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Abstract: - The main aim of this contribution is to introduce the fundamentals of the Fractional Order Calculus (FOC) 
and outline its possible application to analysis and synthesis of control systems. The basic theoretical concepts of FOC 
are followed by techniques for potential fractional order systems description and stability investigation. Moreover, the 
paper offers the overview of the existing fractional order controllers and highlights the benefits of the fractional 
approach in comparison with the classical integer one. 
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1   Introduction 
The Fractional Order Calculus (FOC) constitutes the 
branch of mathematics dealing with differentiation and 
integration under an arbitrary order of the operation, i.e. 
the order can be any real or even complex number, not 
only the integer one [1], [2], [3]. Although the FOC 
represents more than 300-year-old issue [4], [5], its great 
consequences in contemporary theoretical research and 
real world applications have been widely discussed 
relatively recently. The idea of non-integer derivative 
was mentioned for the first time probably in a letter from 
Leibniz to L’Hospital in 1695. Later on, the pioneering 
works related to FOC have elaborated by personalities 
such as Euler, Fourier, Abel, Liouville or Riemann. The 
interested reader can find the more detailed historical 
background of the FOC e.g. in [1]. 
     According to [4], [6], the reason why FOC remained 
practically unexplored for engineering applications and 
why only pure mathematics was “privileged” to deal 
with it for so long time can be seen in multiple 
definitions of FOC, missing simple geometrical 
interpretation, absence of solution methods for fractional 
order differential equations and seeming adequateness of 
the Integer Order Calculus (IOC) for majority of 
problems. However, nowadays the situation is going 
better and the FOC provides efficient tool for many 
issues related to fractal dimension, “infinite memory”, 
chaotic behaviour, etc. Thus, the FOC has already came 
in useful in engineering areas such as bioengineering, 
viscoelasticity, electronics, robotics, control theory and 
signal processing [6]. Several control applications are 
available e.g. in [7], [8], [9]. 
     The paper is not intended to bring any novel 
theoretical knowledge nor application results. Its main 

purpose is to aggregate the FOC theory and introduce its 
utilization in control theory on the basis of literature 
from “References” section. 
 
 
2   Basic Concepts of Fractional Order 
Calculus 
The FOC is based on generalization of differentiation 
and integration to an arbitrary order, which can be 
rational, irrational or even complex. This generalization 
has led to the introduction of basic continuous 
differintegral operator [1], [2], [4], [6]: 
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where α  is the order of the differintegration (usually 
α ∈ ) and a is a constant connected with initial 
conditions. 
     There is an array of definitions of differintegral in the 
literature. The three most frequent definitions bear the 
names of Riemann-Liouville, Grünwald-Letnikov and 
Caputo. The most known and used Riemann-Liouville 
version has the form [4]: 
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under condition ( )1n nα− < < . The term ( )Γ ⋅  
represents so-called Gamma function. 
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     Alternatively, the Grünwald-Letnikov definition is 
given by [4], [8]: 
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and where h is the time increment and [.] means the 
integer part. 
     Finally, Caputo has defined the differintegral as [5]: 
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Each of the definitions of an interpolation of the integer 
order operations sequence has its advantages and 
drawbacks and the user choice depends mainly on the 
purpose and the area of application [3], [10]. 
     The automatic control theory widely exploits the 
Laplace transform for the sake of analysis and synthesis 
simplicity. The Laplace transform (denoted as L) of the 
differintegral can be written as [4], [8]: 
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where integer n lies within ( )1n nα− < ≤ . 
 
 
3   Description of Fractional Order 
Systems 
A fractional order continuous-time linear time-invariant 
dynamical system can be described by a fractional order 
differential equation [3], [4], [5]: 
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where u(t) is the input signal, y(t) is the output signal, 
0 tD Dγ γ≡  represents fractional derivative, ka  with 

( )0, ,k n= …  and kb  with ( )0, ,k m= …  denote 
constants, and kα  with ( )0, ,k n= …  and kβ  with 

( )0, ,k m= …  are arbitrary real numbers. According to 
[4], [5], one can assume inequalities 1 0n nα α α−> > >  
and 1 0m mβ β β−> > >  without loss of generality. 

