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Abstract:- The classical attractors of Lorenz, Rossler, Chua, Chen, and other widely-known
attractors are those excited from unstable equilibria. From computational point of view this allows
one to use numerical method, in which after transient process a trajectory, started from a point of
unstable manifold in the neighborhood of equilibrium, reaches an attractor and identifies it. However
there are attractors of another type: hidden attractors, a basin of attraction of which does not
contain neighborhoods of equilibria. Recently such hidden attractors were discovered Chua’s circuits
by special analytical-numerical algorithm. In the present paper localization of hidden attractors in
smooth Chua’s systems is considered.

Key-Words:- Smooth Chua’s circuit, Attractor localization, Hidden attractor, harmonic balance,
describing function method

1 Introduction
The classical attractors of Lorenz [1], Rossler [2], Chua [3], Chen [4], and other widely-known attrac-
tors are those excited from unstable equilibria. From computational point of view this allows one to
use numerical method, in which after transient process a trajectory, started from a point of unstable
manifold in the neighborhood of equilibrium, reaches an attractor and identifies it. However there are
attractors of another type [5]: hidden attractors, a basin of attraction of which does not contain neigh-
borhoods of equilibria. The simplest examples of systems with such attractors are nested limit cycles
in two-dimensional polynomial systems and hidden oscillations in counterexamples to widely-known
Aizerman’s and Kalman’s conjectures on absolute stability (see, e.g., [9, 11] ). Numerical localization,
computation, and analytical investigation of such attractors are much more difficult problems.

Recently such hidden attractors were discovered [5] in classical Chua’s circuit with continuous
piecewise-linear nonlinearity saturation by special analytical-numerical algorithm

In this work we consider application of an analytical-numerical algorithm for localization of hidden
attractor in smooth Chua’s system.

2 Analytical-numerical method for attractors localization
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Consider a system with vector nonlinearity nonlinearity

dx

dt
= Px +ψ(x), x ∈ R

n. (1)

Here P is a constant (n× n)-matrix, ψ(x) is a continuous vector-function, and ψ(0) = 0.
Define a matrix K such that the matrix in such a way that the matrix

P0 = P + K (2)

has a pair of purely imaginary eigenvalues ±iω0 (ω0 > 0) and the rest of its eigenvalues have negative
real parts. Rewrite system (1) as

dx

dt
= P0x +ϕ(x), (3)

where ϕ(x) = ψ(x) − Kx.
Introduce a finite sequence of functions ϕ0(x), ϕ1(x), . . . ,ϕm(x) such that the graphs of neighbo-

ring functions ϕj(x) and ϕj+1(x) slightly differ from one another, the function ϕ0(x) is small, and
ϕm(x) = ϕ(x). Using a smallness of function ϕ0(x), we can apply and mathematically strictly justify
[6, 7, 8, 9, 10, 11] the method of harmonic linearization (describing function method) for the system

dx

dt
= P0x +ϕ0(x), (4)

and determine a stable nontrivial periodic solution x0(t). For the localization of attractor of original
system (3), we shall follow numerically the transformation of this periodic solution (a starting oscilla-
ting attractor — an attractor, not including equilibria, denoted further by A0) with increasing j. Here
two cases are possible: all the points of A0 are in an attraction domain of attractor A1, being an
oscillating attractor of the system

dx

dt
= P0x +ϕj(x), (5)

with j = 1, or in the change from system (4) to system (5) with j = 1 it is observed a loss of
stability (bifurcation) and the vanishing of A0. In the first case the solution x1(t) can be determined
numerically by starting a trajectory of system (5) with j = 1 from the initial point x0(0). If in the
process of computation the solution x1(t) has not fallen to an equilibrium and it is not increased
indefinitely (here a sufficiently large computational interval [0, T ] should always be considered), then
this solution reaches an attractor A1. Then it is possible to proceed to system (5) with j = 2 and to
perform a similar procedure of computation of A2, by starting a trajectory of system (5) with j = 2
from the initial point x1(T ) and computing the trajectory x2(t).

Proceeding this procedure and sequentially increasing j and computing xj(t) (being a trajectory
of system (5) with initial data xj−1(T )) we either arrive at the computation of Am (being an attractor
of system (5) with j = m, i.e. original system (3)), either, at a certain step, observe a loss of stability
(bifurcation) and the vanishing of attractor.

To determine the initial data x0(0) of starting periodic solution, system (4) with nonlinearity
ϕ0(x) is transformed by linear nonsingular transformation S to the form

ẏ1 = −ω0x2 + εϕ1(y1, y2,y3),

ẏ2 = ω0x1 + εϕ2(y1, y2,y3),

ẏ3 = Ax3 + εϕ3(y1, y2,y3)

(6)
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Here y1, y2 are scalar values, y3 is (n − 2)-dimensional vector; ϕ3 is an (n − 2)-dimensional vector-
function, ϕ1, ϕ2 are certain scalar functions; A3 is an ((n − 2) × (n − 2))-matrix, all eigenvalues of
which have negative real parts. Without loss of generality, it can be assumed that for the matrix A3

there exists a positive number d > 0 such that

y∗

3(A3 + A∗

3)y3 ≤ −2d|y3|2, ∀y3 ∈ R
n−2. (7)

Introduce the describing function

Φ(a) =
2π/ω0
∫

0

[

ϕ1 ((cosω0t)a, (sinω0t)a, 0) cosω0t+

+ϕ2 ((cosω0t)a, (sinω0t)a, 0) sinω0t

]

dt.

and suppose, for the vector-function ϕ(x) the estimate

|ϕ(x′) −ϕ(x′′)| ≤ L|x′ − x′′|, ∀x′,x′′ ∈ R
n (8)

is satisfied.

