
USB MIDI pulse width modulation software

Ing. Dalibor Slovák

Department of Computer and Communication systems

Tomas Bata University in Zlin, Faculty of Applied Informatics

nám. T.G.Masaryka 5555, 760 01 Zlín

Czech republic

slovak@fai.utb.cz

ABSTRACT

This article describes software application, that generates voltage pulses. The default commands

are generated in the MIDI protocol. MIDI - Musical Instrument Digital Interface. As already

mentioned the name of it is the interface that is used primarily to control musical instruments through

the computer. The intention is for applications that make controlling other devices that do not

communicate via this protocol. The result is the control voltage, which enables control the device via

this voltage. The application is primarily intended for users who use the MIDI protocol as part of a

live audio and audio-visual production. The application is primarily intended for devices that are not

equipped with an interface for communicating via MIDI protocol.

Keywords: MIDI, USB, software, USB Audio, USB Audio MIDI, descriptor

1 Introduction

Today is MIDI protokol part of efects units

for all musical instruments. For example effect

units for electric guitars, keyboards for singers

or acoustic instruments too. MIDI protocol is

part of other stage equipment. E.g. MIDI

protocol is part of stage lights or artificials

smokes. Henceforth exist devices that do not

have the capacity to understand commands

generated by the MIDI protocol. Based on this

requirement was initiated research and

development of software that would be able to

operate and manage such facilities. As part of

this development appeared to be the most

effective combination of MIDI and USB

protocol.

The aim of this research was to design as

simple and cost-optimized software for control

devices that are not equipped with interfaces

communicating via MIDI protocol. Platform

and system-independent software that can be

used on all available, hardware platforms,

which enable communication via USB.

2 Description of system

equipment and technology

2.1 Universal serial bus

The basis for this specification of this

software is of course a general standard USB

2.0, followed by the standard USB Audio

device and it is based on the actual USB MIDI

standard. This is now widely used because

MIDI transmission of information via the USB

is more efficient than transmission of

information using standard MIDI DIN jacks.

DIN occupies too much space as the PC case,

so the external sound cards that are used most

often in combination with laptops. Placement

DIN connectors on notebooks is due to the size

precluded.

The USB connection is defined by the so-

called Endpoints, which are in any USB

devices, its functionality, there may be to 15

Endpoint zero - the default endpoint is the

default pipe (channel connecting the USB

client and host), which connects, when the

USB device identified in the hardware

configuration. They demand signal IRP (I / O

Request Packet), which are performed in serial

order. If an error occurs in the implementation

Recent Researches in Automatic Control

ISBN: 978-1-61804-004-6 300

mailto:slovak@fai.utb.cz

of an IRP, the IRP others are removed from the

queue and is then to correct errors and reload

the IRP requirements of the USB device. The

pipes are of two kinds - Messages and Streams.

Each endpoint has its own descriptor. It is a

structure that describes the components of the

USB device and its identification in the

system. Classification and description of the

descriptors is given below.

1. Device descriptor – descriptor of the first

level - the kind of program-independent

component that is used during enumeration

(the introduction of devices into the

system) for device identification to the

system.

2. Configuration descriptor – structure that

describes device identification to the

lowest possible levels within the

endpoints. This structure contains all other

sub-structures (descriptors endpoints) and

it determines all the functionality of the

USB device.

3. Interface descriptor – interface descriptor

may not always be the only one. In most

cases, number is given enlistment

arrangement after its functionality. The

number is given to the inclusion of a USB

device class. The software described in this

article is primarily intended for devices

that have a total of two interface

descriptors. Descriptors for USB Audio

Interfaces and USB Audio and MIDI

interface.

4. Endpoint descriptors – these descriptors

always be several. Their number is based

on the functionality of USB devices. Their

name is directly dependent on the type of

USB devices.

All communication on the bus is time

multiplexed into frames 1 millisecond long.

