2 2

* 0

1 2 1 2

C
ln a r a r
OA

r
a a a a

    (530) 

 Case II: In the second situation, we assume that: = =1 2a a 0  

 In this case, the elasticity functions admit the analytical expressions = =1 1 2 2e b ,e b  (therefore, the 

elasticity functions are constant). 

 The  equation (523) becomes: 

=
−

*

1 2

A
ln r

b b
      (531) 

 Taking into account that: = + =
1 1

2 2

b b

0 01 1

b b

0 2 0 2

C Cr r
A ln ln ln

O r O r
, the equation (531) can be written as follows:  

− 
=  

 

1 1 2

2

1
b b b

* 0 1

b

0 2

C r
ln r ln

O r
     (532) 

and, therefore, the equilibrium interest is:  
− 

=  
 

1 1 2

2

1
b b b

* 0 1

b

0 2

C r
r

O r
, i.e: 

−=
1

1 2

2

b
* 0 1b b

b

0 2

C r
r

O r
     (533) 

 Obvious, if the minimum interests are equal, r1=r2, we obtain: −= 1 2
* 0b b

0

C
r

O
. Thus, the equilibrium 

interest depends only on the minimal values of the credit supply and demand, as well as on the elasticity of 

savings through deposits, and of elasticity of credit demand respectively. 

 

5.3.2 The General Case 

Unlike the previous case, we suppose that the analytical expressions of elasticity functions e1 (savings through 

deposits) and e2 (credit demand) are known. Obvious, if r is the interest rate, we have e1 = e1 (r), e2 = e2 (r). We 

shall use the same notations as in the previous paragraph. 

We shall start from the economical signification of elasticity functions e1 and e2, and we will be lead to the 

following differential equation [50]: 

- for the supply:    
( )

= 1e rdO
dr

O r
      (534) 

- for the demand:   
( )

= 2e rdC
dr

C r
      (535) 

By integrating both members of equation (534), it immediately results: 

( )

( ) ( )
=∫ ∫

2

1 1

O r r

1

O r r

e rdO( r )
dr

dr r
      (536) 

  If G1 is a primitive of 
( )1e r

r
 function, from (536) we obtain: 

− = −1 1 1 1lnO( r ) lnO( r ) G ( r ) G ( r )      (537) 

 Similarly, by integrating both members of equation (535), we obtain: 

( )

( ) ( )
=∫ ∫

2

1 1

C r r

2

C r r

e rdC( r )
dr

dr r
      (538) 

 If G2 is a primitive of function 
( )2e r

r
, from (538) we obtain: 
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− = −1 2 2 2lnC( r ) lnC( r ) G ( r ) G ( r )     (539) 

By denoting the equilibrium interest with r*, is obvious that the market equilibrium is given by the following 

condition: 

( )=* *O( r ) C r       (540) 

Accordingly, the equilibrium interest r* is determined as a solution of the following equation: 

( ) ( ) ( ) ( ) ( ) ( )− = − + + −1 2 1 2 1 1 2 2G r G r lnO r lnC r G r G r    (541) 

 We note:  

( ) ( ) ( ) ( )= − + + −1 2 1 1 2 2A lnO r lnC r G r G r    (542) 

1 2,ε ε  the assumed errors for the deviation from the equilibrium interest in respect with the savings through 

deposits, and credit demand respectively. 

 We develop in Taylor series the primitive G1 and G2 in + +1 1 2 2r ,rε ε  points and we keep just the first 

two terms. Taking into account that ( ) ( ) ( ) ( )
= =1 2' '

1 2

e r e r
G r ,G r

r r
, after an immediately calculation, it result 

that: 

( ) ( ) ( ) ( )
+

= + + − +
+

1 1 1

1 1 1 1 1 1 1

1 1

e r
G r G r r e r

r

ε
ε ε

ε
    (543) 

( ) ( ) ( ) ( )
+

= + + − +
+

2 2 2

2 2 2 2 2 2 2

2 2

e r
G r G r r e r

r

ε
ε ε

ε
   (544) 

 Accordingly, we are lead to the following equation: 

( ) ( ) ( ) ( )

( ) ( )

+
+ + − + − + −

+

+
− + + =

+

1 1 1

1 1 1 1 1 1 2 2 2

1 1

2 2 2

2 2 2

2 2

e r
G r r e r G r

r

e r
r e r A

r

ε
ε ε ε

ε

ε
ε

ε

   (545) 

from where: 

( ) ( ) ( ) ( )

( ) ( )

