
Neural Network Synthesis Dealing with Classification Problem

PAVEL VAŘACHA

Tomas Bata University in Zlin

Faculty of Applied Informatics

nam. T.G. Masaryka 5555, 760 01 Zlin

CZECH REPUBLIC

varacha@fai.utb.cz http://www.fai.utb.cz

Abstract: This article deals with Analytic Programming (AP) which was proven to be highly effective tool of

Artificial Neural Network (ANN) synthesis and optimization. AP is used here to obtain optimal ANN which

satisfactory solve given problem of classification. The algorithm is theoretically explained and successfully

used to perform classification upon real life data of breast cancer diagnosis. Very simple but effective ANN is

acquired as a result.

Key-Words: Neural Network, classification, Analytic Programming, SOMA, optimization

1 Introduction
Classification, such as breast cancer diagnosis (see

chapter 5), is very important domain of Artificial

Neural Network (ANN) usage. Nevertheless

obtaining of optimal ANN which successful deals

with provided classification task represents complex

problem.

 This article describes process of ANN synthesis

via symbolic regression and compares it with

concurrent solutions. There are two well-known

methods: Genetic Programming and Grammatical

Evolution, which can both symbolically regress

using evolutionary algorithm. However, in this

article, more recent and flexible procedure called

Analytic Programming (AP) is used here.

 AP performed well in many separate cases (for

example [1, 2]) together with different evolutionary

algorithms (EA) as its ―engine‖. Asynchronous

implementation of SOMA – Self-Organizing

Migration Algorithm [3] is applied here to boost AP

with the ambition to show unusual electivity of such

arrangement.

 SOMA is based on a self-organizing behavior of

groups of individuals in a ―social environment‖. It

can also be classified as an evolutionary algorithm

[4], despite the fact that no new generations of

individuals are created during the search (due to

philosophy of this algorithm). Only positions of

individuals in the searched space are changed during

one generation, called a ―migration loop‖. The

algorithm was published in journals, book and

presented at international conferences, symposiums

as well as in various invitational presentations, for

example [5, 6, 7].

2 Analytic Programming
Main principle (core) of AP is based on discrete set

handling (DSH) (Fig. 1). DSH shows itself as

universal interface between EA and a symbolically

solved problem. This is why AP can be used almost

by any EA.

Fig. 1, DSH principle

 Briefly put, in AP, individuals consist of non-

numerical expressions (operators, functions,…),

which are within evolutionary process represented

by their integer indexes. Such index then serves like

a pointer into the set of expressions and AP uses it

to synthesize resulting function-program for Cost

Function evaluation.

 All simple functions and operators are in so

called General Function Set (GFS) divided into

groups according to the number of arguments which

can be inserted during the evolutionary process to

create subsets GFS3arg, GFS2arg...GFS0arg.

Recent Researches in Automatic Control

ISBN: 978-1-61804-004-6 377

Fig. 2, Example of GFS and its subsets

 Functionality of discrete set handling can be seen

on the concrete example in Fig. 3:

Fig 3, Main principles of AP

 The individual consists of 6 arguments (indices,

pointers to GFS). The first index is 1 meaning that +

is taken from the set of functions GFSall. Function

plus has two arguments, therefore indexes 6 and 7

are arguments of plus.

(1)

6 + 7

Index 6 is then replaced by Sin and index 7 by Cos.

(2)

Sin + Cos

Sin and Cos are one-argument functions. Then,

index 7 follows index 8, which is replaced by Tan.

(3)

Sin(Tan) + Cos

Tan is also one-argument function. Then, after index

8 the individual takes index 9, which is replaced by t

and this t becomes the argument of Cos.

(4)

Sin(Tan) + Cos(t)

But in our case there is a function Mod. Mod needs

an argument to work properly. AP will not allow

this, as there is not any other free pointer to be used

with the argument. Instead of Mod, the AP will

jump into the subspace, in this case directly to

GFS0arg. In the GFS0arg it finds 11th element which is

t. And by doing so, we get (5) [1].

(5)

Sin(Tan(t)) + Cos(t)

 Number of actually used pointers from an

individual before synthesized expression is closed is

called depth.

2.1 Constant Processing
Synthesized ANN, programs or formulas may also

contain constants ―K‖ which can be defined in GFS0

or be a part of other functions included in GFSall.