Each frame can contain many transactions of

different devices and different endpoints. Data

transfer over the bus can be divided into 4

types:

1. Isochronous transfers - transport large

amounts of data (up to 1023 B) is

guaranteed delivery time, but does not

ensure data integrity

2. Bulk transfers – Transport of large

amounts of data to ensure integrity, but is

not guaranteed delivery time

3. Interrupt transfers – For a small amount

of data to ensure integrity and timely

delivery

4. Control transfers – Used during initial

device setup (enumeration)

At the moment when the device is

connected to the bus, the USB host will start a

process called enumeration. During this

process identifies the host device receives

configuration information needed by

requesting a device descriptor, configuration,

interfaces and endpoints, and finally sets the

desired device configuration. Course

enumeration might look like this:

1. USB reset

2. Device descriptor request – only basic part

of Device identificaton

3. USB reset

4. Unique device adress setting

5. Device descriptor request – this time

whole descriptor including all basic

descriptors

6. Configuration descriptors request

7. Other descriptors request

8. Setting the desired configuration

In terms of device USB specification defines

specific conditions in which the device may be

located during enumeration, and allowed

transitions between them (DETACHED

_ATTACHED _ POWERED _ DEFAULT _

ADDRESS_PENDING _ ADDRESSED_

CONFIGURED _ READY) [4].

Equipment connected to the bus can be

quite specific and require specific drivers, or

they may belong to the class of USB devices

(HID – human interface device class, MSD –

mass storage class, CDC – communication

device class). These classes define some of the

properties and behavior of the device, so for a

variety of devices claiming to be the same

class, the system can use the same driver.

Messages are accurately specified in

advance and are determined by the size and

requirement of device or guest. Pipes messages

comply with a data structure that allows the

identification of orders and requests. The pipes

are two-way messaging and always use two

endpoints with the same number.

Streams are the pipes that contain actual

data transfer. They are one way and the data in

Streams are transmitted subsequently, via

packets. If you do not fill in the whole packet,

it needs not to add full size [5].

Recent Researches in Automatic Control

ISBN: 978-1-61804-004-6 301

2.2 Audio device USB standard

As is clear from the chosen theme, USB is

entirely sufficient transmission capacity for

transmission of audio data, similarly for MIDI

information too. Audio equipment to the USB

protocol specifications and their own

appropriate set of descriptors required

endpoints for transferring audio data. In most

cases, it is one of several specifications of the

equipment because they are always combined

with devices other than the standard USB

Audio. A somewhat different situation is in the

case of MIDI devices. MIDI USB standard is

an extension of standard USB Audio.

Description of the audio course is based on the

relevant standard [6].

2.3 MIDI device USB standard

At the beginning we must say that the

typical USB MIDI devices belonging to the

USB CDC class. It is the same as the audio

devices are considered communication

interfaces. Class description for the USB MIDI

device is one part of standard USB Audio. This

happens when a USB device capable of

receiving, respectively send MIDI messages.

As already mentioned in chapter 2.2, you must

specify the interface on the device interface

level. USB MIDI device will then have two

interfaces (interface). One is an audio

interface, MIDI, then the second. This is, of

course, described using the descriptors, so that

the device is easily identified in the system and

was particularly visible for the applications

that are capable to communicate via MIDI

protocol. In our case, they are software

application Cubase SX 2, respectively. Cubase

SX 3.

The specifications of endpoints are

descriptors for MIDI devices known as

endpoints for MIDI input and output jacks.

These jacks are of two kinds. Some are known

as External MIDI In, respectively OUT jacks.

The second groups are then Embedded MIDI

In, respectively Embedded OUT jacks. Passage

of the MIDI data from the host to the MIDI

device and then back is following.

Information walking from Host is

addressing to device via External MIDI OUT

jack then continous to Embedded MIDI IN

jack to device. Now is information in device

and it is treated. So treated infromation is send

back via Embedded MIDI OUT jack of this

device to External MIDI IN jack of the host.