 + + 
− = − + + + + + + 

+ + − +

1 1 1 2 2 2

1 1 1 2 2 2

1 1 2 2

1 1 1 2 2 2

e r e r
r A G r G r

r r

e r e r

ε ε
ε ε

ε ε

ε ε

  (546) 

 After an immediately calculation, from equation (546), it results that: 

( ) ( ) ( )
( )

( ) ( )

( ) ( )

 + + 
− = + − + + + 

+ + − +

1 1 1 2 2 2 2 1 2

1 2

1 1 2 2 1

1 1 1 2 2 2

e r e r C r e a e b
r ln

r r O r a b

e r e r

ε ε
ε ε

ε ε

ε ε

  (547) 

where:  a is a value from the ( )+1 1 1r ,r ε interval; 

b is a value from the ( )+2 2 2r ,r ε  interval. 

After performing calculations, the approximate solution that we were looking for is the following: 

( )
( )

( ) ( ) ( ) ( )

( ) ( )

+ − + −

=

−

2 1 1 2 2

1 1 2 2 1 2

1 1 2

1 1 2 2

1 2

C r e r e r
ln e r e r
O r r r

r*
e r e r

r r

ε ε
   (548) 

 For ( ) ( )= =1 2e r a , e r b  and = =1 2 0ε ε , this solution is in concordance with the solution marked out 

within the previous paragraph.   

Remark 5.9  
The solution r* given by the previous equality is an approximate one, because in order to solve the equation 

O(r*) = C(r*), we took into account the following elements: 

1) the development in Taylor series keeps only the first two terms; 
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2) the values ( ) ( )∈ + ∈ +1 1 1 2 2 2a r ,r ,b r ,rε ε  were approximated through r1, respectively r2. 

5.4 Bibliographical Notes and Comments  
The content of this chapter approaches an optimum problem regarding the capitalization of compound interest 

which is different from other known problems (the problem of annulment, the minimum deviation problem, the 

equilibrium problem) [54]. Even these known problems are analyzed insufficiently at present and, therefore, 

few theoretical results are marked out.  

 By virtue of the form of the efficiency function, the approached optimum problem requires a special 

mathematical apparatus which calls into requisition to basic results from the game theory (especially the results 

related to minmax optimization).  

 The application performed, extremely significant from practical point of view, represents in fact, a 

particular case of the optimum problem approached. Actually, the solving of the problem can be considered an 

annulment problem for the capitalization polynomial, which has a particular form. Practically, the unit interest 

that we are searching for can be determined as a solution of a higher degree algebraic equation; hence the 

process of solving this equation is performed by means of an approximate method. Therefore, we appealed to 

linearization method (in fact, a variant of the method, which implies the development into Taylor series) 

because Newton method and successive approximation method require extremely difficult calculations. 

 The results presented in this chapter put forward the following basic problems which imply a suitable 

mathematical device: 

1. The problems of the capitalization polynomial problems and their solutions: the annulment problem, the 

minimum deviation problem and the equilibrium problem; 

2. We have also analyzed the capitalization problem with variable interest, by using special efficiency 

functions; because these functions are not continuous, the optimality problem was approached by means of 

maxmin and minmax optimum conditions; 

3. As on the monetary market the determination of equilibrium interest is a core problem, we have presented a 

general method of computing this level of interest, starting from an equilibrium type equation, written in a 

differential form, between the credit supply and the credit demand.  
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MAXMIN OPTIMAL METHOD FOR ANALYZING THE STABILITY OF WORKS IN 

OPEN PIT MINING 

 

 

6.1 Fundamental Results 
When analyzing the stability of mining activities within the open pits, one can use several methods which 

involve numerous calculations and low precision of results. Another weakness of these techniques is that the 

break curve (in plane section) is considered to be well approximated through an arc, which contradicts practice.  

In an open pit mining, the stability of works is specified with the help of the so-called stability factor, 

practically with an angle determined by a specific rule.  

The purpose of this chapter is to present a combined method of establishing an approximate slope breaking 

curve considering the fact that not one approximation through an arc is correct and not one stability angle is 

enough as an indicator.  

This method is based on some experimental results obtained by Felenius (in his opinion, the breaking of the 

slope is possible by an arc) as well as on a methodology proposed by Frölilich and Förster [26] according to 

which the breaking curve follows a normal distribution N (notσ ) for which the rule of calculating the average 

value m and the average square deviation are specified.  

