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Abstract: This article deals with Analytic Programming (AP) which was proven to be highly effective tool of 

Artificial Neural Network (ANN) synthesis and optimization.  AP is used here to obtain optimal ANN which 

satisfactory solve given problem of classification. The algorithm is theoretically explained and successfully 

used to perform classification upon real life data of breast cancer diagnosis. Very simple but effective ANN is 

acquired as a result. 
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1 Introduction 
Classification, such as breast cancer diagnosis (see 

chapter 5), is very important domain of Artificial 

Neural Network (ANN) usage. Nevertheless 

obtaining of optimal ANN which successful deals 

with provided classification task represents complex 

problem. 

     This article describes process of ANN synthesis 

via symbolic regression and compares it with 

concurrent solutions. There are two well-known 

methods: Genetic Programming and Grammatical 

Evolution, which can both symbolically regress 

using evolutionary algorithm. However, in this 

article, more recent and flexible procedure called 

Analytic Programming (AP) is used here. 

     AP performed well in many separate cases (for 

example [1, 2]) together with different evolutionary 

algorithms (EA) as its ―engine‖. Asynchronous 

implementation of SOMA – Self-Organizing 

Migration Algorithm [3] is applied here to boost AP 

with the ambition to show unusual electivity of such 

arrangement.  

    SOMA is based on a self-organizing behavior of 

groups of individuals in a ―social environment‖. It 

can also be classified as an evolutionary algorithm 

[4], despite the fact that no new generations of 

individuals are created during the search (due to 

philosophy of this algorithm). Only positions of 

individuals in the searched space are changed during 

one generation, called a ―migration loop‖. The 

algorithm was published in journals, book and 

presented at international conferences, symposiums 

as well as in various invitational presentations, for 

example [5, 6, 7]. 

2 Analytic Programming  
Main principle (core) of AP is based on discrete set 

handling (DSH) (Fig. 1). DSH shows itself as 

universal interface between EA and a symbolically 

solved problem. This is why AP can be used almost 

by any EA. 

 

 
 

Fig. 1, DSH principle 

 

     Briefly put, in AP, individuals consist of non-

numerical expressions (operators, functions,…), 

which are within evolutionary process represented 

by their integer indexes. Such index then serves like 

a pointer into the set of expressions and AP uses it 

to synthesize resulting function-program for Cost 

Function evaluation. 

     All simple functions and operators are in so 

called General Function Set (GFS) divided into 

groups according to the number of arguments which 

can be inserted during the evolutionary process to 

create subsets GFS3arg, GFS2arg...GFS0arg. 

 

Recent Researches in Automatic Control

ISBN: 978-1-61804-004-6 377



 
 

Fig. 2, Example of GFS and its subsets 

 

     Functionality of discrete set handling can be seen 

on the concrete example in Fig. 3:  

 

 
 

Fig 3, Main principles of AP 

 

     The individual consists of 6 arguments (indices, 

pointers to GFS). The first index is 1 meaning that + 

is taken from the set of functions GFSall. Function 

plus has two arguments, therefore indexes 6 and 7 

are arguments of plus. 

(1) 

6 + 7 

 

Index 6 is then replaced by Sin and index 7 by Cos.  

(2) 

Sin + Cos 

 

Sin and Cos are one-argument functions. Then, 

index 7 follows index 8, which is replaced by Tan.  

(3) 

Sin(Tan) + Cos 

 

Tan is also one-argument function. Then, after index 

8 the individual takes index 9, which is replaced by t 

and this t becomes the argument of Cos. 

(4) 

Sin(Tan) + Cos(t) 

 

But in our case there is a function Mod. Mod needs 

an argument to work properly. AP will not allow 

this, as there is not any other free pointer to be used 

with the argument. Instead of Mod, the AP will 

jump into the subspace, in this case directly to 

GFS0arg. In the GFS0arg it finds 11th element which is 

t. And by doing so, we get (5) [1]. 

(5) 

Sin(Tan(t)) + Cos(t) 

 

     Number of actually used pointers from an 

individual before synthesized expression is closed is 

called depth. 

 

2.1 Constant Processing  
Synthesized ANN, programs or formulas may also 

contain constants ―K‖ which can be defined in GFS0 

or be a part of other functions included in GFSall. 

When the program is synthesized, all Ks are 

indexed, so K1, K2, …, Kn, are obtained and then all 

Kn are estimated by second EA. In this case the EA 

is, again, asynchronous implementation of SOMA. 

     This is especially convenient for an ANN 

synthesis. Kn can be interpreted as various weights 

and thresholds and their optimization by SOMA as 

ANN learning. 