When the program is synthesized, all Ks are

indexed, so K1, K2, …, Kn, are obtained and then all

Kn are estimated by second EA. In this case the EA

is, again, asynchronous implementation of SOMA.

 This is especially convenient for an ANN

synthesis. Kn can be interpreted as various weights

and thresholds and their optimization by SOMA as

ANN learning.

3 SOMA All-to-One
Several different versions of SOMA exist,

nevertheless, this article is focused on most common

All-to-One version, which is most suitable for

asynchronous parallel implementation. All basic

All-to-One SOMA principles important for correct

understanding of executed experiment are described

below.

3.1 Parameter definition
Before starting the algorithm, SOMA’s parameters:

Step, PathLength, PopSize, PRT and Cost Function

need to be defined. The Cost Function is simply the

function which returns a scalar that can directly

serve as a measure of fitness. In this case, Cost

Function is provided by AP.

3.2 Creation of Population
Population of individuals is randomly generated.

Each parameter for each individual has to be chosen

randomly from the given range <Low, High>.

3.3 Migration loop
Each individual from population (PopSize) is

evaluated by the Cost Function and the Leader

(individual with the highest fitness) is chosen for the

current migration loop. Then, all other individuals

begin to jump, (according to the Step definition)

towards the Leader. Each individual is evaluated

after each jump by using the Cost Function.

Jumping continues until a new position defined by

Recent Researches in Automatic Control

ISBN: 978-1-61804-004-6 378

the PathLength is reached. The new position xi,j

after each jump is calculated by (6) as is shown

graphically in Fig. 1. Later on, the individual returns

to the position on its path, where it found the best

fitness.

(6)

where t <0, by Step to, PathLegth>

and ML is actual migration loop

 Before an individual begins jumping towards the

Leader, a random number rnd is generated (for each

individual’s component), and then compared with

PRT. If the generated random number is larger than

PRT, then the associated component of the

individual is set to 0 using PRTVector.

(7)

if rndj < PRT then PRTVectorj = 0 else 1

where rnd <0, 1>

and j = 1, … nparam

j rndj PRTVector

1 0.234 1

2 0,545 0

3 0,865 0

4 0,012 1

Table 1, An example of PRTVector for 4 parameters

individual with PRT = 0.3

 Hence, the individual moves in the N-k

dimensional subspace, which is perpendicular to the

original space. This fact establishes a higher

robustness of the algorithm. Earlier experiments

demonstrated that without the use of PRT, SOMA

tends to determine a local optimum rather than

global one. [8]

3.4 Test for stopping condition
If a divergence between current Leader and Leader

from the last migration loop is less than defined

number, stop and recall the best solution(s) found

during the search.

.

Fig. 4, PRTVector and its action on individual

movement [8]

4 Neural Network Synthesis
There is a very easy way of using AP for ANN

synthesis. [9] The most important part is to define

items from which ANN will be composed. In this

case GFS contains only three items.

(8)

GFSall = {+, AN, K*x}

 Most important item of (8) is Artificial Neuron

(AN) (9) with hyperbolic tangent as transfer

function (10). Weight of output, steepness and

thresholds are computed as K in AP (11).

 (9)

GFS1 = {AN}

(10)

AN = w * (e^(2 * λ * (input +)) - 1) / ((e^(2 * λ*

(input +)) + 1);

(11)

AN = K1 * (e^(2 * K2 * (input + K3)) - 1) / ((e^(2 *

K2 * (input + K3)) + 1);

Fig. 5, Graphical example of AN

 To allow more inputs into one ANN simple plus

operator (12) is used.

Recent Researches in Automatic Control

ISBN: 978-1-61804-004-6 379

(12)

GFS2 = {+}

Fig. 6, Graphical example of plus operator

Finally, (13) represents weighted input data.

(13)

GFS0 = K*x

Fig. 7, Graphical example of weighted input

 Under such circumstances, translation of an

individual to ANN can be easily grasped from

Fig. 8.

Fig. 8, Translation of an individual to ANN

 Whole process is cyclical. Individuals provided

by EA are translated to ANNs. ANNs are evaluated

in accordance with training data set and their global

errors are used to set fitness to these individuals.

Consequently, a new generation is chosen and the

whole process is repeated in next migration loop.

3.1 Reinforced evolution
If ANN of adequate quality cannot be obtained

during AP run, AP puts the best ANN it found as a

sub ANN into GFS0 and starts over. This

arrangement considerably improves AP ability to

find ANN with desirable parameters.

