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Abstract: - The paper presents possibility of model design of time series of heat demand course. The course of 

heat demand and heat consumption can be demonstrated by means of heat demand diagrams. The most 

important one is the Daily Diagram of Heat Supply (DDHS) which demonstrates the course of requisite heat output 

during the day. These diagrams are of essential importance for technical and economic considerations. 

Therefore forecast of the diagrams course is significant for short-term and long-term planning of heat 

production. The aim of paper is to give some background about analysis of time series of heat demand and 

identification of forecast model using Time series package which is integrated with the Wolfram Mathematica. 

The paper illustrates using this package for forecast model identification of heat demand in specific locality. 

This analysis is utilized for building up a prediction model of the DDHS 
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1 Introduction 
Analysis of data ordered by the time the data were 

collected (usually spaced at equal intervals), called a 

time series. Common examples of a time series are 

daily temperature measurements, monthly sales, 

daily heat consumption and yearly population 

figures. The goals of time series analysis are to 

describe the process generating the data, and to 

forecast future values.  

Forecasting can be an important part of a process 

control system. By monitoring key process variables 

and using them to predict the future behavior of the 

process, it may be possible to determine the optimal 

time and extent of control action. We can find 

applications of this prediction also in the control of 

the Centralized Heat Supply System (CHSS), 

especially for the control of hot water piping heat 

output. Knowledge of heat demand is the base for 

input data for the operation preparation of CHSS. 

The term “heat demand” means an instantaneous 

heat output demanded or instantaneous heat output 

consumed by consumers. The term “heat demand” 

relates to the term “heat consumption”. It expresses 

heat energy which is supplied to the customer in a 

specific time interval (generally a day or a year). 

The course of heat demand and heat consumption 

can be demonstrated by means of heat demand 

diagrams. The most important one is the Daily 

Diagram of Heat Demand (DDHD) which 

demonstrates the course of requisite heat output 

during the day (See Fig. 1). These heat demand 

diagrams are of essential importance for technical 

and economic considerations. Therefore forecast of 

these diagrams course is significant for short-term 

and long-term planning of heat production. It is 

possible to judge the question of peak sources and 

particularly the question of optimal load distribution 

between the cooperative production sources and 

production units inside these sources according to 

the time course of heat demand [1]. The forecast of 

DDHD is used in this case.  
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Fig. 1: DDHD for the concrete locality 
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In the other work [2], a model for operational 

optimization of the CHSS in the metropolitan area is 

presented by incorporating forecast for demand 

from customers. In the model, production and 

demand of heat in the region of Suseo near Seoul, 

Korea, are taken into account as well as forecast for 

demand using the artificial neural network. 

In this paper we propose the forecast model of 

DDHD based on the Box-Jenkins [3] approach. This 

method works with a fixed number of values which 

are updated for each sampling period. This 

methodology is based on the correlation analysis of 

time series and works with stochastic models which 

enable to give a true picture of trend components 

and also that of periodic components. As this 

method achieves very good results in practice, it 

was chosen for the calculation of DDHD forecast. 

Identification of time series model parameters is the 

most important and the most difficult phase in the 

time series analysis. This paper is dealing with the 

identification of a model of concrete time series of 

heat demand. We have particularly focused on 

preparing data for modeling as well as on estimating 

the model parameters and diagnostic checking. 

Currently, there is a wide range of free and 

commercial products, which offer an extremely 

wide spectrum of possibilities for the time series 

analysis and subsequent forecast of these time 

series. Our workplace is equipped with a 

Mathematica environment, which is used for 

education and academic research. Mathematica 

environment is the product of the Wolfram Research 

company [4], and is one of the world's most 

powerful global computation system. Time Series is 

a package of Wolfram Mathematica [5]. It is a fully 

integrated environment for time-dependent data 

analysis. Time Series performs univariate and 

multivariate analysis and enables you to explore 

both stationary and nonstationary models. It is 

possible to fit data and obtain estimates of the 

model's parameters and check its validity using 

residuals and tests such as the portmanteau.  

 

 

2 Preparing real data for modeling 
In order to fit a time series model to data, we often 

need to first transform the data to render them 

"wellbehaved". By this we mean that the 

transformed data can be modeled by a zero-mean, 

stationary type of process. We can usually decide if 

a particular time series is stationary by looking at its 

time plot. Intuitively, a time series "looks" 

stationary if the time plot of the series appears 

"similar" at different points along the time axis. Any 

nonconstant mean or variability should be removed 

before modeling. The way of transforming the raw 

data of heat demand into a form suitable for 

modeling are presented in this section. Time series 

package enables to use many transformations. These 

transformations include linear filtering, simple 

exponential smoothing, differencing, moving 

average, the Box-Cox transformation and others. 

Only differencing is considered for time series 

analysis of heat demand. 

