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Abstract: The paper deals with development of a mathematical model of valves of a hydraulic system. A three 
tank laboratory model (Amira DTS200) was investigated and characteristics of its valves were measured and a 
process of creating a mathematical model of the valves is described in detail. Although the three tank system is 
a classical modeling task this paper focuses on nonlinearities which are present in real system and other 
differences between ideal mathematical model and real-time system. The valves contain hysteresis and other 
nonlinearities. Despite the fact that all valves the system is equipped with are of the same type, big differences 
were observed between their characteristics. The approach to modeling of the system is not restricted to the 
particular system but can be used for many real-time hydraulic systems. 
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1 Introduction 
Almost all current control algorithms are based on a 
model of a controlled plant [1]. Some information 
about controlled plant is necessary for design of a 
controller with satisfactory performance. A plant 
model can be also used to investigate properties and 
behaviour of the modelled plant without a risk of 
damage of violating technological constraints of the 
real plant. There are two basic approaches of 
obtaining plant model: the black box approach and 
the first principles modelling. 
 The black box approach [2], [3] is based on 
analysis of input and output signals of the plant. 
Usage the same identification algorithm for wide set 
of different controlled plants is the main advantages 
of this approach. The knowledge of physical 
principle of controlled plant and solution of set of 
mathematical equation is not required. Main 
drawback of a black box model persists in fact that 
it is generally valid only for signals it was calculated 
from. 
 The first principle modelling provides general 
models valid for wider range of plant inputs and 
states. The model is created by analyzing the 
modelled plant and combining physical laws [4]. 
But there is usually a lot of unknown constants and 
relations when performing analysis of a plant.  
 The paper uses combination of both methods. 
Basic relations are derived using mathematical 
physical analysis. Values of model parameters are 
identified on the basis of real-time measurements. 
The goal of the work was to obtain a mathematical 

model of the valves of DTS200 Three-Tank System 
[5] and to design the models in MATLAB-Simulink 
environment. The DTS200 laboratory equipment 
was developed by Amira Gmbh, Duisburg, 
Germany and serves as a real-time model of 
different industrial systems concerning liquid 
transport.  

The models of valves serve as a part in process 
of creating a model of whole DTS200 system. The 
major reason for creating the model of this 
laboratory equipment are big time constants of the 
plant and thus time consuming experiments. A 
model, which represents the plant well, can 
considerably reduce testing time of different control 
approaches. Then only promising control strategies 
are applied to the real plant and verified. 
 The paper is organized as follows. Section 2 
presents the modelled system – Amira DTS200. 
Derivation of initial ideal using first principles 
modelling is carried out in Section 3. Section 4 and 
5 presents characteristics and calibration water level 
sensors and pumps respectively. Section 6 consists 
or results of measurements of valves. 
 
 
2. The DTS200 System 
The photo of main part of Amira DTS200 system is 
shown in Fig. 1. The system consists of three 
interconnected cylindrical tanks, two pumps, six 
valves, pipes, water reservoir in the bottom, 
measurement of liquid levels and other elements.  
Both pumps pump water from the bottom reservoir 
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to the top of the left and right tanks Valve positions 
are controlled and measured by electrical signals, 
which allow precision setting of their position.  
 

 
Fig. 1. Amira DTS200 – three tank system 

 
 A simplified scheme of the system is shown in 
Fig. 2. The pump P1 controls the inflow to tank T1 
while the pump P2 controls the liquid inflow to tank 
T2. There is no pump connected to the middle tank 
Ts. The characteristic of the flow between tank T1 
and tank Ts can be affected by valve V1, flow 
between tanks Ts and T2 can be affected by the valve 
V2 and the outflow of the tank T2 can be affected by 
valve V3. The system also provides the capability of 
simulating leakage from individual tanks by opening 
the valves V4, V5 and V6.  
 