 

 

3 SOMA All-to-One  
Several different versions of SOMA exist, 

nevertheless, this article is focused on most common 

All-to-One version, which is most suitable for 

asynchronous parallel implementation. All basic 

All-to-One SOMA principles important for correct 

understanding of executed experiment are described 

below. 

 

3.1 Parameter definition 
Before starting the algorithm, SOMA’s parameters: 

Step, PathLength, PopSize, PRT and Cost Function 

need to be defined. The Cost Function is simply the 

function which returns a scalar that can directly 

serve as a measure of fitness. In this case, Cost 

Function is provided by AP. 

 

3.2 Creation of Population 
Population of individuals is randomly generated. 

Each parameter for each individual has to be chosen 

randomly from the given range <Low, High>.  

 

3.3 Migration loop 
Each individual from population (PopSize) is 

evaluated by the Cost Function and the Leader 

(individual with the highest fitness) is chosen for the 

current migration loop. Then, all other individuals 

begin to jump, (according to the Step definition) 

towards the Leader. Each individual is evaluated 

after each jump by using the Cost Function. 

Jumping continues until a new position defined by 
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the PathLength is  reached. The new position xi,j 

after each jump is calculated by (6) as is shown 

graphically in Fig. 1. Later on, the individual returns 

to the position on its path, where it found the best 

fitness.  

(6) 

 

 
 

where  t  <0, by Step to, PathLegth> 

and ML is actual migration loop 

 

     Before an individual begins jumping towards the 

Leader, a random number rnd is generated (for each 

individual’s component), and then compared with 

PRT. If the generated random number is larger than 

PRT, then the associated component of the 

individual is set to 0 using PRTVector.  

 

(7) 

if rndj < PRT then PRTVectorj = 0 else 1 

 

where  rnd  <0, 1> 

and  j = 1, … nparam 

 

j rndj PRTVector 

1 0.234 1 

2 0,545 0 

3 0,865 0 

4 0,012 1 

 

Table 1, An example of PRTVector for 4 parameters 

individual with PRT = 0.3 

 

     Hence, the individual moves in the N-k 

dimensional subspace, which is perpendicular to the 

original space. This fact establishes a higher 

robustness of the algorithm. Earlier experiments 

demonstrated that without the use of PRT, SOMA 

tends to determine a local optimum rather than 

global one. [8] 

 

 

3.4 Test for stopping condition 
If a divergence between current Leader and Leader 

from the last migration loop is less than defined 

number, stop and recall the best solution(s) found 

during the search. 

. 

 
 

Fig. 4, PRTVector and its action on individual 

movement [8] 

 

 

4 Neural Network Synthesis 
There is a very easy way of using AP for ANN 

synthesis. [9] The most important part is to define 

items from which ANN will be composed. In this 

case GFS contains only three items.   

(8) 

GFSall = {+, AN, K*x} 

 

     Most important item of (8) is Artificial Neuron 

(AN) (9) with hyperbolic tangent as transfer 

function (10). Weight of output, steepness and 

thresholds are computed as K in AP (11).   

   (9) 

GFS1 = {AN} 

(10) 

 

AN =  w * (e^(2 * λ * (input + )) - 1) / ( (e^(2 * λ* 

(input + )) + 1); 

 

(11) 

 

AN = K1 * (e^(2 * K2 * (input + K3)) - 1) / ( (e^(2 * 

K2 * (input + K3)) + 1); 

 

 
Fig. 5, Graphical example of AN 

 

     To allow more inputs into one ANN simple plus 

operator (12) is used. 
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(12) 

GFS2 = {+} 

 

 
 

Fig. 6, Graphical example of plus operator 

 

Finally, (13) represents weighted input data. 

(13) 

GFS0 = K*x 

 

 
Fig. 7, Graphical example of weighted input 

 

     Under such circumstances, translation of an 

individual to ANN can be easily grasped from     

Fig. 8.  

 

 
Fig. 8, Translation of an individual to ANN 

 

     Whole process is cyclical. Individuals provided 

by EA are translated to ANNs. ANNs are evaluated 

in accordance with training data set and their global 

errors are used to set fitness to these individuals. 

Consequently, a new generation is chosen and the 

whole process is repeated in next migration loop. 

 

3.1 Reinforced evolution 
If ANN of adequate quality cannot be obtained 

during AP run, AP puts the best ANN it found as a 

sub ANN into GFS0 and starts over. This 

arrangement considerably improves AP ability to 

find ANN with desirable parameters. 

     In this experiment (15) (see chapter 6) will be 

expanded to (14). 

