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Abstract: - This paper presents a one-dimensional model for natural convection in coupled multi-loop 
thermosyphons.  The physical model is governed by a system of Navier-Stokes equations, which are reduced 
to coupled systems of Lorenz equations via the Galerkin method.  The simulations reveal different stages of 
flow as the Rayleigh number increases, e.g., from heat conduction, steady convective flow, to chaotic time-
dependent flow.  The control objective is to either stabilize the flow in each loop at one of its equilibrium 
points or track a reference signal in the chaotic range of the Rayleigh number.  The controller design is based 
on proportional and integral (PI) control principles.  The design can be easily implemented because the 
feedback state is measurable.   
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1   Introduction 
    New advances in the field of semiconductor 
electronics lead to significant increase in the number of 
micro-devices over a tiny area.  The heat flux emitting 
from these devices also increased significantly.  It is 
imperative that new technology for efficient thermal 
management be developed to dissipate high heat fluxes 
and maintain a working temperature for the 
microchips.  Direct liquid cooling, i.e., the electronics 
are directly immersed in cool liquid, has been 
investigated extensively in [1-3] with some advantages 
and some shortcomings.  Indirect liquid cooling using 
thermosyphons has been developed for thermal 
management [4].   Palm and Tengblad give a thorough 
review for the state-of-the-art technologies for cooling 
electronic devices with heat pipes and thermosyphons 
in [5].  Thermosyphons also have extensive 
applications in the cooling system of nuclear plants, 
railway track deicing, etc. Thermosyphon may come in 
different forms.  In this paper, we study multi-loop 
thermosyphon systems whose geometry configuration 
is depicted in Fig.1.  We consider two or more circular 
loops filled with incompressible fluid,  The lower 
semicircles of the loops are heated with the heat index 
measured by the Rayleigh number, to be introduced 
later, while the upper portion of the loops are cooled 
through jackets surrounding the tubes filled with cold 
water.  At a fixed point, 0ϕ ϕ= , we allow the fluids of 
the loops to be in direct contact.  With these 

assumptions, the heat and momentum fluxes are 
established, driven by the local differences between the 
individual temperatures and velocities in the loops.  By 
increasing the heat applied to the bottom of the loop(s) 
beyond certain threshold value, the initial state of heat 
conduction is replaced by a convective flow in either 
the clockwise direction or counter clockwise direction.  
By further increasing the imposed heat well above the 
critical value, the steady-state convective flow 
becomes unstable and will be replaced by a time-
dependent flow, i.e., periodic doubling and chaos. 

        
      Fig. 1 Multi-loop thermosyphon 
 

    The control objective of this paper is in two-fold: 
given the parameter range in Rayleigh number that 
leads to chaotic flows in the loops, our goal is to 
perturb the Rayleigh number so that the flow is 
stabilized as a unidirectional convective flow under 
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high heat index; with the same setting, the other 
control objective is that the flow is driven to track a 
prescribed flow pattern.  Our controller design is based 
on the principles of proportional and integral control 
with a measurable state variable, for the sake of 
implementation purpose.  The governing equations for 
the multi-loop thermosyphons, as seen in the modeling 
section, are coupled Lorenz equations, which is a well-
known nonlinear and chaotic system.  This type of 
system can also be characterized as interconnected 
systems.  Various decentralized controllers have been 
developed for nonlinear interconnected systems [6-7].  
In [8], the design of the controller and the observer is 
formulated under the norm of linear matrix 
inequalities.  Many decentralized control schemes 
developed for large-scale interconnected dynamical 
systems are multifaceted.  They may not be 
implemental due to various restrictions.  The 
implementation of linear controllers, however, is 
straightforward and cost effective.  That is why they 
are most widely used controllers in modern industry, 
such as the PID controllers.  This is the main 
motivation for this work, designing PI controllers to 
stabilize chaotic multi-loop thermosyphons.  The rest 
of this paper is organized as follows: derivation of the 
modeling equations for the multi-loop thermosyphon 
is presented in section 2 with simulation results.  In 
section 3, PI controllers are designed to stabilize the 
system at its equilibrium point or tracking an input 
signal.  A local stability analysis is performed along 
with numerical simulations.  Some remarks and future 
work are given in the conclusion section. 
 
