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Abstract: An update on vortex identification, general vortex-identification requirements, and related vorticity 
and circulation aspects is presented. 
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1 Introduction 
Fluid-mechanical problems are often dominated by 
vortical structures. Though the intuitive idea of a 
vortex is of fundamental importance for fluid 
mechanics, there is still no consensus on the 
generally acceptable and rigorous definition of this 
distinct flow phenomenon. A large number of 
vortex-identification methods, vortex definitions, and 
vortex-core visualization techniques have been 
proposed in the literature during last three decades 
[1-22]. Various vortex-identification schemes are 
stated in Table 1 where their basic characteristics 
and/or criteria are pointed out (some well-established 
symbols used in Table 1 are explained in the 
Appendix). In Table 1, the region-type definitions of 
a vortex are distinguished from the line-type 
definitions of a vortex core. In practice, these 
methods may be effectively combined [23]. Though 
there is no final consensus on what is a vortex, fluid 
vortices have been mostly somehow related to a 
quite mathematically rigorous and physically well-
established quantity expressing an average angular 
velocity of fluid elements, the so-called vorticity. 
However, in vortex identification, this quantity plays 
its role less directly than expected, usually through 
the whole velocity-gradient tensor  needed 
especially in popular local methods. 

u∇

 In the two following sections, (i) general vortex-
identification requirements, and (ii) new vorticity 
aspects of vortex identification are discussed. It is 
shown that from the physical viewpoint the general 
requirements, vorticity and circulation aspects pose 
challenges for progress in vortex identification. 
 
 
2 Vortex-Identification Requirements 
The requirements for vortex identification, some of 
them discussed below, are summarized as follows: 

 
• validity for compressible flows 
• validity for variable-density flows 
• determination of the local intensity of swirling 
 motion (to describe inner vortex structure) 
• determination of the swirl orientation 
• determination of the integral vortex strength 
• vortex-axis identification 
• specific vortex-axis requirements: existence and 
 uniqueness for each connected vortex region 
• avoidance of the subjective choice of threshold 
 in the vortex-boundary identification 
• allowance for an arbitrary axial strain vs. orbital 
 (spiralling) compactness 
• non-local properties of the vortex phenomenon 
• ability to provide the same results in different 
 rotating frames 
 
     The widely used local criteria mentioned in the 
Appendix (Q, Δ, λ2, and λci) hold for incompressible 
flows only. For example, considering the approach 
of the λ2-method, additional terms occur in the 
course of derivation for compressible fluids, as 
analyzed by Cucitore et al. [13]. 
     It has been recently shown by Kolář [24] that 
from the most popular region-type identification 
schemes (Q, Δ, λ2, and λci) only the Δ-criterion and 
the closely associated λci-criterion are directly 
extendable to compressible flows. 
     There are at least two controversial requirements 
appearing in the literature on vortex identification. 
The allowance for an arbitrary axial strain clearly 
stands against the requirement of orbital (spiralling) 
compactness. According to [19], rapid radial 
spreading out (or, similarly, axial stretching out) of 
instantaneous streamlines may not appear to qualify 
the region as a vortex, as depicted in a simplified 
manner in Fig. 1. 
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Table 1 Vortex-identification methods.

Author/s & Year of publication Basic characteristics/criteria, R/L: Region/Line-type method 
Dallmann (1983) [1] discriminant Δ-criterion: complex eigenvalues of , R u∇
Vollmers et al. (1983) [2] discriminant Δ-criterion: complex eigenvalues of , R u∇
Hunt et al. (1988) [3] Q-criterion: second invariant of u∇ , R 
Chong et al. (1990) [4] discriminant Δ-criterion: complex eigenvalues of , R u∇
Levy et al. (1990) [5] extrema of normalized helicity density, L 
Berdahl & Thompson (1993) [6] swirl parameter, similar to λci-criterion, R 
Banks & Singer (1995) [7] vorticity-predictor & pressure-corrector scheme, L 
Jeong & Hussain (1995) [8] λ2-criterion: second eigenvalue of , R 22 ΩS +
Sujudi & Haimes (1995) [9] eigenvectors of u∇ , tetrahedral cells, L 
Portela (1997) [10] scheme based on set theory, kinematic set concept, R 
Kida & Miura (1998) [11] sectional-swirl & pressure-minimum scheme, L 
Roth & Peikert (1998) [12] parallel-vectors higher-order method, L 
Cucitore et al. (1999) [13] non-local particle-trajectory method, R 
Strawn et al. (1999) [14] lines of maximum vorticity, L 
Zhou et al. (1999) [15] swirling-strength λci-criterion: complex eigenvalues of , R u∇
Roth (2000) [16] generalization of earlier line-type methods, L 
Sadarjoen & Post (2000) [17] advanced streamline method, R 
Jiang et al. (2002) [18] scheme based on combinatorial topology, R 
Chakraborty et al. (2005) [19] enhanced swirling-strength λci-criterion, R 
Haller (2005) [20] objective frame-independent vortex definition, R 
Zhang & Choudhury (2006) [21] Galilean-invariant eigen helicity density, R 
Kolář (2007) [22] triple decomposition of u∇ : residual vorticity, R 