 

 

2.1 Differencing the time series of heat 

demand 
The graph [see Fig.1] shows that the values of heat 

demand signalling a possible nonconstant mean. 

Therefore it is necessary to use a special class of 

nonstationary ARMA processes called the 

autoregressive integrated moving average (ARIMA) 

process. Equation (1) defines this process with order 

p, d, q or simply ARIMA(p,d,q). 

 

tt

d BzBB1  )()()(   (1) 

 

Non-negative integer d is degree of differencing the 

time series, p represents the order of autoregressive 

process and q is order of moving average process. 

(B) and (B) are polynomials of degrees p and q. 

ARIMA(p,d,q) series can be transformed into an 

ARMA(p,q) series by differencing it d times. Using 

the definition of backward shift operator B it is 

possible to define differencing the time series zt for 

d=1 in the form (2). 
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Determination of a degree of differencing d is the 

main problem of ARIMA model building. 

Differencing is an effective way to render the series 

stationary. In Time series package it is possible to 

use the function ListDifference[data,d] to 

difference the data d times  

In practice, it seldom appears necessary to 

difference more than twice. That means that 

stationary time series are produced by means of the 

first or second differencing. A number of 

possibilities for determination of difference degree 

exist. It is possible to use a plot of the time series, 

for visual inspection of its stationarity. In case of 

doubts, the plot of the first or second differencing of 

time series is drawn. Then we review stationarity of 

these series. Investigation of sample autocorrelation 

function (ACF) of time series is a more objective 

method. If the values of ACF have a gentle linear 

decline (not rapid geometric decline), an 
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autoregressive zero is approaching 1 and it is 

necessary to difference. The work [6] prefers to use 

the behaviour of the variances of successive 

differenced series as a criterion for taking a decision 

on the difference degree required. The difference 

degree d is given in accordance with the minimum 

values of variance 222
2,,
zzz   ... .  

Sometimes there can be seasonal components in a 

time series. These series exhibit periodic behaviour 

with a period s. For these time series a 

multiplicative seasonal ARMA model of seasonal 

period s and of seasonal orders P and Q and regular 

orders p and q is defined in the form (3).  
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(B) and (B) are polynomials of degrees P*s and 

Q*s. Model in the form (3) is referred to as SARIMA 

(p,d,q)(P,D,Q)s. 

Firstly it is necessary to determine a degree of 

seasonal differencing - D. In seasonal models, 

necessity of differencing more than once occurs 

very seldom. That means D=0 or D=1. The first 

seasonal differencing with period s is defined in the 

form (4). 
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It is possible to decide on the degree of seasonal 

differencing on the basis of investigation of sample 

ACF. If the values of ACF at lags k*s achieve the 

local maximum, it is necessary to make the first 

seasonal differencing (D=1) in the form tsz . In 

Time series package it is possible to difference the 

data d times with period 1 and D times with the 

seasonal period s and obtain data in the form (5) 

using function ListDifference[data,{d,D},s]. 
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An example of the determination of the difference 

degree for our time series of heat demand is shown 

in this part of paper. The course of time series of 

heat demand [see Fig.1] exhibits an evident non-

stationarity and also seasonality. It is necessary to 

difference. We use the course of sample ACF and 

values of estimated variance of differenced series 

for determination of degree of regular differencing 

and degree of seasonal differencing. The clear 

periodic structure in the time plot of the heat 

demand is reflected in the correlation plot [see the 

Fig.2]. The pronounced peaks at lags that are 

multiples of 24 indicate that the series has a 

seasonal period s=24. That represents a seasonal 

period of 24 hours by a sampling period of 1 hour. 

We also observe that the ACF decreases rather 

slowly to zero. This suggests that the series may be 

nonstationary and both seasonal and regular 

differencing may be required. 
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Fig. 2: The course of sample ACF of time series of 

heat demand 

 

The course of first regular differenced time series is 

shown in Fig. 3. The differenced series looks 

stationary now. This fact is confirmed by the sample 

ACF of differenced data (see Fig.4).  
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Fig. 3: The course of first regular differenced time 

series of heat demand 
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Fig. 4: The course of sample ACF of regular 

differenced time series of heat demand 
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Fig. 5: The sample ACF of data after regular and 

seasonal differencing with period 24 

 

The course of sample ACF for data after regular and 

seasonal differencing with period 24 also confirms 

seasonal period s=24 [see Fig. 5]. On the basis of 

the executed analysis, it is necessary to make the 

first differencing and also the first seasonal 

differencing with period 24 of time series of the heat 

demand in the form (6). 
 

 

For the comparison, it is possible to calculate the 

variance of time series and differenced series 

according to [6]. The results are presented in the 

Tab. 1. These results confirm transforming the time 

series of heat demand by differencing in the form (6). 

These differenced data are prepared for the next 

modeling and forecasting. 

