Localization of hidden attractors in smooth Chua's systems

N.V. KUZNETSOV, V.I VAGAITSEV
St.Petersburg State University, Universitetsky pr. 28, St.Petersburg, 198504, RUSSIA
University of Jyväskylä, P.O. Box 35 (Agora), FIN-40014, FINLAND
nkuznetsov239@gmail.com, vladimir.vagaitsev@gmail.com G.A. LEONOV, S.M. SELEDZHI
St.Petersburg State University, Universitetsky pr. 28, St.Petersburg, 198504, RUSSIA
leonov@math.spbu.ru

Abstract:- The classical attractors of Lorenz, Rossler, Chua, Chen, and other widely-known attractors are those excited from unstable equilibria. From computational point of view this allows one to use numerical method, in which after transient process a trajectory, started from a point of unstable manifold in the neighborhood of equilibrium, reaches an attractor and identifies it. However there are attractors of another type: hidden attractors, a basin of attraction of which does not contain neighborhoods of equilibria. Recently such hidden attractors were discovered Chua's circuits by special analytical-numerical algorithm. In the present paper localization of hidden attractors in smooth Chua's systems is considered.

Key-Words:- Smooth Chua's circuit, Attractor localization, Hidden attractor, harmonic balance, describing function method

1 Introduction

The classical attractors of Lorenz [1], Rossler [2〕, Chua $\lfloor 3\rfloor$, Chen 44 , and other widely-known attractors are those excited from unstable equilibria. From computational point of view this allows one to use numerical method, in which after transient process a trajectory, started from a point of unstable manifold in the neighborhood of equilibrium, reaches an attractor and identifies it. However there are attractors of another type [5]: hidden attractors, a basin of attraction of which does not contain neighborhoods of equilibria. The simplest examples of systems with such attractors are nested limit cycles in two-dimensional polynomial systems and hidden oscillations in counterexamples to widely-known Aizerman's and Kalman's conjectures on absolute stability (see, e.g., $[9,11\rfloor$). Numerical localization, computation, and analytical investigation of such attractors are much more difficult problems.

Recently such hidden attractors were discovered [5] in classical Chua's circuit with continuous piecewise-linear nonlinearity saturation by special analytical-numerical algorithm

In this work we consider application of an analytical-numerical algorithm for localization of hidden attractor in smooth Chua's system.

2 Analytical-numerical method for attractors localization

Consider a system with vector nonlinearity nonlinearity

$$
\begin{equation*}
\frac{d \mathbf{x}}{d t}=\mathbf{P} \mathbf{x}+\boldsymbol{\psi}(\mathbf{x}), \quad \mathbf{x} \in \mathbb{R}^{n} \tag{1}
\end{equation*}
$$

Here \mathbf{P} is a constant $(n \times n)$-matrix, $\boldsymbol{\psi}(\mathbf{x})$ is a continuous vector-function, and $\boldsymbol{\psi}(0)=0$.
Define a matrix \mathbf{K} such that the matrix in such a way that the matrix

$$
\begin{equation*}
\mathbf{P}_{0}=\mathbf{P}+\mathbf{K} \tag{2}
\end{equation*}
$$

has a pair of purely imaginary eigenvalues $\pm i \omega_{0}\left(\omega_{0}>0\right)$ and the rest of its eigenvalues have negative real parts. Rewrite system (1) as

$$
\begin{equation*}
\frac{d \mathbf{x}}{d t}=\mathbf{P}_{0} \mathbf{x}+\boldsymbol{\varphi}(\mathbf{x}) \tag{3}
\end{equation*}
$$

where $\boldsymbol{\varphi}(\mathbf{x})=\boldsymbol{\psi}(\mathbf{x})-\mathbf{K x}$.
Introduce a finite sequence of functions $\varphi^{0}(\mathrm{x}), \varphi^{1}(\mathrm{x}), \ldots, \varphi^{m}(\mathrm{x})$ such that the graphs of neighboring functions $\varphi^{j}(\mathrm{x})$ and $\varphi^{j+1}(\mathrm{x})$ slightly differ from one another, the function $\varphi^{0}(\mathrm{x})$ is small, and $\varphi^{m}(\mathbf{x})=\varphi(\mathrm{x})$. Using a smallness of function $\varphi^{0}(\mathrm{x})$, we can apply and mathematically strictly justify $\lfloor 6,7,8,9,10,11\rfloor$ the method of harmonic linearization (describing function method) for the system

$$
\begin{equation*}
\frac{d \mathbf{x}}{d t}=\mathbf{P}_{0} \mathbf{x}+\varphi^{0}(\mathbf{x}) \tag{4}
\end{equation*}
$$