 In this experiment (15) (see chapter 6) will be

expanded to (14).

(14)

GFS0 = {+, AN, K*x0, ANN0, +, AN, K*x1, ANN0,

+, AN, K*x2, ANN0, +, AN, K*x3, ANN0, +, AN,

K*x4, ANN0, +, AN, K*x5, ANN0, +, AN, K*x6,

ANN0, +, AN, K*x7, ANN0, +, AN, K*x8, ANN0 }

5 Diagnosis of Breast Cancer
Diagnosis of breast cancer is a classification

problem introduced in [10]. ANN try to classify a

tumor as either benign or malignant based on cell

descriptions gathered by microscopic examination.

 Input attributes are for instance the clump

thickness, the uniformity of cell size and cell shape,

the amount of marginal adhesion, and the frequency

of bare nuclei.

 The dataset includes 699 examples with 9 inputs

and 2 outputs. All inputs are continuous; 65.5% of

the examples are benign. This makes for entropy of

0.93 bits per example.

 This dataset was created based on the "breast

cancer Wisconsin" problem from the UCI repository

of machine learning databases originally obtained

from the University of Wisconsin Hospitals,

Madison, from Dr. William H. Wolberg [11].

 For the purpose of executed experiment cancer1

set was chosen in the concrete. Based on [12],

fourth ANN optimization methods provide

dissimilar mean testing classification error dealing

with cancer1:

de Falco et al. [13] 2.46%

Prechelt [10] 1.38%

Brameier and Banzhaf [14] 2.18%

The CMAC NN classifier [12] 3.94%

Table 3, ANN mean testing classification error

Recent Researches in Automatic Control

ISBN: 978-1-61804-004-6 380

6 Experiment set up
The experiment was prepared in conformity with

rules proposed in [10].

 To synthetize optimal ANN AP used GFS with

equal rate of neurons, connection and inputs:

(15)

GFS = {+, AN, K*x0, +, AN, K*x1, +, AN, K*x2, +,

AN, K*x3, +, AN, K*x4, +, AN, K*x5, +, AN, K*x6,

+, AN, K*x7, +, AN, K*x8}

while Cost function was formulated as:

(16)

CF = number of wrongly classficed examples +

depth/100;

 Such approached ensured finding of best possible

ANN as well as ANN with minimal structure.

 Setting of Asynchronous SOMA used as EA for

AP (ANN structure synthesis) can be seen in table 4.

Number of Individuals 48

Individual Parameters 100

Low 0

High 100

PathLength 3

Step 0,11

PRT 1/ depth

Divergence 0.001

Period 3

Table 4, Setting of SOMA used as EA for AP

 Table 5 describes setting of SOMA used to

optimize Kn (ANN learning).

Number of Individuals number of Kn * 0.5

(at least 10)

Individual Parameters 100

Low -10

High 10

PathLength 3

Step 0,11

PRT 1 / number of Kn

Divergence 0.001

Period 6

Table 5, Setting of SOMA used to optimize Kn

7 Results

During 100 runs of the algorithm ANN structurally

described as (17), (18) was found to be the best

solution of the given classification problem with

a test classification error 1.14%. Two wrongly

classified examples within test set had positions 81

and 87.

(17)

ANN0 = AN[x5] + x0 + x2 + x3 + AN[x7]

(18)

ANN1 = AN[ANN0 + x3] + x8

 Functions (19) and (20) described learned ANN

which can be easily tested on cancer1 publicly

provided by [10]:

(19)

ANN0 = -2,97309632219583 * AN[-

1,46365223054944 * (-5,03444335192183 * x5 +

1,76603626076413)] + -7,40609983802126 * x0 + -

5,46830267210878 * x2 + -6,94991567402608 * x3

+ -5,99052909574962 * AN[1,59467356605207 *

(3,68066486608268 * x7 + -3,61373674292757)]

(20)

ANN1 = -2,83643286341635 * AN[-

0,179040669733212 * (ANN0 +

0,796079062345568 * x3 + 0,670777686792787)] +

-2,95757076519615 * x8

 Structural evolution of resulted ANN can be seen

on fig. 9

Fig. 9, Resulted ANN structural evolution

Recent Researches in Automatic Control

ISBN: 978-1-61804-004-6 381

8 Conclusion
AP proves its ability to synthetize and, in the same

time, optimize ANN which effectively classify

given task while its structure is minimized.