 
Fig. 2. Scheme of three tank system Amira DTS200 

 
 Pumps are controlled by analogue signal in range 
from -10V to 10V. Heights of water level are 
measured by pressure sensors. Each valve is 
operated by two digital signals which control motor 
of particular valve. First signal orders to start 
closing of the valve while the second signal is used 
for opening of the valve. If none of the signals is 
activated the valve remains in its current position. 
Each valve also provides three output signals: 
analogue voltage signal correspond to the current 
position of the valve and two informative logical 

signals which states that the valve is fully opened or 
fully closed respectively. 
 The overall number of inputs to the modelled 
plant DTS200 is 14: 

• 2 analogues signals controlling the pumps, 
• 12 digital signals (2 for each of the 6 

valves) for opening / closing of the valves. 
 The plant provides 21 measurable outputs which 
can be used as a control feedback or for 
measurements of plant characteristics: 

• 3 analogue signals representing level 
heights in the three tanks, 

• 6 analogues signals representing position of 
the valves, 

• 12 logical signals (2 for each of the 6 
valves) stating that corresponding valve is 
fully opened / closed. 

 
 
3 Initial ideal model 
This chapter is focused to derivation of 
mathematical model of  a valve. This derivation is 
based on ideal properties of individual components.  
 The ideal flow of a liquid through a pipe can be 
derived from Bernoulli and continuity equations for 
ideal liquid: 

 
21

22 v

V

hg v
q S g h

q S v

⎫Δ = ⎪ = Δ⎬
⎪= ⎭

 (1) 

where ∆h is a difference between liquid levels on 
both sides of the pipe (e.g. difference between levels 
of tanks that are interconnected by the pipe), g is the 
standard gravity, v is the liquid velocity and SV is the 
flow space of the pipe. The flow space SV is 
controlled by the valve position p. 

 max 0 1V VS p S v= ⋅ ≤ ≤  (2) 

where SVmax is the maximal flow area of the valve.  
  Since the flow through a valve depends only 
on the level difference, the valve position and 
constants representing pipes and cylindrical tanks, 
the change of water level in tank T1 can be written 
as follows: 

 ( )1
1 1 1 4 1signs s

dh k h h h h k h
dt

= − ⋅ − −  (3) 

The area of all three tanks is the same and is 
symbolized by ST. The k is a parameter representing 
valve position 

 max 2
1,2,...,6V

i i
T

S g
k p i

S
= =  (4) 

 P1  P2 

T3 T2 T1 

V2 V3 V1 

leakage (V4) leakage (V5) leakage (V6)

h1 h3 h2 
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and q represents inflow as change of water level in 
time: 

 1,2i
i

T

qq i
S
′

= =  (5) 

 Similar equations can be derived for the other 
two tanks. The model obtained by using ideal 
properties and behaviour of plant parts if further 
referred as “ideal model”. This model of whole 
three tank system is successfully used in many 
control system studies as a demonstration example 
[6], [7], [8]. 
 
 
4. Characteristics of the valves 
As stated in Section 2, each of plant’s 6 valves is 
driven by two dedicated logical signals. These 
signals are used for starting valve’s motor in closing 
or opening direction respectively. If none signal is 
activated the valve remains in its current position. 
Activation of both signals at in a particular time 
represents an invalid state and valve motor is 
stopped. 
 Each valve provides three output signals. The 
current valve position is determined by analogue 
signal. Higher values of signal represent closed 
valve and lower values represent opened valve. The 
other two signals are logical and state that valve is 
opened or closed respectively. 
  
4.1 Valve limits and speed 
Process of opening all valves at once from fully 
closed state to fully opened is presented in Fig. 3. 

 
Fig. 3. Closing all valves in full range 

 
 This process represents moving of valve position 
in full range of its hard constraints. The vertical 
lines in left part of Fig. 3 represent changes the 

“opened” signals of individual valves. Before these 
signals drop down the valves are said to be opened. 
The vertical lines in the right part of Fig. 3 represent 
the changes of “closed”. From these lines onward, 
the valves are said to be closed. 
 It can be observed that the initial and final 
positions of the valve as well as the positions 
corresponding to changes of “opened” and “closed” 
signal differ. But all the valves are moving at almost 
the same speed vvalve.  

 0.175valvev MU s= −  (6) 

 Valve positions corresponding to hard 
constraints and validity of “opened” and “closed” 
state are summarized in Table 1.   
 