2   Modeling the thermosyphons 
     Natural convection in closed loops plays an 
important role on the design of thermal energy 
systems.  These systems are characterized by at least 
one heat source and some heat sinks positioned at some 
height above the heat source.  We consider N identical 
circular loops filled with incompressible fluids.  The 
cross sections of the loops are circular and of constant 
area.  We assume the fluids in the loops to be in direct 
contact at a fixed point 0ϕ ϕ= .  The temperature 
distribution imposed on the tube walls are labeled as 

( )
iwT ϕ .  Under these conditions, heat and momentum 

fluxes are established, forced by the local differences 
between the individual temperatures and velocities in 
the loops. 
 
    It is sufficient to derive the differential equations for 
a three-loop system, see Fig. 1, and then generalize the 
model to an N-loop system.  Assume the diameters of 
the cross section of the loop to be much smaller than its 
length, hence, a one-dimensional modeling of the flow 

and heat transfer process proves to be of sufficient 
accuracy [9].  Using the Boussinesq approximation, we 
obtain for the cross-sectionally averaged velocities 

( )iu t and the temperature ( , )iT tϕ in the loops the 
following set of partial differential equations: 

( )

1

1

1 1
0 1 0 12

0

1

0

1 1 1
0 1 0 12 2 1

0

( ) sin ( )

0

( ) ( ) ( )

w

p w w

u p T g f f
t R

u
R

T u Tc h T T h T T
t R

ρ ρ ϕ δ ϕ ϕ
ϕ

ϕ

ρ ϕ δ ϕ ϕ
ϕ

⎧ ∂ ∂⎪⎪ =− − − − −⎪⎪ ∂ ∂⎪⎪⎪ ∂⎪⎪ =⎨ ∂⎪⎪⎪⎪ ⎛ ⎞∂ ∂⎪ ⎟⎜⎪ ⎟+ = − + − −⎜⎪ ⎟⎜ ⎟⎪ ⎜ ∂ ∂⎝ ⎠⎪⎩
           (1) 
                                               

( )

2

2

2 2
0 2 0 21

0

1 23

2

0

2 2 2
0 2 0 21 1 2

0

1 23 3 2

( ) sin ( )

( )

0

( ) ( ) ( )

( ) ( )

w

p w w

u p T g f f
t R

f
u

R

T u Tc h T T h T T
t R

h T T

ρ ρ ϕ δ ϕ ϕ
ϕ

δ ϕ ϕ

ϕ

ρ ϕ δ ϕ ϕ
ϕ

δ ϕ ϕ

⎧ ∂ ∂⎪⎪ =− − − − −⎪⎪ ∂ ∂⎪⎪⎪ − −⎪⎪⎪⎪ ∂⎪⎪ =⎨ ∂⎪⎪⎪⎪ ⎛ ⎞∂ ∂⎪ ⎟⎜⎪ ⎟+ = − + − −⎜ ⎟⎪ ⎜ ⎟⎜⎪ ∂ ∂⎝ ⎠⎪⎪⎪ + − −⎪⎪⎩
 

( )

3

3

3 3
0 3 1 32

0

3

0

3 3 3
0 3 1 32 2 3

0

( ) sin ( )

0

( ) ( ) ( )

w

p w w

u p
T g f f

t R
u

R

T u Tc h T T h T T
t R

ρ ρ ϕ δ ϕ ϕ
ϕ

ϕ

ρ ϕ δ ϕ ϕ
ϕ

⎧ ∂ ∂⎪⎪ =− − − − −⎪⎪ ∂ ∂⎪⎪⎪ ∂⎪⎪ =⎨ ∂⎪⎪⎪⎪ ⎛ ⎞∂ ∂⎪ ⎟⎜⎪ ⎟+ = − + − −⎜⎪ ⎟⎜ ⎟⎪ ⎜ ∂ ∂⎝ ⎠⎪⎩
 
where ( )iu t is the average velocity of fluid flow in loop 
i, ip is total pressure in loop i , iT  is cross-sectionally 
averaged temperature distribution in loop i, 0ρ  and 

( )iTρ are average density of fluid and density of fluid, 
respective, ijf represents friction force due to shear 
flow from loop i to loop j, wh is heat transfer 
coefficient at the wall, 

iwf is friction force at wall in 

loop i, and finally  ijh is coefficient of heat transfer 
from loop i to loop j.  In the laminar flow regime, it is 
convenient to use the linear correlation between the 
friction force 

iwf and the velocity iu , i.e. 
0

0
2iw w if f u
ρ

= .  