 Best obtained ANN had even for 0.28% better

test classification error than mean test classification

error of best concurrent method [10].

 AP successfully found ANN containing only

three AN and totally omitting inputs x1 and x4. Such

performance ratifies AP as efficient tool of ANN

optimization.

9 Acknowledgment
The work was performed with financial support of

research project NPVII-2C06007, by the Ministry of

Education of the Czech Republic. [15]

References:

[1] Z. Oplatková, I Zelinka,. Creating evolutionary

algorithms by means of analytic programming -

design of new cost function. In ECMS 2007,

European Council for Modelling and

Simulation, 2007, p. 271-276. ISBN/ISSN:

978-0-9553018-2-7

[2] Z. Oplatková, I. Zelinka,. Investigation on

Artificial Ant using Analytic Programming. In

Genetic and Evolutionary Computation

Conference, 2006, p. 949-950. ISBN/ISSN: 1-

59593-186-4.

[3] P. Vařacha, I. Zelinka, Distributed Self-

Organizing Migrating Algorithm Application

and Evolutionary Scanning. In Proceedings of

the 22nd European Conference on Modelling

and Simulation ECMS 2008 Nicosia, 2008. p.

201-206. ISBN/ISSN: 0-9553018-5-8.

[4] E. Král, V. Dolinay, L. Vašek, P. Vařacha,

Usage of PSO Algorithm for Parameters

Identification of District Heating Network

Simulation Model. In 14th WSEAS

International Conference on Systems. Latest

Trands on Systems.Volume II, Rhodes,

WSEAS Press (GR) , 2010. p. 657-659.

ISBN/ISSN: 978-960-474-214-1.

[5] M. Červenka, I. Zelinka, Application of

Evolutionary Algorithm on Aerodynamic Wing

Optimisation. In Proceedings of the 2nd

European Computing Conference, Venice,

WSEAS Press (IT), 2008, ISBN/ISSN: 978-

960-474-002-4.

[6] Z. Oplatková, I. Zelinka, Investigation on

Shannon - Kotelnik Theorem Impact on SOMA

Algorithm Performance. In European

Simulation Multiconference, 2005, Riga, ESM ,

2005. p. 66-71. ISBN/ISSN: 1-84233-112-4.

[7] R. Šenkeřík, I. Zelinka, Optimization and

Evolutionary Control of Chemical Reactor. In

10th International Research/Expert Conference

Trends in the Development of Machinery and

Associated Technology, TMT, Zenica, Bosna

and Hercegovina, 2006, p. 1171-1174.

ISBN/ISSN: 9958-617-30-7.

[8] I. Zelinka, Studies in Fuzziness and Soft

Computing, New York : Springer-Verlag,

2004.

[9] P. Vařacha, Impact of Weather Inputs on

Heating Plant - Agglomeration Modeling. In

Proceedings of the 10th WSEAS Ing. Conf. on

Neural Networks, Athens, WSEAS World

Science and Engineering Academy and Science

, 2009. p. 159-162. ISBN/ISSN: 978-960-474-

065-9.

[10] L. Prechelt, Proben1—A Set of Neural

Network Benchmark Problems and

Benchmarking Rules, Universität Karlsruhe,

Germany, 1994

[11] O. L. Mangasarianm W. H. Wolberg:

"Cancer diagnosis via linear programming",

SIAM News, Volume 23, Number 5,

September 1990, pp 1 & 18.

[12] I. de Falco, A.D. Cioppa, E. Tarantino,

Discovering interesting classification rules with

genetic programming, Applied Soft Computing

1 (2002) 257–269.

[13] M. Brameier, W. Banzhaf, A comparison of

linear genetic programming and neural

networks in medical data mining, IEEE

Transactions on Evolutionary

[14] Jui-Yu Wu, MIMO CMAC neural network

classifier for solving classification problems,

Applied Soft Computing, Volume 11, Issue 2,

The Impact of Soft Computing for the Progress

of Artificial Intelligence, March 2011, Pages

2326-2333, ISSN 1568-4946,

[15] B. Chramcov, Forecast of heat demand

according the Box-Jenkins methodology for

specific locality. In Latest Trends on Systems,

Rhodes, WSEAS Press (GR) , 2010, p. 252-

256, ISBN/ISSN: 978-960-474-199-1.

Recent Researches in Automatic Control

ISBN: 978-1-61804-004-6 382

