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Abstract: - Analytical solution for the change in impedance of a coil located inside a two-layer cylindrical tube 

is obtained in the present paper. The electric conductivity and magnetic permeability of the inner layer of the 

tube depend on the radial coordinate. The properties of the outer layer are assumed to be constant. The 

solution is expressed in terms of improper integrals containing modified Bessel’s functions of complex index. 

Extension of the proposed model for multilayer tubes is discussed.  
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1   Introduction 
    Analytical solutions to eddy current testing 

problems for the case where the properties of a 

conducting medium (the electric conductivity and 

magnetic permeability) are constant can be found in 

the literature (see, for example, [1] and [2]). In many 

applications, however, the magnetic and electric 

properties of the medium vary with respect to the 

depth of a conducting layer. Examples include 

thermal processing, decarbonization and spot 

welding [3], [4]. From a mathematical point of view 

the problem is related to the solution of the 

Maxwell’s equations with variable coefficients. 

Some analytical solutions for the case of variable 

electric conductivity and/or magnetic permeability 

are given in [2].  

    Cylindrical tubes are often tested with eddy 

current method (see, for example, [5], [6]). 

Theoretical models for eddy current testing of long 

cylindrical tubes with constant properties are 

presented in [7]-[9]. 

    In this paper we present an analytical solution of 

an eddy current problem for a coil located inside a 

two-layer conducting tube. The properties on the 

inner layer of the tube are assumed to vary with 

respect to the radial coordinate. The solution 

obtained in the present paper generalizes the results 

presented in [10] where the radius of a conducting 

cylindrical region is assumed to be infinite. Such an 

approximation is valid only for high frequencies. 

The solution presented here can be used for wide 

range of frequencies since more detailed description 

of the conducting tube is considered below (it is 

assumed that the tube has a two-layer structure).   

    The solution is found in closed form in terms of 

an improper integral containing modified Bessel 

functions of the first and second kind. 

      

      

 

2   Formulation of the problem 
    Suppose that a single-turn coil of radius cr is 

located inside a two-layer conducting tube at the 

height 0z (the outer radius of the second layer is 

assumed to be infinite).   The radius of the inner 

tube, 1r , is chosen as the measure of length. The 

dimensionless radii of the inner and outer cylindrical 

layers are 1 and R , respectively. We denote by 

,0R 1R and 2R the following three regions: (a) the 

free space +∞<<−∞≤≤≤≤ zrR ,20,10:0 πϕ ; 

(b) the inner cylindrical layer 

+∞<<−∞≤≤≤≤ zRrR ,20,1:1 πϕ with variable 
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magnetic permeability  
αµµ r*= and electric 

conductivity 
βσσ r0= , where α and β are given 

constants; (c) the outer cylindrical layer 

+∞<<−∞≤≤> zRrR ,20,:2 πϕ with constant 

magnetic permeability 2µ and electric conductivity 

2σ .  

     The current in the coil is assumed to be of the 

form 

ϕϕ ω etjIeti
��

)exp()( = ,                                    (1)                                                                                                                                        

where I is the amplitude of the current, ω is the 

frequency and ϕe
�

 is the unit vector in the ϕ -

direction (here ),,( zr ϕ is the system of cylindrical 

polar coordinates with the origin at the coil’s 

center).         

    Since the vector potential is independent on ϕ it 

can be represented in the form 

ϕωϕ etjzrAtzrA ii

�

�

)exp(),(),,,( = , ,1,0=i         (2) 

where the subscripts 0,1 and 2 correspond to regions 

0R , 1R and 2R , respectively.  

    Substituting (1) and (2) into the Maxwell’s 

equations we obtain the following system of 

equations for the amplitudes, 2,1,0),,( =izrAi  of 

the vector potential in regions ,0R 1R  and 

,2R respectively: 

                           

                                                                               

 

                                                                          (3)  
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where )(zδ is the Dirac delta function, 0µ  is the 

magnetic constant, 2σ and 2µ are the electric 

conductivity and magnetic permeability of region 

2R , respectively.  

    Using magnetic permeability and electric 

conductivity profiles of the form 

 

αµµ r*= , ,0

βσσ r=                                         (6) 

 

 we rewrite equation (4) in region 1R  as follows  

 

 

 

 

                                                                         (7) 

 

where ,11 jp η= 0*011
~ µµωση r= .  