This description is only virtual abstraction.

This must be programmed within the USB

device. Everything is numbered using the

descriptors and associated together. The

relevant descriptor item shows, which

connector belongs to its opposite counterpart.

 Furthermore, the association is also

intended connections between External MIDI

IN (OUT) jacks with the corresponding

Embedded MIDI OUT (IN) jacks. It is always

connected Embedded IN jack with External

OUT jack and vice versa. Similarly, the

individual pins on the MIDI jacks have their

serial numbers and are set with numeric

information, which is how many pins is, and to

which devices are connected [6]. Within these

standards are often a multi-functional devices.

Very often is such instruments is keyboard.

Keyboard instrument is falling into the

category of workstation.

2.3.1 Element

It is one of the intended logic levels. This

is a basic building block for USB MIDI

communication. This is a specification for the

device, which may be a:

 Synthetizer

 External MIDI time synchronization

 Efects units handled by MIDI

 Etc.

Element is usually connected to one or a

few Embedded or External MIDI connectors.

If it is a synthesizer, usually produces audio

output data generated by the MIDI information

that is sent over the USB MIDI interface.

Audio is then transmitted through the audio

input terminal through input terminal of

synthesizer. [6].

2.3.2 Input and Output terminal

Input terminal represents the output of the

device (eg, synthesizer), the input terminal is

connected to the device and through it to get a

USB MIDI transfer to the device's

configuration.

The communication between MIDI devices

and audio equipment is via the input and

output terminals. These terminals are logically

created by the descriptors primarily used for

transmission of information important for

Recent Researches in Automatic Control

ISBN: 978-1-61804-004-6 302

correct processing of audio. Such information

includes, for example transmission setup

information effect units or equalizers and last

but not least, e.g. the volume of output. [6].

2.3.3 USB-MIDI Converter

USB-MIDI converter is the heart of every

MIDI device, it provides a connection between

the host and USB-MIDI interface. It is the

fundamental building block. On one hand, it

interfaces with the USB pipes, which are used

to exchange MIDI data between the host and

USB-MIDI endpoints of the device. On the

other hand, there is presented an appropriate

number of embedded MIDI jacks. These

embedded jacks are logical interface

presenting the true connectivity within a MIDI

device. USB MIDI converter provides a

connection between the MIDI OUT endpoint

and relevant Embedded MIDI IN jack.

Similarly, it provides a link between the

Embedded MIDI OUT jack and the

corresponding MIDI IN endpoint.

2.3.4 USB MIDI device descriptors

description

Following the previous text and standards

then will have the typical MIDI device

communicating via USB these descriptors:

1. Device Descriptor

The items correspond to the standard

CDC device class

2. Configuration Descriptor

Like the device descriptor

3. Standard AC Interface Descriptor

Audio Control interface has no its

endpoint. Default endpoint zero used for

communication. Class-specific Audio

Control requests are sent out using default

channel. It does not provide any endpoints

for settings USB device interrupt.

4. Class-specific AC Interface Descriptor

It is always connected with Standard

(header) descriptor, which contains basic

information about audio interfaces. It

contains all the pointers needed to

describe a group of audio interfaces in

conjunction with a given audio device.

5. Standard MIDI Streaming Interface

Descriptor

Standard Interface Descriptor

characterizes the device as such. With this

descriptor is specified by the internal

structure of the USB MIDI device, and

further detailed description is contained in

descriptors, which are part of the

configuration structure.

6. Class-specific MIDI Streaming Interface

Header Descriptor

 It provides more (precise) information

relating to the internal structure of the

device.

7. MIDI IN Jack Descriptor

Describes MIDI IN jacks, no matter what

already discusses Embedded or about

External jacks. This parameter is set in e

bJackType variable.