and determine a stable nontrivial periodic solution $\mathbf{x}^{0}(t)$. For the localization of attractor of original system (3), we shall follow numerically the transformation of this periodic solution (a starting oscillating attractor - an attractor, not including equilibria, denoted further by \mathcal{A}_{0}) with increasing j. Here two cases are possible: all the points of \mathcal{A}_{0} are in an attraction domain of attractor \mathcal{A}_{1}, being an oscillating attractor of the system

$$
\begin{equation*}
\frac{d \mathbf{x}}{d t}=\mathbf{P}_{0} \mathbf{x}+\varphi^{j}(\mathbf{x}) \tag{5}
\end{equation*}
$$

with $j=1$, or in the change from system (4) to system (5) with $j=1$ it is observed a loss of stability (bifurcation) and the vanishing of \mathcal{A}_{0}. In the first case the solution $\mathbf{x}^{1}(t)$ can be determined numerically by starting a trajectory of system (5) with $j=1$ from the initial point $\mathbf{x}^{0}(0)$. If in the process of computation the solution $\mathbf{x}^{1}(t)$ has not fallen to an equilibrium and it is not increased indefinitely (here a sufficiently large computational interval $[0, T]$ should always be considered), then this solution reaches an attractor \mathcal{A}_{1}. Then it is possible to proceed to system (5) with $j=2$ and to perform a similar procedure of computation of \mathcal{A}_{2}, by starting a trajectory of system (5) with $j=2$ from the initial point $\mathbf{x}^{1}(T)$ and computing the trajectory $\mathbf{x}^{2}(t)$.

Proceeding this procedure and sequentially increasing j and computing $\mathbf{x}^{j}(t)$ (being a trajectory of system (5) with initial data $\mathbf{x}^{j-1}(T)$) we either arrive at the computation of \mathcal{A}_{m} (being an attractor of system (5) with $j=m$, i.e. original system (3)), either, at a certain step, observe a loss of stability (bifurcation) and the vanishing of attractor.

To determine the initial data $\mathbf{x}^{0}(0)$ of starting periodic solution, system (4) with nonlinearity $\varphi^{0}(\mathrm{x})$ is transformed by linear nonsingular transformation \mathbf{S} to the form

$$
\begin{align*}
\dot{y}_{1} & =-\omega_{0} x_{2}+\varepsilon \varphi_{1}\left(y_{1}, y_{2}, \mathbf{y}_{3}\right), \\
\dot{y}_{2} & =\omega_{0} x_{1}+\varepsilon \varphi_{2}\left(y_{1}, y_{2}, \mathbf{y}_{3}\right), \tag{6}\\
\dot{\mathbf{y}}_{3} & =\mathbf{A} \mathbf{x}_{3}+\varepsilon \boldsymbol{\varphi}_{3}\left(y_{1}, y_{2}, \mathbf{y}_{3}\right)
\end{align*}
$$

Here y_{1}, y_{2} are scalar values, \mathbf{y}_{3} is $(n-2)$-dimensional vector; $\boldsymbol{\varphi}_{3}$ is an $(n-2)$-dimensional vectorfunction, φ_{1}, φ_{2} are certain scalar functions; \mathbf{A}_{3} is an $((n-2) \times(n-2))$-matrix, all eigenvalues of which have negative real parts. Without loss of generality, it can be assumed that for the matrix \mathbf{A}_{3} there exists a positive number $d>0$ such that

$$
\begin{equation*}
\mathbf{y}_{3}^{*}\left(\mathbf{A}_{3}+\mathbf{A}_{3}^{*}\right) \mathbf{y}_{3} \leq-2 d\left|\mathbf{y}_{3}\right|^{2}, \quad \forall \mathbf{y}_{3} \in \mathbb{R}^{n-2} \tag{7}
\end{equation*}
$$

Introduce the describing function

$$
\begin{aligned}
& \Phi(a)=\int_{0}^{2 \pi / \omega_{0}}\left[\varphi_{1}\left(\left(\cos \omega_{0} t\right) a,\left(\sin \omega_{0} t\right) a, 0\right) \cos \omega_{0} t+\right. \\
& \left.+\varphi_{2}\left(\left(\cos \omega_{0} t\right) a,\left(\sin \omega_{0} t\right) a, 0\right) \sin \omega_{0} t\right] d t
\end{aligned}
$$