Since in reality the breaking curve there is neither an arc nor a normal distribution, the problem was solved 

based on a game structure. Basically it appears that for the chosen efficiency function the game has no 

equilibrium points (therefore one can never determine exactly breaking curve). As a consequence, the curve 

will be in a band limited by two extreme curves determined as optimal solutions of maxmin and minmax type. 

The proposed method will approximate, in fact, the real breaking curve through a precise curve that meets the 

conditions required by the maxmin and minmax optimal curves.  

 

6.1.1 The Determination of the Optimal Stability Angle for Plane Sliding Surfaces 

In this field of study, in the case of the earth slide of the high walls according to the flat slide, we use the 

quantity: 

 
( )

= +
−

tg 2c sin
s

tg h sin sin

ϕ α
β γ α β β

 (549) 

where: 

tgφ  is the coefficient of friction; 

c is the coefficient of cohesion; 

α is the angle of the high wall; 

β is the angle between the slide plan and the horizontal ones; 

h is the height of the high wall; 

γ is the volumetric weight. 

In order to determine the optimum β (marked β0), we assume the conditions: = <
2

2

ds d s
0, 0

d dβ β
 

The equation =
ds

0
dβ

 leads to the equation: 

 
( )
( )

−
=

−2

sin 2 h tg

sin 2c sin

β α γ ϕ
α β α

 (550) 

The equation (550) becomes (after an immediate calculus): 

 

( )  + + − − + − = 
 

= =

2 2A A A
sin2 cos Asin cos cos 2 sin sin cos 0

2 2 2

h tg a
a , A

2c sin

β α α α β α α α

γ ϕ
α

         (551) 

According to the substitution =tg Aϕ  there occurs =
+ 2

2t
sin2

1 t
β , 

−
=

+

2

2

1 t
cos 2

1 t
β . 

Thus, the equation (551) becomes: 

Chapter 6

143



( ) ( )− + + + − − =2 2t Asin A sin 2t cos 1 Asin sin Asin 0α α α α α α   (552) 

which has the following solutions: 

( ) ( ) − − + ± +− + ± +  = =
− −1,2 2 2 2

sin 1 a cos 1 acos 1 a 1 a
t

sin Acos sin acos

α αα
α α α α

  (553) 

Taking into account the condition <
2

2

d s
0

dβ
 it results at once that the only accepted solution is: 

( ) − − + − + =
−1 2 2

sin 1 a cos 1 a
t

sin acos

α α

α α
    (554) 

Thus the optimum angle 0β  is given by: 

( ) + + + =
−0 2 2

sin 1 a cos 1 a
tg

sin acos

α α
β

α α
    (555) 

This solution is more comfortable from the point of view of calculations than the usual one used in this field of 

study: 

( )( )
( )

( ) ( )
( )

( )
( )

+ + + + +
= − −

+ + + + + + 

2 22 4 4

0 2 2 2 22 2

a 1 a 2 sin 4 a 1 a 2 sin a 1 sin
sin

a 4 a 1 sin a 4 a 1 sin4 a 4 a 1 sin

α α α
β

α αα
   (556) 

For the optimum determined β0 we can calculate, at once, the coefficient of stability of the high wall: 

( )
= +

−0

0 0 0

tg 2c sin
s

tg h sin sin

ϕ α
β α β β

    (557) 

   

 

6.1.2 Frölilich-Förster Method and its Approximation 

Based on initial data ( ,h )α  and according to Felenius method one can draw Table 2 and figure 33. Obviously, 

h is the height of the slope and α  is the slope angle. 

 

Table 2 

Gradient Angles 

1: m  α  
1β  2β  

1:0,58 060  029  040  

1:1 045  028  038  

1:1,5 033 ,41'  026  035  

1:2 026 ,30'  025  035  

1:3 018 ,26'  025  035  

1:5 011 ,19'  025  037  

 

The Cartesian coordinates of point A follow immediately:  

=


=

x htg

y h

α
        (558) 

As a consequence, the equations of lines 1( D )and 2( D ) are as follows:  

 1( D )  = + 1y xtg( )α β   

2( D )  = − − 2y h ( x htg )tgα β          (559) 

 

 

 

 

 

Maxmin Optimal Method for Analyzing the Stability of Works in Open Pit Mining

144



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 33 

 

Since the center of the circle 0 is determined as an intersection of lines 1( D )and 2( D ) , the Cartesian 

coordinates x , y  of point0 result immediately after calculations. 