(14) 

 

GFS0 = {+, AN, K*x0, ANN0, +, AN, K*x1, ANN0,  

+, AN, K*x2, ANN0, +, AN, K*x3, ANN0, +, AN, 

K*x4, ANN0, +, AN, K*x5, ANN0, +, AN, K*x6, 

ANN0, +, AN, K*x7, ANN0, +, AN, K*x8, ANN0 } 

 

 

5 Diagnosis of Breast Cancer 
Diagnosis of breast cancer is a classification 

problem introduced in [10]. ANN try to classify a 

tumor as either benign or malignant based on cell 

descriptions gathered by microscopic examination.  

     Input attributes are for instance the clump 

thickness, the uniformity of cell size and cell shape, 

the amount of marginal adhesion, and the frequency 

of bare nuclei. 

     The dataset includes 699 examples with 9 inputs 

and 2 outputs. All inputs are continuous; 65.5% of 

the examples are benign. This makes for entropy of 

0.93 bits per example. 

     This dataset was created based on the "breast 

cancer Wisconsin" problem from the UCI repository 

of machine learning databases originally obtained 

from the University of Wisconsin Hospitals, 

Madison, from Dr. William H. Wolberg [11].  

     For the purpose of executed experiment cancer1 

set was chosen in the concrete.  Based on [12], 

fourth ANN optimization methods provide 

dissimilar mean testing classification error dealing 

with cancer1: 

      

de Falco et al. [13] 2.46% 

Prechelt [10] 1.38% 

Brameier and Banzhaf [14] 2.18% 

The CMAC NN classifier [12]  3.94% 

 

Table 3, ANN mean testing classification error 
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6 Experiment set up 
The experiment was prepared in conformity with 

rules proposed in [10]. 

     To synthetize optimal ANN AP used GFS with 

equal rate of neurons, connection and inputs: 

(15) 

GFS = {+, AN, K*x0, +, AN, K*x1, +, AN, K*x2, +, 

AN, K*x3, +, AN, K*x4, +, AN, K*x5, +, AN, K*x6, 

+, AN, K*x7, +, AN, K*x8} 

 

while Cost function was formulated as: 

(16) 

 

CF = number of wrongly classficed examples + 

depth/100; 

 

     Such approached ensured finding of best possible 

ANN as well as ANN with minimal structure. 

     Setting of Asynchronous SOMA used as EA for 

AP (ANN structure synthesis) can be seen in table 4. 

 

Number of Individuals 48 

Individual Parameters 100 

Low 0 

High 100 

PathLength 3 

Step 0,11 

PRT 1/ depth 

Divergence 0.001 

Period 3 

 

Table 4, Setting of SOMA used as EA for AP 

 

     Table 5 describes setting of SOMA used to 

optimize Kn (ANN learning). 

 

Number of Individuals number of Kn * 0.5 

(at least 10) 

Individual Parameters 100 

Low -10 

High 10 

PathLength 3 

Step 0,11 

PRT 1 / number of Kn 

Divergence 0.001 

Period 6 

 

Table 5, Setting of SOMA used to optimize Kn 

 

 

7 Results  

During 100 runs of the algorithm ANN structurally 

described as (17), (18) was found to be the best 

solution of the given classification problem with      

a test classification error 1.14%. Two wrongly 

classified examples within test set had positions 81 

and 87. 

(17) 

 

ANN0 = AN[x5] + x0 + x2 + x3 + AN[x7] 

 

(18) 

ANN1 = AN[ANN0 + x3] + x8 

 

     Functions (19) and (20) described learned ANN 

which can be easily tested on cancer1 publicly 

provided by [10]: 

(19) 

 

ANN0 = -2,97309632219583 * AN[-

1,46365223054944 * (-5,03444335192183 * x5 + 

1,76603626076413)] + -7,40609983802126 * x0 + -

5,46830267210878 * x2 + -6,94991567402608 * x3 

+ -5,99052909574962 * AN[1,59467356605207 * 

(3,68066486608268 * x7 + -3,61373674292757)] 

 

(20) 

ANN1 = -2,83643286341635 * AN[-

0,179040669733212 * (ANN0 + 

0,796079062345568 * x3 + 0,670777686792787)] + 

-2,95757076519615 * x8 

 

     Structural evolution of resulted ANN can be seen 

on fig. 9  

 

 
 

 
 

Fig. 9, Resulted ANN structural evolution 
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8 Conclusion 
AP proves its ability to synthetize and, in the same 

time, optimize ANN which effectively classify 

given task while its structure is minimized. 

     Best obtained ANN had even for 0.28% better 

test classification error than mean test classification 

error of best concurrent method [10]. 

     AP successfully found ANN containing only 

three AN and totally omitting inputs x1 and x4. Such 

performance ratifies AP as efficient tool of ANN 

optimization. 
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