and suppose, for the vector-function $\varphi(\mathbf{x})$ the estimate

$$
\begin{equation*}
\left|\boldsymbol{\varphi}\left(\mathrm{x}^{\prime}\right)-\boldsymbol{\varphi}\left(\mathrm{x}^{\prime \prime}\right)\right| \leq L\left|\mathrm{x}^{\prime}-\mathrm{x}^{\prime \prime}\right|, \quad \forall \mathrm{x}^{\prime}, \mathrm{x}^{\prime \prime} \in \mathbb{R}^{n} \tag{8}
\end{equation*}
$$

is satisfied.
Theorem 1 [10] If it can be found a positive a_{0} such that

$$
\begin{equation*}
\Phi\left(a_{0}\right)=0, \tag{9}
\end{equation*}
$$

then for the initial data of periodic solution $\mathbf{x}^{0}(0)=\mathbf{S}\left(y_{1}(0), y_{2}(0), \mathbf{y}_{3}(0)\right)^{*}$ at the first step of algorithm we have

$$
\begin{equation*}
y_{1}(0)=a_{0}+O(\varepsilon), y_{2}(0)=0, \mathbf{y}_{3}(0)=\mathbf{O}_{\mathbf{n}-\mathbf{2}}(\varepsilon) \tag{10}
\end{equation*}
$$

where $\mathbf{O}_{\mathbf{n}-\mathbf{2}}(\varepsilon)$ is an $(n-2)$-dimensional vector such that all its components are $O(\varepsilon)$.
For the stability of $\mathbf{x}^{0}(t)$ (if the stability is regarded in the sense that for all solutions with the initial data sufficiently close to $\mathbf{x}^{0}(0)$ the modulus of their difference with $\mathbf{x}^{0}(t)$ is uniformly bounded for all $t>0$), it is sufficient to require the satisfaction of the following condition

$$
\left.\frac{d \Phi(a)}{d a}\right|_{a=a_{0}}<0
$$

3 Localization of hidden attractor in smooth Chua's system with vector nonlinearity

Consider the following modification of Chua's system

$$
\begin{align*}
\dot{x} & =\alpha(y-x)-\alpha f_{m}(x), \\
\dot{y} & =x-y+z+g(y), \tag{11}\\
\dot{z} & =-(\beta y+\gamma z),
\end{align*}
$$

where

$$
\begin{equation*}
f_{m}(x)=\left(k_{1} x+k_{3} x^{3}+k_{5} x^{5}\right), \quad g(x)=c y^{2} . \tag{12}
\end{equation*}
$$

We now apply the above algorithm. For this purpose, rewrite Chua's system (16) in the form (1)

$$
\begin{equation*}
\frac{d \mathbf{x}}{d t}=\mathbf{P} \mathbf{x}+\boldsymbol{\psi}(\mathbf{x}), \quad \mathbf{x} \in \mathbb{R}^{3} \tag{13}
\end{equation*}
$$

Here

$$
\begin{gathered}
\mathbf{P}=\left(\begin{array}{ccc}
-\alpha\left(k_{1}+1\right) & \alpha & 0 \\
1 & -1 & 1 \\
0 & -\beta & -\gamma
\end{array}\right), \\
\boldsymbol{\psi}(\mathbf{x})=\left(\begin{array}{c}
-\alpha\left(k_{3} x_{1}^{3}+k_{5} x_{1}^{5}\right) \\
c x_{2} \\
0
\end{array}\right),
\end{gathered}
$$

Introduce a matrix \mathbf{K} and small parameter ε, and represent system (18) as (4)

$$
\begin{equation*}
\frac{d \mathbf{x}}{d t}=\mathbf{P}_{\mathbf{0}} \mathbf{x}+\varepsilon \boldsymbol{\varphi}\left(\mathbf{r}^{*} \mathbf{x}\right) \tag{14}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathbf{P}_{\mathbf{0}}=\mathbf{P}+\mathbf{K}, \lambda_{1,2}^{\mathbf{P}_{0}}= \pm i \omega_{0}, \lambda_{3}^{\mathbf{P}_{0}}=-d, \\
& \boldsymbol{\varphi}(\mathbf{x})=\boldsymbol{\psi}(\mathbf{x})-\mathbf{K} \mathbf{x}
\end{aligned}
$$

By nonsingular linear transformation $\mathbf{x}=\mathbf{S y}$ system (19) is reduced to the form (6)

$$
\begin{equation*}
\frac{d \mathbf{y}}{d t}=\mathbf{A} \mathbf{y}+\varepsilon \mathbf{S}^{-1} \boldsymbol{\varphi}(\mathbf{y}) \tag{15}
\end{equation*}
$$

where

$$
\mathbf{A}=\mathbf{S}^{-1} \mathbf{P}_{\mathbf{0}} \mathbf{S}=\left(\begin{array}{ccc}
0 & -\omega_{0} & 0 \\
\omega_{0} & 0 & 0 \\
0 & 0 & -d
\end{array}\right)
$$