 
     The allowance for an arbitrary axial strain of Wu 
et al. [25] has become a subject of recent debate 
(Chakraborty et al. [26]; Wu et al. [27]) as this 
requirement, basically, does not conform to the 
orbital compactness proposed in [19]. Note that for 
an incompressible flow the axial strain is directly 
related to the spiralling compactness [19, 26]. 
According to [19, 26], the orbital (spiralling) 
compactness requires for vortex-identification 
purpose an appropriate threshold dictated by the 
length and time scales of the given problem. 
However, following [27], adding a threshold value to 
the local axial strain or to the orbital compactness is 
subjective and cannot be rationalized. 

     The local intensity of swirling motion is not only 
necessary for the description of the inner vortex 
structure but also for determining the integral 
strength of a vortex. According to the widely used 
concept, the strength of a vortex is calculated as the 
circulation along the vortex boundary, or 
equivalently due to Green’s theorem, as the surface 
integral of vorticity over the planar vortex cross 
section. However, vorticity absorbs the local effect 
of an arbitrary "superimposed shear" what makes the 
circulation a shear-biased vortex characteristic as 
discussed by Kolář [22, 28]. The vortex cross section 
and vortex boundary can be generally defined in 
terms of the local vortex intensity as shown in Fig. 2. 

 
 
 
 
 
 
 
 
 
 
 

 

"vortex" axis 

radial stretching axial stretching 

Fig. 1 Vortex stretching. 
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planar simply-connected 
vortex cross section: 
defined by the non-zero 
vortex intensity vortex boundary: 

defined by the zero 
intensity contour 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Generally defined vortex cross section. 
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Fig. 3 Interpretation of the residual vorticity in 2D: the least-absolute-value angular velocity.
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     The vortex region, vortex boundary and, 
consequently, the integral vortex strength are directly 
dependent on the choice of the local vortex intensity 
(see [28] where the unsteady Taylor vortex is 
examined in detail). Kolář [22] proposed to use in 
vortex identification instead of vorticity its residual 
portion, labelled residual vorticity, associated with 
the local residual rigid-body rotation near a point (to 
be discussed in the next section). It is interesting that 
the integral quantity based on the residual vorticity 
labelled "residual circulation" can be calculated in a 
similar manner as the conventional circulation as the 
surface integral over the planar vortex cross section. 
Residual circulation has already proved its 
usefulness for the description of single and twin jets 
in crossflow [29]: for different nozzle arrangements 
an almost universal behaviour of the residual 
circulation has been revealed for the resulting 
secondary-flow counter-rotating vortex pair. For an 
arbitrary threshold level the region of the residual 
vorticity forms a subdomain of the vorticity region. 
     The ability to provide the same results of vortex 
identification in different rotating frames has to do 
with the so-called material objectivity or frame 
indifference (i.e. both translational and rotational 
independence [20, 30]) important in situations where 
there is an unclear choice of a reference frame. 
 
 
3 Vorticity and Vortex Identification 
Due to its shear-absorbing nature, vorticity − an 
average angular velocity of fluid elements − plays its 
role in vortex identification less directly than 
expected, usually through the complete information 
contained in the velocity-gradient tensor u∇ , as 
needed especially in popular local methods (Q, Δ, λ2, 
and λci), see the Appendix. However, all these 
methods are not entirely free from the shear-based 
bias in the determination of vortex geometry [22]. 
The novel decomposition technique of Kolář [22] 
dealing with the triple decomposition of  results 
in two additive vorticity parts (and in two additive 
strain-rate parts) of distinct nature, the shear 
component and the residual one. The triple 
decomposition of  has to do explicitly with three 
types of local motion near a point: rigid-body 
rotation, elongation (contraction), and shearing 
motion. The residual vorticity obtained after the 
extraction of an "effective" shearing motion 
represents a sought local intensity of the swirling 
motion of a vortex. 

