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Abstract: - Fourier transform, wavelet transformation, and Hilbert-Huang transformation (HHT) can be used to 
discuss the frequency characteristics of linear and stationary signals, the time-frequency features of linear and 
non-stationary signals, the time-frequency features of non-linear and non-stationary signals, respectively [1-6].  
HHT is a combination of empirical mode decomposition (EMD) and Hilbert spectral analysis. EMD uses the 
characteristics of signals to adaptively decompose them to several intrinsic mode functions (IMFs). Hilbert 
transforms (HTs) are then used to transform the IMFs into instantaneous frequencies (IFs), to obtain the signal’s 
time-frequency-energy distributions. HHT-based time-frequency analysis can be applied to natural physical 
signals such as earthquake waves, winds, ocean acoustic signals, mechanical diagnosis signals, and biomedical 
signals. In previous studies, we examined mobile telemedicine, chaos-based medical signal encryption, 
HHT-based time-frequency analysis of the electroencephalogram (EEG) signals of clinical alcoholics, and sharp 
wave based HHT time frequency features [7-21]. In this chapter, we discuss the application of HHT-based 
time-frequency analysis to biomedical signals such as EEG, and electrocardiogram (ECG) signals. 
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1 Electroencephalograms (EEGs)       
Much of the information carried by 
electroencephalogram (EEG) signals is still not 
understood. Lin et. al. [19, 20] discussed the 
application of the Hilbert-Huang transform (HHT) 
method to FP1 EEG signals obtained from an 
alcoholic observer viewing a single picture, and for 
the same observer viewing two different pictures. 
They used the intrinsic mode functions (IMFs), 
instantaneous frequencies (IFs), and Hilbert energy 
spectra to analyze the energy-frequency-time 
distributions of normal and alcoholic observers 
watching two different pictures. They found that the 
maximum amplitude of the EEG signals recorded 
from normal control observers was larger than that 
from alcoholic observers.  The numbers of brain 
cells that were stimulated and emitted a higher 
voltage was greater in alcoholic observers than in 
the normal control observers. Further, compared 
with normal observers, the amplitude of the IMFs of 
the alcoholics’ clinical EEG signals was low. They 
also found that the IFs of alcoholic subjects were 
larger than those of normal observers. With respect 
to the variation in the energy-frequency distribution 
of the HMFs of alcoholic and normal observers, Lin 

et. al. [19, 20] demonstrated that the high-energy 
signals of both groups are distributed in the 
low-frequency band. The energy-frequency 
distribution of the IMFs of the alcoholics’ clinical 
EEG signals was larger than that of normal 
observers. HHT-based method have proven useful 
in the study of epilepsy. Lin et. al. [21] obtained a 
sharp (I) EEG signal from the T3 channel for a 
clinical patient suffering from epilepsy. In this case, 
a sharp wave was generated in the interval between 
0.324 s and 0.444 s, it had a length of 120 ms, and an 
amplitude of 73.63 mV.  The authors present the 
IMFs, IF, and time-frequency-energy distributions 
for the sharp and normal waves. Clear 
energy-frequency-time variations in sharp and 
normal waves with a transmission bit error rate 
(BER) of 710−  were demonstrated. HHT analysis 
revealed four IMFs and a residual function of sharp 
and normal waves. Analysis results showed that the 
ratios of the energy of a sharp wave represented by 
IMF3 or IMF4 to the total energy of a sharp wave, 
the ratio of the energy of a normal wave represented 
by IMF4 to the total energy of a normal wave, and 
the ratio of the energy of a normal wave represented 
by the residual function to the total energy of a 
normal wave are 34.55%, 33.73%, 43.25%, and 
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37.63%, respectively. The energy of a sharp wave 
represented by IMF4 in the δ band (0.5Hz-4Hz) is 
98.4% of the total energy of this wave. The ratio of 
the energy of a normal wave represented by IMF4 
in the δ band is 82.2% of the total energy of a sharp 
wave represented by IMF4. The mean IF of a sharp 
wave represented by IMF4 is smaller than that of a 
normal wave represented by IMF4.  
Researchers have also used HHT-based methods to 
examine sleep EEG signals. Yang et.al. [22] 
proposed an HHT-based spindle-detection 
approach. EMD is employed to decompose sleep 
EEGs into several IMFs, and the high-resolution 
time-frequency Hilbert spectrum is used to extract 
the features of the sleep EEGs. Experiments show 
that the HHT-based spindle-detection approach is 
suitable for sleep EEG signals. Causa et. al. [23] 
presented an HHT-based time frequency 
methodology for detecting and characterising sleep 
spindles (SSes) in EEG signals of healthy 
ten-year-old children. The experiments include 27 
training  recordings, 10 validation recordings, and 
19 testing recordings from the children’s all-night 
polysomnographic recordings. Causa et. al. [23] 
used EMD and HHT to generate SS candidates, and 
determine the thresholds of the maximum and 
minimum values for instantaneous amplitude and 
instantaneous frequency for an SS event.  
Simulation results show a 92.2% sensitivity for 
non-REM stage 2 sleep.  
Various other applications of HHT-based methods 
to EEG signals have been demonstrated. Chen et.al. 
[24] used the concept of general-purpose computing 
on a graphics processing unit (GPGPU), combined 
with parallelized ensemble EMD (EEMD), and the 
Hilbert-Huang spectral entropy [25]  to develop a 
real-time EEG analysis method for use on patients 
under anaesthesia. Chen et.al. [26] analysed the 
EEG signals of epilepsy patients using the Gabor 
transform and the frequency band relative intensity 
ratio; these methods performed well at both 
time-frequency scales, and clearly differentiated the 
epileptics periods, including the interictal, preictal 
and ictal periods. Zhang et.al. [27] used EMD to 
decompose EEG signals into several IMFs, they 
used different thresholds to treat and reconstruct the 
IMFs to achieve de-noising.  Rutkowski et.al. 
[28][29] developed a new method of extending a 
single channel EMD approach to EEG signal 
analysis with steady-state responses for application 
to brain-computer interface (BCI) detection. They 
used an analysis of the correlations between the 
Hilbert-Huang frequency and amplitude domains of  
multichannel, high-noise EEG signals to identify 
different brain states related to stimuli. In addition, 