Let $k_{1}=-0.3092, k_{3}=0.6316, k_{5}=-0.3$, then zero solution of system (11) is stable.
Taking $\omega_{0}=2.5, d=10$ (so we define matrix \mathbf{A}, and one can obtain linearization matrix \mathbf{K}), the above procedure allows us to get initial data $x(0)=-1.5728, y(0)=0, z(0)=0$ for the first step of multistage procedure of construction of solutions. For $\varepsilon_{1}=0.1$ after transient process the computational procedure arrives at a almost periodic solution close to harmonic one. Further, with increasing parameter ε this periodic solution will be transformed into hidden attractor.

4 Localization of hidden attractor in smooth Chua's system with scalar nonlinearity

Consider the following smooth Chua's system:

$$
\begin{align*}
& \dot{x}=\alpha(y-x)-\alpha f(x), \\
& \dot{y}=x-y+z, \tag{16}\\
& \dot{z}=-(\beta y+\gamma z) .
\end{align*}
$$

Here the function

$$
\begin{align*}
f(x) & =m_{1} x+\left(m_{0}-m_{1}\right) \tanh (x)= \\
& =m_{1} x+\left(m_{0}-m_{1}\right) \frac{e^{\sigma}-e^{-\sigma}}{e^{\sigma}+e^{-\sigma}} \tag{17}
\end{align*}
$$

Fig. 1: $\varepsilon=0.1, \varepsilon=0.5, \varepsilon=0.7, \varepsilon=1$
characterizes a nonlinear element, of the system (here we consider smooth nonlinearity $\tanh (x)$ close to nonlinearity saturation (x) in the classical circuit); $\alpha, \beta, \gamma, m_{0}, m_{1}$ are parameters of the system.

We now apply the above algorithm to analysis of Chua's system. For this purpose, rewrite Chua's system (16) in the form (1)

$$
\begin{equation*}
\frac{d \mathbf{x}}{d t}=\mathbf{P} \mathbf{x}+\mathbf{q} \psi\left(\mathbf{r}^{*} \mathbf{x}\right), \quad \mathbf{x} \in \mathbb{R}^{3} \tag{18}
\end{equation*}
$$

Here

$$
\begin{aligned}
& \mathbf{P}=\left(\begin{array}{ccc}
-\alpha\left(m_{1}+1\right) & \alpha & 0 \\
1 & -1 & 1 \\
0 & -\beta & -\gamma
\end{array}\right), \\
& \mathbf{q}=\left(\begin{array}{c}
-\alpha \\
0 \\
0
\end{array}\right), \mathbf{r}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \\
& \psi(\sigma)=\left(m_{0}-m_{1}\right) \tanh (\sigma)
\end{aligned}
$$

Introduce the coefficient k and small parameter ε, and represent system (18) as (4)

$$
\begin{equation*}
\frac{d \mathbf{x}}{d t}=\mathbf{P}_{\mathbf{0}} \mathbf{x}+\mathbf{q} \varepsilon \varphi\left(\mathbf{r}^{*} \mathbf{x}\right) \tag{19}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathbf{P}_{\mathbf{0}}=\mathbf{P}+k \mathbf{q r}^{*}=\left(\begin{array}{ccc}
-\alpha\left(m_{1}+1+k\right) & \alpha & 0 \\
1 & -1 & 1 \\
0 & -\beta & -\gamma
\end{array}\right), \\
& \lambda_{1,2}^{\mathbf{P}_{0}}= \pm i \omega_{0}, \lambda_{3}^{\mathbf{P}_{0}}=-d, \\
& \varphi(\sigma)=\psi(\sigma)-k \sigma=\left(m_{0}-m_{1}\right) \tanh (\sigma)-k \sigma .
\end{aligned}
$$

Consider system (19) with the parameters

$$
\begin{align*}
& \alpha=8.4562, \beta=12.0732, \gamma=0.0052 \tag{20}\\
& m_{0}=0.35, m_{1}=-1.1468
\end{align*}
$$

Note that for the considered values of parameters there are three equilibria in the system: a locally stable zero equilibrium and two saddle equilibria.

Now we apply the above procedure of hidden attractors localization to Chua's system (18) with parameters (20). For this purpose, compute a starting frequency and a coefficient of harmonic linearization. We have

$$
\omega_{0}=2.0392, \quad k=0.2098 .
$$

Then, compute solutions of system (19) with nonlinearity $\varepsilon \varphi(x)=\varepsilon(\psi(x)-k x)$, sequentially increa$\operatorname{sing} \varepsilon$ from the value $\varepsilon_{1}=0.1$ to $\varepsilon_{10}=1$ with the step 0.1 .