u∇

u∇

     There is a straightforward interpretation of the 
residual vorticity in 2D in terms of the least-
absolute-value angular velocity of all line segments, 

within the flow plane, going through the given point, 
Fig. 3 (here Ω is angular velocity of a line segment 
near a point, ΩAVERAGE corresponds to vorticity). This 
approach "reestablishes" the relationship between a 
vortex and vorticity, namely its specific portion, the 
residual vorticity. The method is applicable to 
compressible and variable-density flows. 
     Though Galilean-invariant quantity, vorticity is 
not objective and provides different results in 
different rotating frames, that is, the property of 
frame indifference, Leigh [30], is not fulfilled. 
Similarly, the residual vorticity is not objective and 
depends on the angular velocity of an observer's 
reference frame. All the most popular u∇ -based 
vortex-identification schemes (Q, Δ, λ2, and λci) are 
not objective. This fact has motivated Haller [20] to 
his sophisticated vortex definition which is objective 
relative to an arbitrarily rotating reference frame. 
     Considering new techniques of vorticity 
decomposition, it is claimed by Wedgewood [31], 
who proposed a new vorticity decomposition, that 
"there is no question that objective information is 
contained in the vorticity tensor." His results clearly 
indicates that the objective portion of vorticity is 
strongly related to the objective strain-rate tensor and 
the deformational aspects of the flow. 
     Let us consider a simple flow example with 
rotationally unclear choice of reference frame: the 
two-dimensional merging of two identical co-
rotating vortices, schematically shown in Fig. 4. 

 
 initial stage 

(merging onset)
 
 
 
final stage 

 
 
 
 
 
 
 
 

 

Fig. 4 Corotating vortices: an unclear choice 
of reference frame. 

 
In this case, one should cautiously use not only 
vorticity, but also the residual vorticity or any other 

u∇ -based identification scheme. The vortex-axis 
uniqueness for each connected vortex region may be 
easily broken. The disappearance of originally single 
vortices separated by a vortex boundary is correctly 
viewed in the rotating reference frame stuck on the 
center-to-center connecting line while the evolution 
of the resulting vortex of the merging process is 
correctly viewed in the non-rotating reference frame. 
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4 Conclusions 
Vortex identification represents a challenging field 
of modern fluid mechanics. An update on vortex 
identification, vortex-identification requirements, 
and related vorticity aspects is presented. 
     The physical reasoning for vortex-identification 
methods and their application to vortical flows go 
hand in hand with progress in data acquisition: flow 
modelling and numerical simulation of transitional 
and turbulent flows, especially direct numerical 
simulation (DNS) and large-eddy simulation (LES). 
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Appendix: Local vortex-identification methods 
The most popular schemes (Q, Δ, λ2, and λci) are 
region-type criteria sharing a basis in  which are 
local in character. However, the significance of line-
type methods (e.g. Roth [16]), cannot be ignored.  

u∇

     Q-criterion [3]: Vortices of an incompressible 
flow are identified as connected fluid regions with a 
positive second invariant of the velocity-gradient 
tensor , , S is the strain-rate tensor, 
Ω is the vorticity tensor (in tensor notation below the 
subscript comma denotes differentiation), 

u∇ ΩSu +=∇

( ) ( 0
2
1

2
1

2
1 222 >−=−=−≡ SΩ,,,,, ijjiijjiii uuuuuQ )

(1) 
that is, as the regions where the vorticity magnitude 
prevails over the strain-rate magnitude. 
     Δ-criterion [1, 2, 4]: Vortices are defined as the 
regions in which the eigenvalues of  are complex 
and the streamline pattern is spiraling or closed in a 
local reference frame moving with the point. For 
incompressible flows, the characteristic equation for 
the eigenvalues λ of  reads 

u∇

u∇
03 =−+ RQλλ                                                       (2) 

where Q and R are the second and third invariants of 
, Q is given by (1), u∇ ( )jiuR ,Det≡ . To guarantee 

complex eigenvalues of  the discriminant Δ of 
Eq. (2) should be positive 
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The vortex-identification criterion (3) is valid for 
incompressible flows only. The Q-criterion is clearly 
more restrictive than Δ-criterion (cf. (1) and (3)). 

     λ2-criterion [8]: This criterion is formulated on 
dynamic considerations, namely on the search for a 
pressure minimum across the vortex. The strain-rate 
transport equation reads 

ijkjikkjikkkij
ij pSSΩΩS
t

S
,, ρ

ν 1
D

D
−=++−                      (4) 

where the pressure Hessian  contains information 
on local pressure extrema. The occurrence of a local 
pressure minimum in a plane across the vortex 
requires two positive eigenvalues of the tensor . 
By removing the unsteady irrotational straining and 
viscous effects from the strain-rate transport equation 
(4) one yields the vortex-identification criterion for 
incompressible fluids in terms of two negative 
eigenvalues of . Vortex region is defined as a 
connected fluid region with two negative eigenvalues 
of  (that is, if these eigenvalues are ordered, 

ijp,

ijp,

22 ΩS +

22 ΩS +
321 λλλ ≥≥ , by the condition 02 <λ ). 

 λci-criterion [15, 19]: The Δ-criterion has been 
further developed into the so-called swirling-strength 
criterion denoted as λci-criterion. The time period for 
completing one revolution of the streamline is given 
by 2π/λci [19]. The two criteria are equivalent only 
for zero thresholds (Δ=0 and λci=0). 
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