+ + = + +


+ + =
 + +

2 1

1 2

1 2

1 2

h sin( )cos( )
x

sin sin( )

h sin( )sin( )
y

sin sin( )

α β α β
α α β β

α β α β
α α β β

     (560) 

Therefore, the radius that approximates the breaking curve will be denoted by r and can be determined 

immediately:  

+
=

+ +
2

1 2

sin( )
r h

sin( )sin

α β
α β β α

     (561) 

According to Frölilich – Förster methodology, the breaking curve is an arc of normal distribution N  (not σ ) 

(fig.34) where statistical indicators, not σ , are determined precisely.  

It is clear that actual deployment will be approximated by the so-called theoretical dislocation made on the 

approximation of a breaking curve through an arc.  

 From Forster, the slope breaking curve presents a normal type distribution N (m,σ), result proven only 

experimentally. For determining the average value m and mean square deviation σ we have a precise calculation 

method: 

 = + = = + +2 2

c c c cm A Btg , D , D A D B D 2ABD Dϕ ϕ ϕϕ σ ρ   (562) 

where: 

 =

22r sin
2A

Qa

α

, 

 
 

= + 
 
 

r cos
B 1

2a
sin

2

σ α
α     (563) 

c, φ represents the cohesion coefficient, respectively the friction coefficient; 

Q represents the weight of the dislocated volume; 

Dc, Dφ represent the distribution of measurement errors for c and ϕ ; 

rcφ represents the correlation coefficient between cohesion and friction; 

=
⋅
h

sin
2 2 r

α
, 

y 

x 
0 

h 

4,5h 

β2 

α 

β1 
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  
+  

 +   = ⋅ − + −   + +    
 

2

2 0
2 02

00 0 0

2 2 2 2

0 0 0 0

x
y ctg 1

yx ctg x y
a h ctg 1

x y x y

α
α

α    (564) 

 

r, x0, y0 represent the radius, respectively the Cartesian coordinates of the circle from figure 34. 

 

 
 

Figure 34 

 

 The breaking curve may be approximated through a circle arc which passes through the points C1 and 

C2 (where the normal distribution N (m,σ) intersects Oy and the right y = h - figure 35) and is tangent to the 

optimum slope right. 

 The coordinates x, y  of the tangent point M( x, y ) are determined starting form the curve f1 given by: 

 ( )
( )−

−

=

2

2

x m

2
1

1
f x e

2

σ

πσ
     (565) 

and the right ( )2 2f , f x x,λ λ= real parameter arbitrary chosen.   

Applying the tangential conditions of the right to the curve in the point M( x, y ), 

( ) ( ) ( ) ( )= =' '

1 2 1 2f x f x , f x f x , after an immediate calculation it results: 

 
+ −

=
2 2m m 4

x
2

σ
  

− −
−

=

2 2

2

m m 4

8
1

y e
2

σ

σ

πσ
, >m 2σ  (566) 

 The right determined by the origin and the point M( x, y ) represents the slope given by the following 

relation: 

 

( )

− −
−

= =
+ −

2 2

2

m m 4

8

0 0
2 2

2e
m tg

2 m m 4

σ
σ

β
πσ σ

    (567) 

 The circle (O(x0,y0),r) determined by the points C1, C2 and M  (figure 36) may be found easily, as the 

Cartesian coordinates x0, y0 and the radius r are given by the following relations (568). 1C  and 2C  are the 

points in which the normal distribution intersects Oy  and =y h , and M is the tangential point to the optimal 

slope (figure 35).  
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Figure 35 

 

The center 0 0O( x ,y )and the radius r of this circle are determined by solving the following nonlinear system: 

( ) ɶ( ) ( ) ɶ ɶ( )
ɶ( ) ɶ ( )

ɶ ɶ
ɶ
( ) ɶ( ) ( ) ɶ ɶ( )

ɶ( ) ɶ ( )

 + − − + − + − =  − + −  

 + − − + − + −+ −

= −
 − + −  

 = + − +




2 22 2 2 2

0

2 22 2 2 22 2 2

0

2 2 2

0 0 0

h p y p p h x y p
x

2 y p x p h

h p y p p h x y p
x y p

y x
2 2 y p x p h

r p y 2 py x

τ

τ

τ

τ
                   (568) 

where  

= −m
2

σ
τ  

−

=

2

2

m

e
p

2

σ

σ π
 

ɶ −
=

2 2

0

0

x r
x

x
ɶ = −2 2

0

0

t
y ( x r )

x
 

 − − −
 
 

=
+ −

2
2 2

4

m m 4

64

2 2

2 e
t

2 m m 4

σ

σ

σ π σ
                                             (569) 

Besides,  

 
 

= + + 
 
 

2
2r

r cos2 2m c 1 tg
Qa 2a

sin
2

γ γ
δ

ϕ
γ

 ,  =
r

sin
2 h 2

γ
                  (570) 

 
 

= + + 
 
 

2
2r C

r cos2 2s 1 tg
Qa 2a

sin
2

α α
δ

ϕ
α

                                                 (571) 

If s is the stability angle of the slope, its caving probability ca be immediately determined: 

− =  
 

1 m
P( s 1) φ

σ
≺      (572) 

where φ is the Laplace function.  