Theorem 1 [10] If it can be found a positive a0 such that

Φ(a0) = 0, (9)

then for the initial data of periodic solution x0(0) = S(y1(0), y2(0),y3(0))∗ at the first step of algorithm
we have

y1(0) = a0 +O(ε), y2(0) = 0, y3(0) = On−2(ε), (10)

where On−2(ε) is an (n− 2)-dimensional vector such that all its components are O(ε).

For the stability of x0(t) (if the stability is regarded in the sense that for all solutions with the
initial data sufficiently close to x0(0) the modulus of their difference with x0(t) is uniformly bounded
for all t > 0), it is sufficient to require the satisfaction of the following condition

dΦ(a)

da

∣

∣

∣

∣

a=a0

< 0.

3 Localization of hidden attractor in smooth Chua’s system
with vector nonlinearity
Consider the following modification of Chua’s system

ẋ = α(y − x) − αfm(x),

ẏ = x− y + z + g(y),

ż = −(βy + γz),

(11)

where
fm(x) = (k1x+ k3x

3 + k5x
5), g(x) = cy2. (12)
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We now apply the above algorithm. For this purpose, rewrite Chua’s system (16) in the form (1)

dx

dt
= Px +ψ(x), x ∈ R

3. (13)

Here

P =





−α(k1 + 1) α 0
1 −1 1
0 −β −γ



 ,

ψ(x) =





−α(k3x
3
1 + k5x

5
1)

cx2

0



 ,

Introduce a matrix K and small parameter ε, and represent system (18) as (4)

dx

dt
= P0x + εϕ(r∗x), (14)

where
P0 = P + K, λP0

1,2 = ±iω0, λ
P0

3 = −d,
ϕ(x) = ψ(x) − Kx

By nonsingular linear transformation x = Sy system (19) is reduced to the form (6)

dy

dt
= Ay + εS−1ϕ(y), (15)

where

A = S−1P0S =





0 −ω0 0
ω0 0 0
0 0 −d





Let k1 = −0.3092, k3 = 0.6316, k5 = −0.3, then zero solution of system (11) is stable.
Taking ω0 = 2.5, d = 10 (so we define matrix A, and one can obtain linearization matrix K),

the above procedure allows us to get initial data x(0) = −1.5728, y(0) = 0, z(0) = 0 for the first
step of multistage procedure of construction of solutions. For ε1 = 0.1 after transient process the
computational procedure arrives at a almost periodic solution close to harmonic one. Further, with
increasing parameter ε this periodic solution will be transformed into hidden attractor.

4 Localization of hidden attractor in smooth Chua’s system
with scalar nonlinearity
Consider the following smooth Chua’s system:

ẋ = α(y − x) − αf(x),

ẏ = x− y + z,

ż = −(βy + γz).

(16)

Here the function
f(x) = m1x+ (m0 −m1)tanh(x) =

= m1x+ (m0 −m1)
eσ − e−σ

eσ + e−σ

(17)
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Fig. 1: ε = 0.1, ε = 0.5, ε = 0.7, ε = 1

characterizes a nonlinear element, of the system (here we consider smooth nonlinearity tanh(x) close
to nonlinearity saturation(x) in the classical circuit); α, β, γ,m0, m1 are parameters of the system.

We now apply the above algorithm to analysis of Chua’s system. For this purpose, rewrite Chua’s
system (16) in the form (1)

dx

dt
= Px + qψ(r∗x), x ∈ R

3. (18)

Here

P =





−α(m1 + 1) α 0
1 −1 1
0 −β −γ



 ,

q =





−α
0
0



 , r =





1
0
0



 ,

ψ(σ) = (m0 −m1)tanh(σ).

Introduce the coefficient k and small parameter ε, and represent system (18) as (4)

dx

dt
= P0x + qεϕ(r∗x), (19)

where

P0 = P + kqr∗ =





−α(m1 + 1 + k) α 0
1 −1 1
0 −β −γ



 ,

λP0

1,2 = ±iω0, λ
P0

3 = −d,
ϕ(σ) = ψ(σ) − kσ = (m0 −m1)tanh(σ) − kσ.
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Consider system (19) with the parameters

α = 8.4562, β = 12.0732, γ = 0.0052,

m0 = 0.35, m1 = −1.1468.
(20)

Note that for the considered values of parameters there are three equilibria in the system: a
locally stable zero equilibrium and two saddle equilibria.

Now we apply the above procedure of hidden attractors localization to Chua’s system (18) with
parameters (20). For this purpose, compute a starting frequency and a coefficient of harmonic
linearization. We have

ω0 = 2.0392, k = 0.2098 .

Then, compute solutions of system (19) with nonlinearity εϕ(x) = ε(ψ(x)− kx), sequentially increa-
sing ε from the value ε1 = 0.1 to ε10 = 1 with the step 0.1.

By (10) one can obtain the initial data

x(0) = 8.8200, y(0) = 0.5561, z(0) = −12.6008

for the first step of multistage procedure for the construction of solutions. For the value of parameter
ε1 = 0.1, after transient process the computational procedure reaches the starting oscillation x1(t).
Further, by the sequential transformation xj(t) with increasing the parameter εj, using the numerical
procedure, for original Chua’s system (18) the set Ahidden is computed. This set is shown in Fig. 2.

y

x

z

y
x

z

Fig. 2: Equilibrium, stable manifolds of saddles, and localization of hidden attractor.

We remark that for the computed trajectories it is observed Zhukovsky instability and the
positiveness of Lyapunov exponent [17, 18].

5 Conclusions
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In the present work the application of special analytical-numerical algorithm for hidden attractor
localization is discussed and the existence of such hidden attractor in smooth Chua’s systems is
demonstrated.
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