The boundary conditions have the form 

 

                                                                         (8) 

 

                            

                                                                         (9) 

                                                                          

                                                            (10) 

 

                                                                          (11) 

where  

 

 

3   Mathematical analysis 
    The solution to (3)-(11) can be found by the 

method of Fourier transform. Applying the 

transform of the form 

 

                                                                       (12) 

 

to (3)-(11) we obtain 

 

 

 

 

                                                                       (13) 

 

 

 

                                                            

                                                                       (14)                         

 

                                                                       (15) 

 

where 

2201222

2

2

2 ~,, σµωµηηλ rjppq ==+= . 

 

The transformed boundary conditions are as follows  

 

                                                                        (16) 
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                                                                        (17) 

 

 

                                                                        (18) 

 

The solution to (13) is found in two subregions of 

region 0R , namely, 00 rr << and 10 << rr . We 

denote the solutions in these regions by 

),(
~
00 λrA and ),(

~
01 λrA , respectively. The bounded 

solution to (11) in region 00 rr << is 

 

                                           ,                               (19) 

                                                                       

where )(1 rI λ is the modified Bessel function of the 

first kind of order 1.       

The solution to (11) in region 10 << rr is  

 

                                                         ,             (20) 

                                                   

where )(1 rK λ  is the modified Bessel function of 

the second kind of order 1.       

Closed-form solution to (14) can be found for 

different combinations of the parameters α and β . 

The solution for the case 1,1 −=−= βα is 

(see[10]):  

 

                                                                       (21) 

                                                                         

 

where )( rK λν is the modified Bessel function of 

order ν and 4/1
2

1 += pν .  

The solution to (15) satisfying condition (18) is 

 

                                                                       (22) 

 

Two conditions at 0rr = are required in order to 

obtain to determine the constants of integration: 

 

                                                                       (23) 

 

 

                                                                       (24) 

 

 

Condition (23) represents continuity of the vector 

potential at 0rr = . Condition (24) is obtained if one 

integrates (13) with respect to r from ε−1 to 

ε+1 and considers the limit in the resulting 

equation as 0+→ε . 

Using (19), (20), (23) and (24) we obtain the 

constant 3C  in the form 

 

).(~
010

2

103
0 rIrerIC
zi λµ λ−=                                (25) 

 

Using (19)-(22) and the remaining boundary 

conditions (16)-(17) we obtain all constants of 

integration. In particular, 

 

,322 CC γ−=                                                   (26) 

 

where 222 /ED=γ and 
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Here 
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The induced vector potential in free space is given 

by the formula 

 

).(),(
~

120 rICrAind λλ =                                       (27) 

 

Applying the inverse Fourier transform to (27) we 

obtain 
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π
λ derAzrA ziindind ∫
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=                  (28) 

 

Substituting (25)-(27) into (28) we obtain the 

induced vector potential in the form (it is assumed 

here that 00 =z ) 
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                                                                        (29) 

 

One of the characteristics that is often used in 

applications is the induced change in impedance in 

the coil. It is computed by the formula  

,),(0 dlzrA
I

j
Z

L

indind ∫=
ω

                                 (30)                               

where L is the contour of the coil. Substituting (29) 

into (30) we obtain the change in impedance of the 

form 

.)(~2 0

2

1

0

20

2

10 λλγωµ drIrrjZ ind ∫
∞

−=                    (31)                            

 
 

4   Conclusion 
  

    Analytical solution of the change in impedance of 

a coil located inside a two-layer conducting tube is 

found in the present paper. The electric conductivity 

and magnetic permeability of the inner layer depend 

on the radial coordinate. The properties of the outer 

layer are assumed to be constant. The solution is 

obtained by the method of Fourier integral 

transform. The change in impedance is obtained in 

the form of an improper integral. The solution 

obtained in the present paper can be generalized for 

the case of a multilayer tube where the properties of 

each layer vary with respect to the radial coordinate. 

In addition, the coil can also be located either inside 

the tube or outside the tube. Finally, only one 

particular combination of the parameters α and β is 

considered in the paper while other combinations are 

also possible so that the solution can be expressed in 

terms of other special functions. This topic is 

currently investigated by the authors.  
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