In this situation, the coefficient s and the stability reserve Ds are the following: 
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+
= 0

0

Qtg cos Ch
s

Q sin

γ β
β

 

( )
( )

−
− = +

−
0

s

0 0

sin 2C sin
D 1

cos sin h sin sin

γ β α
γ β γ α β β

    (573) 

where γ is the specific weight. 

 The additional dislocated surface S may be calculated approximately 

  ( )−
≈ −

x x
S 1 y

2
 (figure 36)   (574) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 36 

Remark 6.1 

The accuracy of this method is proven only experimentally.  

Performing calculations, we get: 

( )

( )

−

−

 + −
=




− −
= =


 + − =


2

2
2 2

2

2

m m 4
x

2

m m 4
y 2e

8

2 m m 4 2
x

4e

∆

∆

σ

σ
∆

σ

πσ σ

     (575) 

Given data from table 2, we can immediately show that: 

= = 0

0 opt 41β α  

Therefore, for =h 20m and = 041α , we can determine the stability coefficient s 1.26= (we assumed that the 

sliding curve is not a plane one). Besides, 
ns 0.26∆ = .  

 

 

y 

x 
0 

M 

x  

� 

O (x0, y0) 

C1 

C2 

x  
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6.2 Approaching the Problem from Maxmin Optimality Point of View 
We start from Forster’s idea which states that the slope breaking curve is an arc correspondent to a distribution 

N (m,σ), and the statistical indicators m (average value) and σ (mean square deviation) are calculated precisely 

depending on the geo-mechanic characteristics of the rocks. 

Practically, since there are infinity of probabilistic distributions with the same average value m and mean 

square deviation σ and we need to select them with an efficiency function that imposes a certain optimum 

criteria. 

If we note with p the distribution function and with x the slope breaking point, the efficiency function is 

considered the function f defined as [51]: 

 ( )( ) ( ) ( )= +∫
x

0

f x, p t p t dt mp x      (576) 

with the following conditions: 

 ( )
∞

=∫
0

p t dt m   ( )
∞

= +∫ 2

0

2 tp t dt m σ  ( ) =p 0 1   (577) 

 This efficiency function is alike the one introduced by Ghermeier in the system reliability study and it 

practically means that the area of the curved triangle ABC is equal to the area between Ox and p graphic, 

≥ +*x  x  m , *x  representing the slope breaking point (figure 37). 

 
 

Figure 37 

 

 Analytically, this property is expressed by the following relation: 

 ( ) ( )
∞

= ∫
x

mp x p t dt      (578) 

 If we consider a game against nature where the efficiency function is F, we can show easily that, 

regarding the games theory, this game doesn’t present an equilibrium point, so the following problem: 

 
( )

( )( )
( )

( )( )=
x p t p t x

max min F x, p t minmax F x, p t    (579) 

doesn’t have any solutions. 

 Practically, this means that the real breaking curve can never be determined precisely, it can be mostly 

approximated. 

 Therefore we need to solve the following problems: 

 ( )
( )

( )( )1
x p t

P maxmin F x, p t , ( )
( )

( )( )=2
p t x

P minmax F x, p t   (580) 

and to determine only one belt where the real breaking curve is found (figure 38). 
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Figure 38 

 

 The problem ( )
( )

( ) ( )
 

+ 
 
∫
x

1
x p t

0

P max min p t dt mp x  is solved by using method from the games theory; the 

breaking point x
*
 is the solution of the following equation: 

( ) ( )− − − + =
4 2m x x 2m x 0σ σ      (581) 

 This equation may only approximately be solved, the accepted solution is ≈ −*x m
2

σ
, and the 

correspondent distribution function being exponential type. 