8. MIDI OUT Jack Descriptor

It describes the MIDI OUT jacks, as well

as MIDI IN descriptor. Its structure is

added to other items that are necessary for

accurate specification of the

corresponding External links, respectively

Embedded MIDI IN descriptor. These

additional items specified with each pin of

the MIDI OUT connector, and his status

for data transmission.

9. Element Descriptor
Extends structure MIDI OUT descriptor

about sum input and check out data station

further about setting of pertinent other

ability USB MIDI arrangement[6].

10. Standard MIDI Streaming Bulk Data

Endpoint Descriptor

The content of this descriptor is consistent

with a standard endpoint descriptor as

described in chapter 9.6.4 USB

specification [4].

11. Class-Specific MS Bulk Data Endpoint

Descriptor

The bNumEmbMIDIJack field contains

the number Embedded MIDI Jacks

associated with this endpoint. In the event

that it is an input endpoint, then embedded

jack should be the MIDI OUT. If this is

the final endpoint, should be the

Embedded MIDI IN jack. BaAssocJacks

field contains the ID then embedded

jacks.

Recent Researches in Automatic Control

ISBN: 978-1-61804-004-6 303

12. Standard MS Transfer Bulk Data

Endpoint Descriptor

This descriptor also agree with description

descriptor from chappter 9.6.4. USB

specifications, then standard Endpoint

descriptor. BEndpointAdress field

designates by the help of D7 parameter, if

discuss input transfer endpoint or check

out transfer endpoint.

13. Class-Specific MS Transfer Bulk Data

Endpoint Descriptor

The specification of this device is not

present this Descriptor type.

2.4 Development environmets and used

firmware and software

2.4.1 MPLAB IDE

To edit and develop the source code was

used development environment, which

Microchip adds and also offers as a shareware

to application development on their boards.

Reason using this environment was facilitation

development of a case study, which is a

separate hardware platform USB MIDI Device

Lights, in which was implemented above-

mentioned software.

Fig. 1. MPLAB IDE

2.4.2 MCC C18

Compiling MPLAB IDE is part of the

environment. The exact name is of the

MPLAB ® C18 C Compiler. This compiler is

based on ANSI C '89.

2.4.3 Firmware – modules and files

Software, that the was used to operating

USB MIDI light Device, coming-out from

specimen instance CDC RS – 232, then

software that the over USB emulates serial

port. This software was forced and modified

so, in order to tend lighting on the basis taken

MIDI orders. Basic and indispensable files are:

main.c - Function main() includes infinite

program central loop while(1). In this loop are

valet through procedures

USBTASKS(void) and void ProcessIO(void) all

requisite tasks in programmatic succession that

the is given instructions source text code.
typedefs.h - In this file are defineds individual

data type.
interrupt.c a .h - This module contains an

implementation of interrupt handling both,

high and low priority.
usb.h – This file interlocks nesting needed

header file to the whole program. Is here

possibly remark, that the initialization isn't

quite full and is necessary is complete as need

may be single arrangement and their

functionality.
usbdefs_ep0_buff.h – In set is included

definition textures Ctrl_TRF_SETUP and data

- faggot for answer Ctrl_TR_DATA for

Controll transfer.
usbdefs_std_dsc.h – Content of file is

description of descriptors arrangement as well

as definition values for input and check out

endpoints. This file includes all variables for

full structures of endpoints.

usb_compile_time_validation.h– Verification

sizes endpoint descriptor according to standard

of USB. Then reach size hereof descriptor can

be either 8, 16, 32 or 64 bytes.

usbcfg.h – By the help of hereof file is

effected endpoint configuration of

arrangement. Then is intended value and

starting set for endpointzero and further then

endpoint assignment for configuration

descriptor and further also values for interface

descriptors and their endpoints.
usbdsc.h a .c - This modulus includes

information about USB descriptors. In set

usbdsc.h are included definition structures of

configuration and globalize descriptors here

for visibility and in of others modulus through

key word external.

usbmap.h a .c - This module presents USB

memory manager. Allocation of USB endpoint

and their buffer descriptors proceeds

dynamically at compile time with usage some

parameters defined in usbcfg.h.

usbdrv.c a .h - This module is in charge of

USB communication and functional integration

of other modules.