 

Table 1: The values of variance of differenced series 

Raw data of heat demand 6492212

z .ˆ   

Regular differencing  .ˆ        .ˆ 093131542280 2

z

2

z 2 
   

Seasonal differencing  .ˆ 4418352

z24
  

 

 

3 Selecting the orders of model 
After differencing the time series, we have to 

identify the order of autoregressive process AR(p) 

and order of moving average process MA(q) and 

seasonal orders P and Q. There are various methods 

and criteria for selecting the orders of an ARMA or 

an SARIMA model. The sample ACF and the 

sample partial correlation function (PACF) can 

provide powerful tools to this. The traditional 

method consists in comparing the observed patterns 

of the sample autocorrelation and partial 

autocorrelation functions with the theoretical 

autocorrelation and partial autocorrelation function 

patterns. These theoretical patterns are shown in 

Tab 2. 

Table 2: Behaviour of theoretical autocorrelation 

and partial autocorrelation function 

Model ACF PACF 

AR(p) Tails off Cuts off after p 

MA(q) Cuts off after q Tails off 

ARMA(p,q) Tails off Tails off 

 

The expression Tails off in Table 1 means that the 

function decreases in an exponential, sinusoidal or 

geometric fashion, approximately, with a relatively 

large number of nonzero values. Conversely, Cuts 

off implies that the function truncates abruptly with 

only a very few nonzero values. In the case of 

SARIMA model, the Cuts off in the sample 

correlation or partial correlation function can 

suggest possible values of q + s*Q or p + s*P. From 

this it is possible to select the orders of regular and 

seasonal parts. The standard errors of the ACF and 

PACF samples are useful in identifying nonzero 

values. As a general rule, we would assume an 

autocorrelation or partial autocorrelation coefficient 

to be zero if the absolute value of its estimate is less 

than twice its standard error.  

 

24 48 72
k

0.4

0.2

0.2

rk ,k

 
Fig. 6: The sample PACF of data after regular and 

seasonal differencing with period 24 

 

The sample ACF and PACF of our differenced 

series of heat demand are shown in the Fig. 5 and 

Fig. 6. The single prominent dip in the ACF 

function at lag 24 shows that the seasonal 

component probably only persists in the MA part 

and Q=1. This is also consistent with the behavior 

of the PACF that has dips at lags that are multiples 

of the seasonal period 24. The correlation plot also 

suggests that the order of the regular AR part is 

small or zero. Because sample ACF cuts off after 4 

lag, order of the regular MA part can achieve the 

value of 4. Based on these observations, it is 

possible to consider the models with P=0, Q=1 and 

p1, q4.  
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3.1 Information criteria for order selection 
The order of model is usually difficult to determine 

on the basis of the ACF and PACF. This method of 

identification requires a lot of experience in building 

up models. From this point of view it is more 

suitable to use the objective methods for the tests of 

the model order. A number of procedures and 

methods exist for testing the model order [7]. These 

methods are based on the comparison of the 

residuals of various models by means of special 

statistics so-called information criteria. The Time 

series package in Wolfram Mathematica use the two 

commonly functions. Formula (7) is called Akaike's 

information criterion (AIC) and the second function 

(8) is called Bayesian information criterion (BIC). 

 

Here 2̂  is an estimate of the residual variance and n 

is a number of residuals. To get the AIC or BIC 

value of an estimated model in Time series package 

it is possible simply to use the functions 

AIC[model,n] or BIC[model,n]. Since the 

calculation of these values requires estimated 

residual variance, the use of these functions will be 

demonstrated later. 

 

 

4 Estimation of model parameters 
After selecting a model (model identification), 

parameter estimation of the selected model has to be 

looked for. The Time series package includes 

different commonly used methods of estimating the 

parameters of the ARMA types of models. Each 

method has its own advantages and limitations. 

Apart from the theoretical properties of the 

estimators (e.g., consistency, efficiency, etc.), 

practical issues like the speed of computation and 

the size of the data must also be taken into account 

in choosing an appropriate method for a given 

problem. Often, we may want to use one method in 

conjunction with others to obtain the best result. The 

maximum likelihood method and the conditional 

maximum likelihood method are used for estimating 

the parameters of our selected model. 

The maximum likelihood method of estimating 

model parameters is often favored because it has the 

advantage among others that its estimators are more 

efficient (i.e., have smaller variance) and many 

large-sample properties are known under rather 

general conditions. The function 

MLEstimate[data,model,{ϕ1,{ϕ11,ϕ12}},…] fits 

selected model to data using the maximum 

likelihood method. The parameters to be estimated 

are given in symbolic form as the arguments to 

model, and two initial numerical values for each 

parameter are required. The exact maximum 

likelihood estimate can be very time consuming 

especially for large n or large number of parameters. 