Remark 6.2 

The equation below has four real roots 1 2 3 4x ,x ,x ,x located in the following intervals: 

 
∈ −∞ −  
 

1x ,m
2

σ
, 

 
∈ −  
 

2x m ,m
2

σ
, 

 
∈ +  
 

3x m,m
2

σ
, 

 
∈ + ∞  
 

4x m ,
2

σ
 

After approximating the solutions of equations using the values −m
2

σ
, not +m

2

σ
, the errors 1 2 3, ,ε ε ε that 

are obtained are as follows:  

( )

  = − ⇒ = −  
 


= ⇒ = −


  = + ⇒ = −   

2

1 1

2

2 2

2

3 3

3
x m m

2 4

x m m

7
x m m

2 4

σ
ε σ σ

ε σ σ

σ
ε σ σ

     (582) 

From the experimental data presented in [26], for the height =h 20m of the slope, one can get the smallest 

errors in the approximate case = −x m
2

σ
, according to the following table (Table 3). 
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Table 3 

h  α  m  σ  
−m

2

σ
 

ε  

20 040  1.51 0.378 1.08 -0.615 

20 050  1.26 0.342 0.849 -0.337 

20 055  1.12 0.325 0.753 -0.195 

20 060  1.17 0.306 0.676 -0.183 

20 065  0.98 0.301 0.594 -0.118 

 

Approximation ≈ −x m
2

σ
was adopted on the consideration that it is only rational to choose the root that is 

the nearest to point where the curve proposed by Förster meets top edge of the slope.  

Based on the condition that the graph of the function:  

( )

( )−
−

=

2

2

x m

2
x

1
f e

2

σ

πσ
      (583) 

should cross the line corresponding to the height of the slope, the point x  that we were searching for results 

immediately: 

( )= − − 2x m 2 ln 2σ πσ       (584) 

 The problem ( )
( )

( ) ( )
 

= + 
 
∫
x

2
p t x

0

P minmax p t dt mp x  admits also an exponential distribution function and 

the falling point x
**

 is found in the interval [x1,x2], where    x1 = me
-z
,  −= +z

2x me mz , z being the solution of 

the following equation: 

 − −+ + − =2 z z

2
e 2e 1 0

m

σ
      (585) 

 Obviously, the most disadvantageous situation corresponds to the solution of the problem (P1); 

basically it corresponds to the case where the falling curve is least favorable. 

Remark 6.3 

Determining the equation of the circle defined by the three points 1 2 3M ,M ,M  allows the immediate calculation 

of the following elements: 

 - The breakage curve (represented by 1 2M ,M  circle arch) 

 - The optimum slope angle (represented by the tangent angle from the origin to the circle determined 

by the three points 1 2 3M ,M ,M ) 

- The breakage probability (calculated based on the equality 
− =  

 

1 m
p φ

σ
, where φ  is Laplace function). 

For a height of the slope =h 20m  and different variants α  of the slope’s angle, the resulted presented so far 

can be grouped in the following table 4.   

   

Table 4 

h  α  m  σ  Breakage 

probability 

Optimum 

angle 

20 40
0
 1.5143 0.378 0.08 39

0 

20 50
0 

1.2585 0.342 0.22 46
0 

20 55
0 

1.1167 0.325 0.31 50
0 

20 60
0 

1.0676 0.360 0.41 57
0 

20 65
0 

0.9825 0.301 0.52 58
0 
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6.3 The Determination of Optimal Stability Angle by Using a Combined Maxmin Method 
The aim of this paragraph is to present a combined method for determining the optimum slope angle. The 

theoretic support is representing by using the maxim probability criteria, which is equivalent, for the analyzed 

problem, with the maxmin and minmax criteria. 

Starting from the initial data ( ),hα  (α  represents the gradient angle of the slope and h  represents the height of 

the slops), the angles 1β  and 2β  are determined according to the following table 5: 

 

Table 5 

Gradient Angles 

1: m  α  1β  2β  

1:0,58 °60  °29  °40  

1:1 °45  °28  038  

1:1,5 ′°33 41  °26  °35  

1:2 ′°26 30  °25  °35  

1:3 ′°18 26  °25  °35  

1:5 ′°11 19  °25  °37  

 

The combined method suggested above implies the following stages [51]. 

Stage 1 

Felenius: ( ) ( ) ( )→ →1 2 1 1,h , C O ,rα β β  

The center 1O  of the first circle is determined as an intersection of two lines ( )1D , ( )2D  of gradients 

( )= +1 1m tg α β , = −2 2m tg β  which pass through the origin and the point A  respectively (figure 39). 