The friction force at the contact surface is also 
approximated by 

0
0 ( )

2ij M w i jf K f u uρ
= − , where MK is 

the coupling intensity of the momentum.  Similarly, the 
coefficient of heat transfer is approximated by a linear 
correlation ij H wh K h= , where HK  is the coupling 
intensity of heat, which is known to be a good 
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approximation for the inter-fluid heat exchange.  
Notice that the temperature distribution ( , )iT tϕ is 
periodic in ϕ .  We apply Fourier series expansion on 

iT , 

0 , ,
1
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n

T t T S t n C t nϕ ϕ ϕ
∞

=
= + +∑  (2) 

Based on the Boussinesq approximation, we assume 
that all fluid properties are independent of temperature 
with the exception that the fluid density varies linearly 
as follows, 
                        0 0 0( ) (1 ( ))i iT T Tρ ρ α= − −                 (3) 
where 0α is the thermal expansion coefficient.  We 
proceed to non-dimensionalize the state variables and 
time as follows, 
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where TΔ measures the imposed temperature 
difference.  And, 1 1,x y  represent the fluid velocity in 
loop 1 and loop 2, respectively; 2 2,x y  give measures 
for the horizontal temperature difference in each loop, 
while 3 3,x y  correspond to the vertical temperature 
difference in the loops. We initialize the coupling 
position at 0 0ϕ = . We only listed the non-
dimensionalization formulae for the state variables of 
the first two loops because the existing symmetry 
between the first loop and the third loop. Consider the 
momentum equation for loop 1 in (1), since 
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Now, integrate both sides of (5) with respect to 
ϕ around the loop, using Galerkin method to truncate 
(2) by only keeping the first-order terms, one has 
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With the help of (4), Eqn (6) is further simplified as  
                   1
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=  , which is comparable to the 

Prandtl number in ordinary viscous fluid flow and 
depends only on the properties of the fluid and the wall 

material, and 
2
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γ

π
= .  

    Our next step is to simplify the energy equation in 
(1).  Using Galerkin method on the Fourier series 
expansion of iT  given by (2), the left side of the 
energy equation can be written as, after non-
dimensionalization, 
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The right side of the energy equation becomes 
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By comparing (8) and (9) in sinϕ  and cosϕ , 
respectively, one obtains the following equations: 

                  2 1 1 1 3 2
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0

0 0
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p
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= Δ , which is analogous to the 

Rayleigh number. Rayleigh number measures the level 
of external heat applied to the thermal loop. We thus 
obtained the system of ODEs for the first loop 
combining (7) and (10), which are similar to the 
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Lorenz equations.  The governing equations for the 
middle loop as well as the end loop are derived in a 
similar fashion.  Note that there are two coupling 
points for the middle loop.  For the sake of argument, 
from this point on, we redefine the state variables 
{ }, ,i i iu x y as velocity and temperature coefficients for 
loop i. Therefore, the system of differential equations 
for N-loop thermosyphons is given as follows, 
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It is reasonable to assume that all the coupling 
coefficients, , Lγ , are identical as well as the Prandtl 
number among the loops.  It is also widely accepted 
that the Prandtl number is set to be 10.  In the 
numerical simulations, we set the coupling coefficients 
equal to unity. Of course, the greater values for , Lγ , 
the higher intensity in coupling, which could be 
exploited in controller designs.  According to [10], 
these coupling coefficients are indeed of order 1.  The 
dynamical system is solved numerically via the 4th 
order Runge-Kutta method.  In general, as the 
Rayleigh number increases, we observe heat 
conduction, co-current and counter-current steady flow 
and irregular time-dependent flows.  It is important to 
point out that chaotic flows are observed when the 
Rayleigh numbers kR ’s are over 28.   
 
3   Controlling the thermosyphons  
    In this work, we are interested in stabilizing flows in 
the interconnected chaotic thermosyphon loops via 
classical control methodology to achieve good stability 
and tracking properties under chaos, i.e. the Rayleigh 
numbers are greater than 28.  Since the three loop 
setting, Fig.1, truly represents the dynamical structure 
of any number of loops greater than three, we only 
consider the controller design for the three-loop 
systems in this paper.  Even with three loops, there are 

a number of possible configurations for controlling the 
system.  Due to the existing similarities among the 
configurations, we will focus on a local control 
scheme, i.e. the actuator is implemented with the 
middle loop as a perturbation to the Rayleigh number 

2R .  This is also known as a single-input-single-output 
(SISO) control system.  Of course, more than one 
control input can be implemented.  For example, there 
is a controller for each loop, which leads to multi-
input-multi-output (MIMO) control systems. Our 
experiment shows that the proposed SISO control is 
sufficient to stabilize the flow in all loops.  We apply 
small perturbations to stabilize the flow at one of the 
system’s equilibria.  Large perturbations are explored 
to make system track an input signal (a prescribed 
convective flow pattern). 
 
