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Abstract: - This contribution is focused on comparison of two basic approaches to uncertainty modelling and 
corresponding robust stability analyses for a system with uncertain time-delay. A paper bleaching process, described 
both as a system with parametric uncertainty and in the form of unstructured multiplicative uncertainty model, is 
considered as a testing plant. The robust stability of closed control loop with selected controller and appropriate 
uncertain model of controlled plant is verified and obtained results are compared. 
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1   Introduction 
The whole classical control theory as well as many 
contemporary methods use some form of mathematical 
model of a controlled system for a controller design. The 
crucial problem, however, is that assumed ideal 
mathematical model, due to many reasons, practically 
never exactly matches the real behaviour of the plant. 
One of possible approaches how to overcome this 
discrepancy grounds in utilization of an uncertain model 
and subsequent robust controller design. 
     There are two principal ways of uncertainty 
modelling in the literature [1], [2], [3] – parametric or 
unstructured approach. Both of them have their 
advantages and drawbacks. Consequently, each of 
approaches is more suitable for different situations. This 
contribution presents the comparison of uncertainty 
modelling and subsequent robust stability analyses for a 
fist order system with uncertain time-delay term. The 
tests are performed by means of the simulation examples 
with a paper bleaching process [4]. 
 
 
2   Uncertainty Modelling 
The introductory part has already foreshadowed that 
difference between real process and its mathematical 
model is the fundamental and omnipresent control 
problem. For example, the parameters of controlled plant 
need not to be known exactly or they can be even time-
variant (however, only “slowly” from the robust control 
point of view). Then, nonlinearity in controlled system 
can be neglected and consequently discrepancy could 
originate in linear approximation in given operational 

point. Or a simplified model can be intentionally used 
instead of originally very complex system (e.g. caused 
by neglecting the fast dynamic effects due to system 
order reduction, assumption of a distributed-parameter 
system as a lumped-parameter one, or time-delay 
neglect) because of easier calculations. 
     In robust control, respecting these factors in 
mathematical description leads to the use of uncertain 
model. In other words, not only one nominal model, but 
the whole family of models given by some neighborhood 
of the nominal one is defined. The “size” of this 
neighborhood can be described in two main ways – as a 
parametric or unstructured uncertainty. The combination 
of both main methods is also possible. Then one speaks 
about mixed uncertainty. 
     The real parametric uncertainty is utilized if the 
structure of system is known but its actual physical 
parameters are not. On the contrary, unstructured 
uncertainty does not require even knowledge of structure 
(order) of model. Parametric uncertainty is defined 
through intervals which the imprecisely known 
parameters lie within. The unstructured uncertainty 
description is based on restriction of the area of possible 
appearance of frequency characteristics. 
     However, the terminology used in this paper is not 
the one and only possible. The scientific literature 
presents also different nomenclatures, e.g. structured 
(=parametric) vs. nonparametric (=unstructured) or 
possibly parametric vs. dynamic, which are subsequently 
divided into unstructured and structured (with different 
meaning than in the previous case). Thus one has to be 
careful about the terminology of each author. This paper 
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adopts probably the most frequent version, i.e. 
parametric vs. unstructured uncertainty [5]. 
     It is known that robustness means preservation of a 
selected property of control loop not only for one 
nominal system but also for the whole family of systems 
given by the uncertain model and appropriate boundary. 
Generally, the most important control problem consists 
in ensuring the stability and so, quite naturally, one of 
the typical robust control problems is robust stability 
analysis. It investigates if the closed-loop stability is 
assured for all possible systems from the family. If this if 
fulfilled, then the system is called as robustly stable. 
Furthermore, the aim of robust synthesis is to find a 
controller which guarantee robustness (robust stability, 
robust performance, etc.) of the closed control loop. This 
contribution is focused only on analysis of robust 
stability. 
 
 
3   Robust Stability Analysis for a Paper 
Bleaching Process 
A bleaching process in a paper-making machine is 
adopted from the work [4] where it is modelled as a first 
order plant with uncertain time-delay. More specifically, 
it describes the dependency of lignin amount on chlorine 
flow-rate. The known part of time-delay results from 
sensor placement while the unknown one originates in 
neglect of fast dynamics of the chemical process. Thus, 
the nominal model of the controlled process is defined 
as: 
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and the class of uncertain models can be described by: 
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     The task is to verify if this system is robustly 
stabilized by the following PI controller: 

 1.5 0.5( ) sC s
s
+=  (3) 

by means of parametric and unstructured uncertainty 
modelling approach. 
 