 

 
Figure 39 

 

For a height h of the slope and a gradient α , the Cartesian coordinates of the point A result directly: 

=

=

x hctg

y h

α
      (586) 

Therefore, we have: 
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( ) ( )
( ) ( )

= +

= − −
1 1

2 2

D y tg x

D y h tg x hctg

α β

β α
     (587) 

As ( ) ( )= ∩1 2O D D , the Cartesian coordinates 1x , 1y  of the point 1O  are determined directly: 

( ) ( )
( )

( ) ( )
( )

+ +
=

+ +

+ +
=

+ +

2 1

1

1 2

1 2

1

1 2

sin cos
x h

sin sin

sin sin
y h

sin sin

α β α β
α α β β

α β α β
α α β β

     (588) 

The radius of the circle with the centre 1O  and which passes through the origin is also determined through 

direct calculation: 

( )
( )

+
=

+ +
2

1

1 2

sin
r h

sin sin

α β

α β β α
     (589) 

Fröhlich-Förster: →1 1r m  

The mean value 1m  is calculated on the basis of the equality: 

= +2

1 1 1

C cos tg
m r r

aQ a

α δ ϕ
     (590) 

where: 

  
+   +   = ⋅ − + −   + +   

  

2

2 1
2 12

11 1 1

2 2 2 1

1 1 1 1

x
y ctg 1

yx ctg x y
a h ctg 1

x y x y

α
α

α     (591) 

� C is cohesion coefficient of the rocks; 

� tgϕ  is the friction coefficient; 

� Q is the weight of the sliding body. 

Maxmin – minmax: ( )→1 1 1m ,Pσ  

The following equation is considered: 

( ) ( )− − − + =
4 2

1 1m x x 2m x 0σ σ     (592) 

For = 1m m  and = − 1x m
2

σ
, from the equality (592), dispersion 1σ  results directly. 

Considering the normal distribution ( )1 1N m ,σ , 
 −

=  
 

1
1

1

1 m
P φ

σ
 can be computed directly, where φ  is 

Laplace’s function. 

For a fixed error > 0ε  (and sufficiently small), 1P  is compared with ε . 

If ≤1P ε  one can immediately calculate the optimal angle of the slope from: 

( )

( )
+

− − −

=
+ −

2
2 2

1 1 1

2
n 1

m m 4

8

2 2

1 1 1 1

4e
tg

2 m m 4

σ

σ

α
πσ σ

    (593) 

If >1P ε , the next stage follows. 

Stage 2 

Felenius: ( ) ( )→1 1 2 2C O ,r C O ,r  

The Cartesian coordinates of the new centre ( )2 2 2O x ,y  are determined; the centre is situated at the distance 

0.3h  from 1O  (figure 39). 
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The point 2O  being on the line ( )2D  we shall have: 

( ) ( )

= − + +


= − + −

2 2 2 2

2 2

2 1 2 1

y x tg h tg ctg

0,3h x x y y

β β α
    (594) 

Having made the calculations it results immediately that 2x  is greatest solution of the equation: 

( ) ( )

( )

− −  + + + +  + 

+ + + + + − =

2 2

2 1 2 1 2 1 2 1

22

1 1 2 1

x 1 tg 2x x tg y h tg ctg x

x y h tg ctg x 0,09h 0

β β β α

β α
   (595) 

From (594) and (595) the Cartesian coordinates ( )2 2x , y  of the point 2O  as well as the radius 2r  result directly: 

( )= + −
22

2 2 2 2 2r x htg ctg x tgβ α β     (596) 

Fröhlich-Förster: →2 2r m  

The mean value 2m  is calculated similarly to stage 1: 

= +2

2 2 2

C cos tg
m r r

aQ a

α δ ϕ
     (597) 

and the significance of the parameters is preserved. 

Maxmin – minmax: ( )→2 2 2m ,Pσ  

With 2m  known from the equation ( ) ( )− − − + =
4 2

2 2 2m x x 2m x 0σ σ , for = − 2
2x m

2

σ
, 2σ  is determined. 

 −
=  

 

2
2

2

1 m
P φ

σ
 is calculated; if ≤2P ε , then the optimal angle α  of the slope will be given by: 

( )

( )

− − −

=
+ −

2
2 2

2 2 2

2
2

m m 4

8

2 2

2 2 2 2

4e
tg

2 m m 4

σ

σ

α
πσ σ

    (598) 

If >2P ε , the next stage follows. 