     Another option for fractional order system description 
is in the form of incommensurate real orders transfer 
function [3], [5]: 
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The symbols in (8) have the same meaning as in (7). 
     It has been shown (e.g. in [5], [11]) that every 
incommensurate order system (8) can be expressed as a 
commensurate one by means of a multivalued transfer 
function. 
 
 
4   Stability of Fractional Order Systems 
Obviously, the stability is the very fundamental and 
critical requirement during control system design. It is 
widely known that an integer order continuous-time 
linear time-invariant system is stable if and only if all 
roots of its characteristic polynomial have negative real 
parts. In other words, the roots must lie in the left half of 
the complex plane. Investigation of stability of the 
fractional order systems represents the more complicated 
issue [5], [12]. 
     For example, the stability of commensurate fractional 
order systems can by analyzed via the theorem of 
Matington [12] or the definition from [5], which 
describes the way of mapping the poles from sα -plane 
into the w-plane. An interesting result is that the poles of 
the stable fractional order system can be located even in 
the right half of such complex plane. This is illustrated in 
fig. 1 where the stability region for a commensurate 
fractional order linear time-invariant system with order 
0 1α< <  is depicted [4], [5]. 

 

 
Fig. 1: Region of stability for the commensurate 

fractional order system with 0 1α< <  
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5   Fractional Order Controllers 
The nice survey on fractional order control is given e.g. 
in [13]. This paper has distinguished among four typical 
combinations of integer/fractional order controlled 
system vs. integer/fractional order of controller and 
shown that the fractional algorithms have better results 
from many points of view. 
     Usually, the four basic approaches to fractional order 
control, i.e. four different fractional order controllers are 
reviewed in the literature [4], [6], [14]. Their overview 
can be found in the following subsections. 
 
 
5.1 Tilted Proportional and Integral (TID) 

Controller 
First, the TID controller has the same structure as 
classical PID controller, but the proportional gain is 
replaced with a function s α−  with α ∈ , which allows 
wider tuning options and better control behaviour in 
comparison with the integer order PID controller [15]. 
 
 
5.2 CRONE 
Next popular controller is CRONE. The abbreviation 
CRONE stands for French “Commande Robuste d'Ordre 
Non Entier” (non-integer order robust control) and 
represents approach inspired by the fractal robustness 
[16], [17], [18]. The CRONE controllers have been 
already applied to many real plants. Besides, the 
approach has its own Matlab toolbox. 
 
 
5.3 Fractional Order PID Controllers 
The elegant and efficient fractional order modification of 
conventional PID controllers has been introduced in 
[10]. They are known as PI Dλ μ  controllers and can be 
described by transfer function: 

 ( ) P I DC s K K s K sλ μ−= + +  (9) 

where λ  and μ  are positive real numbers, and PK , IK  
and DK  denote the proportional, integral and derivative 
constant, respectively. This embellishment of PID 
algorithm offers much wider selection of tuning 
parameters which can consequently improve the control 
performance. However, there is a relative lack of rigorous 
tuning techniques for this type of controllers so far. 
 
 
5.4 Fractional Lead-Lag Controller 
Finally, the paper [19] has introduced the extension of 
classical lead-lag controllers to its fractional version. 
Furthermore, self-tuning approach for fractional lead-lag 
compensators can be found in [20]. 

6   Conclusion 
The paper has been focused on introduction to FOC with 
emphasis to potential application to engineering, 
especially analysis and synthesis of control systems. It 
has offered the basic theoretical aspects of FOC, dealt 
with description and stability of fractional order systems 
and overviewed the possible fractional order control 
approaches. 
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