 
3.1 Parametric Uncertainty Approach 
First, the controlled plant is assumed as a transfer 
function with single uncertain parameter (time-delay 
term): 
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     The robust stability of systems with parametric 
uncertainty can be tested for example using the graphical 
method, which relies on depiction of the closed-loop 
characteristic (quasi)polynomial value sets and 
application of the zero exclusion condition. An 
interested reader can find a lot of information about 
robustness of systems with parametric uncertainty and 
related topics in [1], [2], [3], [6]. 
     The closed-loop characteristic polynomial of the 
circuit with plant (4) and controller (3) can be simply 
expressed as: 

 
( ) ( )( , ) 2 1 1.5 0.5 ;

0.1,1

s
CLp s s s e s−ΘΘ = + + +

Θ∈
 (5) 

Roughly speaking, the value set for one fixed frequency 
ω  can be obtained by substitution of s for jω  in the 
family (5) and letting the time-delay term Θ  range over 
the prescribed set. The fig. 1 shows such value sets 
plotted in complex plane for several non-negative 
frequencies starting from 0 to 2.4 with step 0.05. 
 

-12 -10 -8 -6 -4 -2 0 2
-1

0

1

2

3

4

5

6

Real Axis

Im
ag

 A
xi

s

 
Fig. 1: The value sets of uncertain quasipolynomial (5) 

 
     Due to the fact that the family has a stable member 
and the origin of the complex plane is excluded from the 
value sets, one can conclude that the quasipolynomial (5) 
and thus also the whole control system with controller 
(3) and time-delay plant (4) is robustly stable. 
 
 
3.2 Unstructured Uncertainty Approach 
In the second case, the system is considered to be 
described as an unstructured multiplicative uncertainty 
model, generally: 

 [ ] 0( ) 1 ( ) ( ) ( )M MG s W s s G s= + Δ  (6) 

where ( )G s  represents a perturbed model, 0 ( )G s  stands 
for a nominal model, ( )MW s  is a (stable) weight 
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function representing uncertainty dynamics, i.e. the 
distribution of the maximum amplitude of the 
uncertainty over the frequency, and ( )M sΔ  means the 
uncertainty (uncertain information about actual 
magnitude and phase of perturbation), which can be an 
arbitrary stable function fulfilling the inequality: 

 ( ) 1 ( ) 1M Ms jω ω
∞

Δ ≤ ⇒ Δ ≤ ∀  (7) 

For multiplicative uncertainty, it holds true: 

 
0

( ) 1 ( )
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ω ω ω
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Moreover, many theoretical tools for analysis and 
synthesis require that ( )G s  and 0 ( )G s  have to have the 
same amount of poles for all ( )M sΔ . 
     Under assumption of multiplicative uncertainty, the 
closed-loop system is robustly stable if and only if: 

 0( ) ( ) 1MW s T s
∞

<  (9) 

where 0 ( )T s  is a complementary sensitivity function: 
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The condition (9) practically says that the envelope of 
Nyquist diagrams with radius 0( ) ( )MW j L jω ω  and 
centre 0 ( )L jω  must not include the critical point 
[-1, 0 ]j . The term 0 ( )L jω  represents open-loop 
frequency transfer function: 

 0 0( ) ( ) ( )L j G j C jω ω ω=  (11) 

     The normalized perturbation of the plant (2) can be 
obtained using (8): 

 1 ( )j
Me W jω ω ω−Θ − ≤ ∀  (12) 

The object of interest is just the amplitude of 
perturbation. The phase is not restricted. So, the suitable 
weight function is chosen in [4] as: 

 2.1( )
1M
sW s

s
=

+
 (13) 

The fig. 2 shows the comparison of Bode plots of the 
absolute values of the weight (12) and normalized 
perturbations for three values of time-delay ( 0.9Θ = , 

0.1Θ = , and 0.01Θ = ). It can be seen how ( )MW jω  
approximates even the worst case of 0.9Θ =  from the 
upper side. 
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Fig. 2: Bode plots – envelope of the uncertainty 

 
     Thus, remind that the aim is to analyze the robust 
stability of closed-loop with the family of systems: 
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and with the controller (3). 
     The envelope of uncertainty given by circles with 
radius 0( ) ( )MW j L jω ω  around Nyquist diagram of 

0 ( )L jω  (red curve) is plotted in fig. 2 (with frequency 
step 0.1). It shows that the point [-1, 0j] is excluded from 
the envelope which means robust stabilization of the 
closed-loop with controller (3) and family of systems 
(13), i.e. also the plant (2), which is the same result as 
for the previously used model with parametric 
uncertainty. 
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Fig. 3: Graphical interpretation of stability condition 
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4   Conclusion 
The paper has dealt with comparison of parametric and 
unstructured approaches to uncertainty modelling and 
robust stability analysis. The parametric way of 
description seems to be more natural and comprehensive 
and robust stability analysis is also relatively 
straightforward under parametric uncertainty scenario. 
On the other hand, application of unstructured 
uncertainty model allows taking advantage of wider 
range of more sophisticated controller design methods. 
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