Generally, if in the stage n we have ( )n n nO x ,y , then we shall have: 

Felenius: ( ) ( )+ + +→n n n n 1 n 1 n 1C O ,r C O ,r  where the Cartesian coordinates of the new centre ( )+ + +n 1 n 1 n 1C O ,r  are 

determined as follows: +n 1x  is the greatest solution of the equation: 

( ) ( )

( )
+ ++ −  + + + +  + 

+ + + + + − =

2 2

n 1 1 n 1 n 2 n 2 n

22

n n 2 n

x 1 tg 2x x tg y h tg ctg x

x y h tg ctg x 0,09h 0

β β β α

β α
  (599) 

+n 1y  is given by the equality: 

+ = − + +n 1 2 2 2y x tg h tg ctgβ β α      (600) 

+n 1x , +n 1y  being determined, they allow the immediate calculation of the radius of the circle passing through the 

origin and through +n 1O : 

( )+ = + −
22

n 1 n 2 n 2r x htg ctg x tgβ α β     (601) 

Fröhlich-Förster: + +→n 1 n 1r m  

+ = +2

n 1 n n

C cos tg
m r r

aQ a

α δ ϕ
     (602) 

where: 
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+
+

++ + +

+ + + +

  
+   +   = ⋅ − + −   + +   

  

2

2 n 1
2 n 12

n 1n 1 n 1 n 1

2 2 2 2

n 1 n 1 n 1 n 1

x
y ctg 1

yx ctg x y
a h ctg 1

x y x y

α
α

α   (603) 

Maxmin – minmax: ( )+ + +→n 1 n 1 n 1m ,Pσ  

In a similar way to the previous stages, +n 1σ  is calculated which allows the calculation of the value 

+
+

+

 −
=  

 

n 1
n 1

n 1

1 m
P φ

σ
 which will be compared with the error ε . 

If + ≤n 1P ε , then the optimal angle α  of the slope will be given by: 

( )

( )

+ + +

+

− − −

+ + + +

=
+ −

2
2 2

n 1 n 1 n 1

2
n 1

m m 4

8

2 2

n 1 n 1 n 1 n 1

4e
tg

2 m m 4

σ

σ

α
πσ σ

    (604) 

If + >n 1P ε , the next stage follows. 

On the basis of the equalization principle, there will be ∈m ℕ  so that ≤mP ε  and so the algorithm stops. 

Remark 6.4 

This combined method has two great advantages: 

1) it is more rigorous than each of the three methods taken separately; 

2) through calculations are numerous by making up the algorithm for the calculation of the 

necessary elements, calculation it self raises no problems. 

 

 

6.4 Bibliographical  Notes and Comments 
In the technical literature, there are known some important techniques of analyzing the stability of works for 

open pit mining. Some interesting comments must be brought into focus: 

� As a matter of fact, the breakage curve (in sectional view) is not a circular arc; 

� For all that, if we assume that the above mentioned curve were a circular arc, then: 

- the methodologies used in order to determine the centers are debatable; 

- if the center O is not the optimum chosen center (by the same token, this center is roughly estimated), then the 

signs “+” and “–“ based on the positions of active and passive prisms will lead us to erroneous results; 

- Frölilich's approximations:  

=∑ i i

i

aQ
G sin

r
θ  

=∑ i i

i

G cos Q cosθ δ  

  from Goldstein's method does not specify the error that has been made.  

� For this reason, >s 1 does not necessarily imply the condition that the slope breaks; 

� Frölilich- Förster's idea related to the fact that the breakage curve (in sectional view) complies with the 

normal distribution ( )N m,σ is not rigorously demonstrated, but only experimentally proven. Yet, statistical 

parameters m and σ  are rigorously determined.  

� The slope breakage phenomenon can be analyzed through the following condition: 

−  = 
 

1 m
0θ

σ
 

 This requirement is more rigorous than the above condition - >s 1 , because the calculus technique 

which was used in order to determine s is an approximate one (therefore, it is possible that s exceed 1 and the 

slope still breaks).  

� We have taken into consideration just a few cases { }( )= ∈ 0 0 0 0 0h 20m, 40 ,50 ,55 ,60 ,65α .  The 

probabilities of slope breakage have values between 0.08 and 0.52, while no risk limit is being introduced (this 
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means that we cannot indicate a limit value which allows us to use the breakage probability as a decisional 

instrument).  

� The determination of the stability coefficient for the case of plane curve slipping is very convenient in 

terms of calculation: 

( ) + + + =
−0 2 2

sin 1 a cos 1 a
tg

acos sin

α α
β

α α
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