Recent Researches in Automatic Control

ISBN: 978-1-61804-004-6 304

usb9.c a .h - This module handles standard

USB requests coming through EP0 under

Chapter 9 of the USB 2.0 specification [3].

usbctrltrf.h a .c - The heart of this module is

routine USBCtrlEPService (void), which

serves only the following three operations -

EP0 SETUP EP0 OUT EP0 IN and calls the

appropriate routines.

In the case of an ordinary programming of

any of the classes of devices (HID, MSD,

CDC) do not require any intervention. Without

a deeper study on the contrary any changes can

be detrimental. In the case of programming a

USB MIDI Device Lights were some

interventions required and they are described

in my other paper. Modules described below

relate to each class. The program use depends

on what category programmed device is

included.

hid.c a .h, msd.c a .h,cdc.c a .h – modules

specifying individual classes arrangement in

terms of USB protocol.

2.4.4 user.c a h.

 Fundamental module for user needs are two

source text files user.c and user.h, that

contains custom functions setting and macro.

Here user does pertinent modification

necessary for given functionality of

arrangement. Therefore is this module

separated from of others in this text too. Here

are the adjustments made in the case of this

software, which is described in this paper. All

functional treatment for needs device control

by the help of pulse – width modulation.

Starting setting is treatment switched and no

switched states for individual arrangements,

that will be handled. So, setting of timer for

connect or disconnect handled devices via

pulse width of control voltage.

3 Conclusion

Aim proposal was create moneywise

optimized, programmatic robust software

interface for purposes specified in introduction

of this paper. Among basic benefits software

then belongs to its system catholicity. Next

advantage is easy implementation to the lights

applications.
 From arrangement will accessible only

USB connector and eventually jumper

commutator for easy application

reprogramming in the event of changes in

lights configuration. An important benefit is

the ability to exploit any effect devices,

regardless of it, which protocol these devices

have or not have in their software toolkit.

References:

[1] MIDI standard review.

[available online].

<http://www.midi.cz>

[2] DMX512 protocol.

 [available online]

<http://www.soundlight.de/techtips/dmx

512/dmx512.htm>

[3] Universal Serial Bus specification.pdf

[available online]

 <http://www.usb.org>

[4] Mach, J. Firmware for USB devices with

micro computers PIC: Czech Technical

University in Prague, 2006, 62 p.

Diploma thesis at Faculty of Electrical

Engineering, Thesis supervisor Ing.

Miroslav Skrbek, PhD.

[5] Universal Serial Bus Device Class

Definition for MIDI Devices.pdf

[available online] <http://www.usb.org>

[6] Universal Serial Bus Device Class

Definition for Audio Devices.pdf

[available online]

 <http://www.usb.org>

[7] Universal Serial Bus Class Definition for

Communication Devices.pdf [online].

 [cit. 2008-04-01]. Dostupný z WWW:

 <http://www.usb.org>

[8] MPLAB C18 C Compiler User’s guide.pdf

[available online]

<http://www.microchip.com>

[9] MPLAB C18 C Compiler Libraries.pdf

[available online].

<http://www.microchip.com>

[10] Slovák, D. Protocol MIDI and stage

equipment: Tomas Bata University,

Faculty of Applied Informatics,

Department of Applied Infomatics, 2008,

64 p. Thesis supervisor prof. Ing. Vladimír

Vašek, CSc

Recent Researches in Automatic Control

ISBN: 978-1-61804-004-6 305

http://www.midi.cz/
http://www.soundlight.de/techtips/dmx512/dmx512.htm
http://www.soundlight.de/techtips/dmx512/dmx512.htm
http://www.usb.org/
http://www.microchip.com/