they discussed the Euclidean, maximum Manhattan, 
and Canberra distances of the IMFs.  
 

2 Electrocardiograms (ECGs) 
The electrocardiogram (ECG) is an important 
biomedical signal for the measurement of cardiac 
activity. Muscle contraction, baseline wander, and 
power-line interference will interfere with the ECG 
signals during measurement. Karagiannis e.t,a.l., 
[30], proposed a modified EMD method for 
extracting the IMFs of time series of various lengths, 
and applied it to the de-noising of synthetic ECG 
signals. The modified EMD method includes three 
steps. First, the statistical significance of a set of 
IMFs is investigated; second, the computation time 
of the EMD method applied to biomedical signals is 
measured, and third, the size of the IMF set is 
monitored. A monitor mode and two diagnostic 
modes are used in ECG operation. The cutoff 
frequencies of the high-pass and low-pass filters are 
0.5-1Hz and 40Hz, respectively, in the monitor 
mode. In the diagnostic modes, the cutoff 
frequencies of the high-pass and low-pass  filters 
are 0.05 Hz, and 40-150Hz, respectively. 
Karagiannis e.t,a.l., [31] discussed the number of 
IMFs as a function of the signal-to-noise ratio (SNR) 
and the length of a simulated white Gaussian noise 
corrupted ECG time series. The authors also 
determined the computation time of the modified 
EMD algorithm.   
Other noise-reduction methods have been 
developed as well. Chang e.t,a.l., [31] proposed the 
partial reconstruction of an EEMD-derived IMF 
combined with a Wiener Filter to remove ECG 
noise. Their simulation results showed that the 
EEMD exhibited better noise-filtering performance 
than EMD or a finite impulse response (FIR)Wiener 
filter.  
HHT-based time-frequency analysis is also used to 
characterize ECG signals. John e.t,a.l., [32] used 
EMD to decompose normal and various abnormal 
rhythms in ECG signals, and then used a chaos 
analysis method to discuss the resulting IMFs. The 
Lyapunov exponent, a positive entropy, and a 
non-integer correlation dimension chaotic parameter 
are adopted; the results show significant differences 
between the normal sinus rhythm and various sets of 
abnormalities.  The authors discussed an effective 
way to characterise non-linearities in non-stationary 
ECG signals by using empirical mode decomposition 
and chaos analysis methods. Wu e.t,a.l., [3] used 
EMD to decompose ventricular fibrillation (VF) 
ECG signals into several IMFs, and calculated the 
instantaneous phase of the resulting IMFs by using a 
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Hilbert transform. The phase statistics were analyzed 
to estimate the correlation between the characteristic 
properties of VF ECG signals, and the corresponding 
consequences. This method can be used to 
distinguish fatal and non-fatal VF. 
 

3. Conclusion 
HHT-based analysis methods are widely applied to 
biomedical signals; this paper describes examples of 
these applications. HHT-based time-frequency 
analysis has been applied to the EEGs of alcoholic, 
sharp-wave EEGs in epilepsy, sleep EEG signals, 
anaesthesia EEG signals, EEG de-noising, BCI 
detection, brain activity feature extraction, ECG 
de-noising, VF ECG signals, abnormal ECG feature 
extraction,. From these examples, we can see how the 
HHT time-frequency analysis is used to detect, 
analysis, and processing, biomedical signals and 
develop new approaches to treating various illnesses.  
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