By (10) one can obtain the initial data

$$
x(0)=8.8200, y(0)=0.5561, z(0)=-12.6008
$$

for the first step of multistage procedure for the construction of solutions. For the value of parameter $\varepsilon_{1}=0.1$, after transient process the computational procedure reaches the starting oscillation $\mathbf{x}^{1}(t)$. Further, by the sequential transformation $\mathbf{x}^{j}(t)$ with increasing the parameter ε_{j}, using the numerical procedure, for original Chua's system (18) the set $\mathcal{A}_{\text {hidden }}$ is computed. This set is shown in Fig. 2.

Fig. 2: Equilibrium, stable manifolds of saddles, and localization of hidden attractor.
We remark that for the computed trajectories it is observed Zhukovsky instability and the positiveness of Lyapunov exponent [17, 18].

5 Conclusions

In the present work the application of special analytical-numerical algorithm for hidden attractor localization is discussed and the existence of such hidden attractor in smooth Chua's systems is demonstrated.

Acknowledgements

This work was supported by the Academy of Finland, the Ministry of Education and Science (Russia), and Saint-Petersburg State University.

References

[1] E.N.Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci., V.20, 1963, pp.130-141.
[2] O.E.Rossler, An Equation for Continuous Chaos, Physics Letters, V.57A, No.5, 1976, pp.397398.
[3] L.O.Chua, G.N.Lin, Canonical Realization of Chua's Circuit Family, IEEE Transactions on Circuits and Systems, V.37, No.4, 1990, pp.885-902.
[4] G.Chen,\& T.Ueta, Yet another chaotic attractor, /it Int. J. Bifurcation and Chaos No.9, 1999, pp.1465-1466.
[5] G.A.Leonov, N.V.Kuznetsov, V.I.Vagaitsev, Localization of hidden Chua's attractors, Physics Letters, Section A, Vol. 375, is. 35, 2011, pp. 2230-2233 (doi:10.1016/j.physleta.2011.04.037).
[6] G.A.Leonov, On harmonic linearization method, Doklady Akademii Nauk. Physcis, 424(4), 2009, pp. 462-464.
[7] G.A.Leonov, On harmonic linearization method, Automation and remote controle, 5, 2009, pp. 65-75.
[8] G.A.Leonov, On Aizerman problem, Automation and remote control, No.7, 2009, pp. 37-49.
[9] G.A.Leonov, Effective methods for periodic oscillations search in dynamical systems, App. math. छ mech., 74(1),2010, pp. 37-73.
[10] G.A.Leonov, V.I.Vagaitsev, N.V.Kuznetsov, Algorithm for localizing Chua attractors based on the harmonic linearization method, Doklady Mathematics, 82(1),2010, pp.663-666.
[11] G.A.Leonov, V.O.Bragin, N.V.Kuznetsov, Algorithm for Constructing Counterexamples to the Kalman Problem, Doklady Mathematics, 82(1), 2010, pp. 540-542.
[12] L.O.Chua, A Zoo of Strange Attractors from the Canonical Chua's Circuits, Proceedings of the IEEE 35th Midwest Symposium on Circuits and Systems (Cat. No.92CH3099-9), V.2, 1992, pp.916-926.
[13] L.O.Chua, A Glimpse of Nonlinear Phenomena from Chua's Oscillator, Philosophical Transactions: Physical Sciences and Engineering, V.353, No.1701, 1995, pp.3-12.
[14] E.Bilotta, P.Pantano, A gallery of Chua attractors, World scientific series on nonlinear science, Series A, V.61, 2008.
[15] Z.Shi, S.Hong and K.Chen, Experimental study on tracking the state of analog Chua's circuit with particle filter for chaos synchronization, Physics Letters A, Vol. 372, Iss. 34, 2008, pp. 55755580.
[16] V.S.Anishchenko, T.Kapitaniak, M.A.Safonova and O.V.Sosnovzeva, Birth of double-double scroll attractor in coupled Chua circuits, Physics Letters A, Vol.192, Iss.2-4, 1994, pp. 207-214.
[17] G.A.Leonov, Strange attractors and classical stability theory, St.Petersburg university Press, 2008.
[18] G.A.Leonov, N.V.Kuznetsov, Time-Varying Linearization and the Perron effects, International Journal of Bifurcation and Chaos, Vol. 17, No.4, 2007, pp. 1079-1107.