Table 1 
Valve positions for important states 

Valv
e no.

full 
closed 
[MU] 

“closed” 
signal 
change 
[MU] 

“opened” 
signal 
change 
[MU] 

full open 
[MU] 

1 0.5199 0.4066 -0.6065 -0.6945 
2 0.4550 0.3880 -0.5719 -0.7493 
3 0.5462 0.3996 -0.5423 -0.6501 
4 0.4926 0.3594 -0.5751 -0.7151 
5 0.4868 0.3296 -0.5157 -0.6718 
6 0.5242 0.4416 -0.5698 -0.6525 

 
 
4.2 Valve flow parameter for outflow valves 
Valve flow parameters ki as appear in (3) were 
computed from measurements of draining through 
individual valves which are connected to outflow 
pipes (V3, V4, V5 and V6). The draining of a tank to 
the reservoir situated below the tanks is described 
by differential equation based on (3): 

 ( ) ( )dh t
k h t

dt
= −  (7) 

 Integrating in an appropriate time range leads to 
the equation of time course of water level: 

 ( ) ( ) ( )
2

2 0 0
4
kh t t k h t h= ⋅ − ⋅ +  (8) 

where h(0) is initial water level. An example of 
draining is presented in Fig. 4. At the beginning of 
the experiment, the tank was full and all valves were 
closed, then valve V4 was partially opened, its 
position was recorded and time course of water level 
height was measured. 
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Fig. 4. Draining of tank T1 through valve V4 

 
 It is obvious that parabola depicted in Fig. 4 
would continue below zero contrary to (8). A term 
corresponding to the vertical length of outflow pipe 
h0 was added to the model. The vertical length h0 is 
depicted in Fig. 5. 

 
Fig. 5. Vertical length of outflow pipe (h0) 

 
 Due to mechanical configuration of the plant, the 
value of h0 for outflow valves V3, V4, V5, and V6 
cannot be measured directly. But it can be identified 
from draining course (Fig. 4). To encapsulate h0 into 
model, equations (7) and (8) were superseded: 

 

( ) ( )

( ) ( ) ( )

0

2
2

00 0
4

dh t
k h t h

dt
kh t t k h h t h

= − +

= ⋅ − + ⋅ +

 (9) 

 A second order polynomial (parabola) was fitted 
to an appropriate interval of draining data in least 
mean squares sense. The MATLAB function polyfit 
was used for this task. Parabola fitting is presented 
in Fig. 6. 

 
Fig. 6. Parabola fitting to the draining course 

 
 Values of k and h0 can be easily obtained from 
polynomial coefficient according to (9). Valve can 
be closed to different positions at the beginning of 
draining experiment and relation between valve 
position and value of k can be achieved. This 
relation for one set of experiment on valve V4 is 
presented in Fig. 7 where circles represent 
individual experiments. The characteristic is not 
strictly linear. It contains saturation of fully closed 
and fully opened valve. Transitions to saturation 
states are smooth. 

 
Fig. 7. Relation between valve position and k4 

 
4.3 Valve flow parameter for interconnection 
valves 
Similar approach to obtaining values of k as 
presented in previous subsection can be used also 
for valves V1 and V2 which interconnects tanks T1 
and Ts, and Ts and T2, respectively. Flow from the 
full tank T1 to the empty tank Ts was used to 
measure valve constant k1. The other valves were 
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closed during the experiment. According to (3), the 
flow can be described by two differential equations: 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1
1 1 1

1 1 1

sign

sign

s s

s
s s

dh t
k h t h t h t h t

dt
dh t

k h t h t h t h t
dt

= − − ⋅ ⎡ − ⎤⎣ ⎦

= − ⋅ ⎡ − ⎤⎣ ⎦

(10) 

 Since the value of h1 is always higher or equal to 
hs, the term inside absolute values is always 
nonnegative. As the water flow just from T1 to Ts 
and the geometry of both tanks is the same, 
according to mass conservation law the sum of h1 
and hs remain the same during the experiment. Then 
the course of draining T1 and filling Ts can be 
described by two independent differential equations. 

 

( ) ( )

( ) ( )
( ) ( )

1
1 1

1 2

1 2

2

2s

dh t
k h t h

dt h h t h t
dh t

k h h t
dt

Σ

Σ

Σ

= − −
= +

= − −

(11) 

 Solving these equations lead to time course 
described by second order polynomial. 

 
( ) ( ) ( )

( ) ( ) ( )

2
2

1 1 1

2
2

2 2 2

2 0 0
2

2 0 0
2

kh t t k h h t h

kh t t k h h t h

Σ

Σ

= ⋅ − − ⋅ +

= − ⋅ − − ⋅ +

 (12) 

 An example of courses and corresponding 
parabolas are depicted in Fig. 8. 