    To set the stage, consider 3N =  in (11).  Let ssX be 
the steady state or the equilibrium of the 9-dimensional 
system, i.e. { } 1,2,3, ,ss i i i iX u x y == .  The steady state is 

found by setting the derivatives equal to zero.  
However, there is no closed-form formula for the 
equilibrium.  One has to take resort to numerical 
methods for solving the nonlinear algebraic equations.  
We are able to find the I/O representation from 
linearizing the system at the equilibrium point.  The 
state space form of the I/O representation is given by 
{ }, ,A B C .  The state matrix A is also known as the 
Jacobian matrix associated with the system.  The input 
structure matrix B is known as the input Jacobian.  We 
choose the output matrix C as follows, 
 
               [0 0 0 0 1 0 0 0 0]C =         (12) 
 
This is because the state variable 2x  corresponds to the 
vertical temperature difference across loop 2, which 
can be easily measured. 
     
    Now, with a small perturbation to 2R , the control 
system is given by 
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                                                                                (13) 
It is understood that, from the output feedback design 
point of view, the small perturbation ν is proportional 
to the perturbation (as a state variable in the linearized 
system) of 2x .  We first obtain the Jacobian matrix 
with respect to { } 1,2,3, ,ss i i i iX u x y ==  as follows, 
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                                                                                 (14) 
and the input Jacobian matrix 
 
       2[0 0 0 0 0 0 0 0]TB u=             (15) 
 
The corresponding transfer function is in the form of  
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Consider a proportional negative feedback, 

2k xν δ=− , the closed-loop transfer function is 
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A root locus analysis for the closed-loop poles 
indicates that, as the gain k increases, the steady state 
becomes stable even if the gain approaches infinity, 
see Fig. 2.  Recall that the controller is incorporated in 
the second loop only.  By stabilizing the flow in the 
second loop, the flows in its adjacent loops are 
automatically stabilized.  A time response is of (13) 
with a proportional controller is given in Fig. 3.  The 
loop gain used in this simulation is 2.5. 
 
    We further studied the proportional-plus-integral 
(PI) controller design to test the tracking ability of 
system (13).  The difference between this approach 
and the previous regulating problem is that the 

perturbation is proportional to the 2x -state instead of a 
small variation of 2x , as such it is called large 
perturbation.  Since the PI control is a dynamical form 
of compensation, the original system is augmented to 
include integral dynamics of the tracking error.  The 
new 10-state system is show below: 
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                                                                              (18) 
where 0k > is the gain on proportional control and 

0h> is the gain on the integral controller.  Again, the 
steady state of the extended control system (18) has to 
be found numerically. However, it is easy to see that 

2 fx x=  as one of the coordinates of the equilibrium 
point. Linear stability test in this case is to simply 
locate the eigenvalues of the Jacobian matrix 
associated with (18) with the computed equilibrium. 
The root locus analysis shows that the system is 
stabilized at the equilibrium point with appropriate 
gains.  A simulation for (18) is shown in Fig. 4.  In the 
simulation, the reference signal fx  consists of two 

step inputs.  The first step input equals 2x , while the 
second step input is 10.2− . The step responses show 
that the system is able to track the step inputs rather 
quickly.    
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Fig. 2 Root locus of the close-loop poles for the 

2x feedback 
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   Fig.3 Time-response of the velocities in each of the   
   three loops with the proportional control.  The     
   controller is activated at 30t s= . 
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Fig. 4 Time-response of the x-state (temperature) in 
each of the three loops. PI controller for tracking step 
inputs while the system is in chaotic regime.  The 
controller is activated at 30t s= .  It is reactivated 
automatically when the step input changes. 
 
4   Conclusion 
    In this paper, we present the modeling of high-
dimensional multi-loop thermosyphon systems and its 
control perspectives.  The governing equations are in 
essence coupled Lorenz equations.  The system is 
chaotic when the Rayleigh numbers are greater than a 
threshold value. Two control mechanisms are used to 
either stabilize the flow or make the system track a 
prescribed flow/temperature pattern. A qualitative 
stability analysis is difficult due to the dimension of the 
system, including the added dimensions of the system 
parameters. However, the local perturbation approach 
is still plausible due to its implementation 
consideration.  The proposed PI controller design does 
require the system known a priori.  We will explore 
adaptive control schemes for large scale thermosyphon 
systems with unknown parameters.  Since the coupling 
between the loops is considered weak, we are also 
investigating the option of decentralized control via 

neural networks or wavelet networks. 
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