Therefore, an approximate likelihood function is 

used in order to speed up the calculation. The 

likelihood function so obtained is called the 

conditional likelihood function. The Time series 

package in Mathematica environment use the 

function ConditionalMLEstimate[data,model] 

to fit model to data using the conditional maximum 

likelihood estimate.  

Estimation of the parameters of the models of 

differenced series of heat demand is presented here. 

On the base of conclusions in section 4 we consider 

nine models of time series of heat demand in the 

form SARIMA(p,1,q)(0,1,1)24. That means 

SARIMA(p,0,q)(0,0,1)24 model for differenced 

series of heat demand. We use the result from the 

Hannan-Rissanen estimate (function 

HannanRissanenEstimate) as our initial values of 

AR(p) and MA(q) processes. In addition to that this 

result was considered by selection of models. The 

initial value of 1 is determined from our sample 

partial correlation function as 450rr 24244848 ./ ,,  . 

After definition of models the conditional maximum 

likelihood estimate of considered models is 

obtained. Then we use the exact maximum 

likelihood method to get better estimates for the 

parameters of models. For comparison of selected 

model AIC and BIC information criterion are used. 

The results of estimation are presented in the Tab. 3. 

Adequacy of these models may be examined by 

means of Portmanteau test. 

 

Table 3: Evaluation of selected models for 

differenced series of heat demand 
Type of model 

SARIMA (p,d,q)(P,D,Q)s 

Information 

criterions 

Portmanteau 

statistic 

Q20 
 

Quantile of 

Chi-Square 

distribution 
2

1  
(K-p-q-Q) AIC BIC 

SARIMA(0,0,1)(0,0,1)24 3.2716 3.2988 43.01 28.8693 

SARIMA(1,0,0)(0,0,1)24 3.2717 3.2988 43.02 28.8693 

SARIMA(1,0,1)(0,0,1)24 3.1791 3.2199 35.77 27.5871 

SARIMA(0,0,2)(0,0,1)24 3.2595 3.3003 57.35 27.5871 

SARIMA(0,0,3)(0,0,1)24 3.1917 3.2460 36.21 26.2962 

SARIMA(0,0,4)(0,0,1)24 3.1308 3.1987 20.88 24.9958 

SARIMA(1,0,4)(0,0,1)24 3.1320 3.2135 19.33 23.6848 

SARIMA(0,0,5)(0,0,1)24 3.1280 3.2095 19.59 23.6848 

SARIMA(0,0,6)(0,0,1)24 3.1297 3.2248 21.47 22.3620 

 

nqp2qpAIC 2 /)(ˆ),(  ln  (7) 

nnqpqpBIC 2 /)(ˆ),( ln  ln    (8) 
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4.1 Diagnostic checking - Portmanteau test 
After fitting, a model is usually examined to see if it 

is indeed an appropriate model. There are various 

ways of checking if a model is satisfactory. The 

commonly used approach to diagnostic checking is 

to examine the residuals. If the model is appropriate, 

then the residual sample autocorrelation function 

should not differ significantly from zero for all lags 

greater than one. We may obtain an indication of 

whether the first K residual autocorrelation 

considered together indicate adequacy of the model. 

This indication may be obtained by means of 

Portmanteau test. The Portmanteau test is based on 

the statistic in the form (9), which has an asymptotic 

chi-square distribution with K-p-q degrees of 

freedom.  

 
Where n is a number of residuals,  ̂2kr  is value of 
sample ACF of residual at lag k. 
If the model is inadequate, the calculated value of 

QK will be too large. Thus we should reject the 

hypothesis of model adequacy at level  if QK 

exceeds an appropriately small upper tail point of 

the chi-square distribution with K-p-q degrees of 

freedom (10). 

 

The Mathematica (Time series package) function 

PortmanteauStatistic[residual,K] gives the 

value of QK. The values of Portmanteau statistic 

using the residuals given the considered models and 

observed data are displayed in the Tab. 3. These 

values are compared with 5 percent value chi-square 

variable with K-p-q-Q degrees of freedom. (we 

consider K=20 and =0.95). Based on these results 

we would conclude that the first 5 models are not 

satisfactory whereas there is no strong evidence to 

reject the next 4 models. 

 

 

5 Conclusion 
This paper presents possibility of model design of 

time series of heat demand in Mathematica 

environment – Time series package. The results of 

this paper confirm supposition that this package is 

applicability to analysis of time series of heat 

demand. Some models were proposed and the 

adequacy of these models was tested by means of 

Portmanteau statistic. The proposed model is 

possible to use for prediction of heat demand in the 

concrete locality. This prediction of heat demand 

plays an important role in power system operation 

and planning. It is necessary for the control in the 

Centralized Heat Supply System (CHSS), especially 

for the qualitative-quantitative control method of 

hot-water piping heat output – the Balátě System.  
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