 
Fig. 8. Parabola fitting to the flow course through V1  
 
 A similar approach as presented for valve V1 was 
used to measure characteristics of valve V2. 
   

4.4 Valve hysteresis 
The experiments presented in previous subsections 
were preformed for opening of a valve only. At the 
beginning, the valve was fully closed and 
subsequently was partially opened to a given 
position. In this section a problem of closing of a 
valve is studied. Performed experiments are similar 
except initial part. The experiment starts with full 
tank and closed valve too, but then the valve was 
fully opened and then partially closed to the desired 
position. Therefore the same valve position (value 
of analogue signal from a valve) was reached but 
from opposite direction. 

 
Fig. 9. Hysteresis of valve V2 

 
 Experiments unveiled a hysteresis present in all 
valves. The characteristics for opening and for 
closing of valve V2 is presented in Fig. 9. There are 
four sets of experiments for closing of the valve 
performed in various time in the figure. Individual 
experiments correspond to stars in the figure. Three 
set of experiment are presented for closing of the 
valve where individual experiments are represented 
by circles. The figure shows that hysteresis plays a 
big role in the experiments. The value of position 
itself does not give sufficient information about 
current value of parameter k2. For example, if the 
position is 0 MU the value of k2 can be anywhere in 
range 0.03 to 0.13. Especially in case of using the 
valve as an actuator the hysteresis should be taken 
into account. Otherwise control process can easily 
become unstable.  
 Since the shape of curves corresponding to 
opening and closing of the valve is similar, an 
average difference between them in direction of 
position axis can be computed. This value can be 
used as measure of hysteresis. Values of hysteresis, 
h0 as well as maximal value of k for each valve is 
presented in Table 2. 

0 20 40 60 80 100 120 140 160
-100

0

100

200

300

400

500

600

time [s]

h 
[m

m
]

parabola fitting of flow through valve V1
h1=0.0209*t2 -4.95*t +570
hs=-0.0212*t2 +5.01*t -20

 

 
h1

hs

parabola h1

parabola hs

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
0

0.05

0.1

0.15

0.2

0.25

valve position [MU]

k 2

valve 2

 

 
closing 1
closing 2
closing 3
closing 4
opening 1
opening 2
opening 3

Recent Researches in Automatic Control

ISBN: 978-1-61804-004-6 199



 
Table 2 

Valve positions for important states 
Valve 

no. 
hysteresis 

[MU] maximal k h0 [mm] 

1 0.0219 0.2180 - 
2 0.1783 0.2237 - 
3 0.0310 0.2601 126.6 
4 0.0426 0.2976 127.9 
5 0.1307 0.2735 121.2 
6 0.0800 0.2688 97.1 

 
 
4.5 Modelling of valve characteristics 
The course of relation between valve position in 
MU and k is similar to step responses of dynamical 
system and therefore it was modeled in similar way. 
Other types of approximation functions, like 
sigmoids, were also tested, but did not achieve 
better results. A model based on transfer of 4th order 
aperiodic system produced satisfactory results. Thus 
relation between position and k was as follows: 

 

3 2 2 3

0 max 3

0

0

1 3 6 6: 1
6

: 0

b
a b b a ba apos pos k k e

a

b pos pos
pos pos k

−⎡ ⎤+ + +
< = −⎢ ⎥

⎣ ⎦
= −

≥ =

(13) 

where pos is valve position in MU and parameters a 
and pos0 were obtained by nonlinear regression. The 
regression for valve V2 is presented in Fig. 10. 
 Behavior of system inside hysteresis area was 
studied as well. This task was time consuming 
because a performed set of experiments took more 
than 45 hours. The parameter k did not change its 
value till it reaches a border of hysteresis area, i.e. 
the curve of either opening or closing of the valve. 

Fig. 10. Model of parameter k for valve V2 

5 Conclusion 
The paper presented a development of the model of 
valves of a hydraulic system. The Amira DTS200 
three tank system was considered but used 
techniques can be easily generalized to wide set of 
hydraulic systems. The real system contains several 
nonlinearities which incorporate complexity to the 
system. Total number of experiments concerning 
valves reached 433 taking altogether more than 113 
hours.  Resulting model includes all major 
nonlinearities and can be integrated into a Simulink 
model of whole three tank system. 
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