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Abstract: - The performance of a Model Predictive Control (MPC) algorithm depends on the quality of the 
derived model. Using a divide-and-conquer strategy process operations were partitioned into several operating 
regions and within each region, a local linear model was developed to model the process. This set of locally 
linearized models was simply and effectively combined into a global description of a multivariable nonlinear 
plant. To save on computational load, a linear model was obtained by interpolating these linear models at each 
sample point and then this linearized model was used in a Generalized Predictive Control (GPC) framework to 
calculate the future behavior of the process. Thus, time-consuming nonlinear quadratic optimization 
calculations, which are normally necessary in nonlinear predictive control, can be avoided. Modeling and 
controller design procedure was demonstrated using a simulated pH neutralization process with two inputs and 
two outputs. 
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1 Introduction 
Model predictive control (MPC) [1] has been a 
major research topic for the last 30 years. The 
reason for this is the ability of MPC to optimally 
control multivariable system under various 
constraints. The main idea of the MPC is to 
calculate the actual and the subsequent control 
signals by minimizing the quadratic deviation of a 
reference signal and an output signal in a given 
future horizon. The solution to this optimization 
problem is the optimal input signal to the system at 
that particular time [2].  According to the receding 
horizon control strategy, only the first control signal 
is used at the process input, and in the next sampling 
point the procedure is repeated. Conventional MPC 
techniques are based on the use of linear models. 
Linear MPCs can yield a satisfactory performance if 
the process is reasonably linear, or is operated close 
to the nominal steady state. However, a linear model 
is not sufficient to capture the properties of chemical 
engineering processes. 
The poor performance of linear MPCs for processes 
with a strong degree of nonlinearity (for example 
pH control or batch reactors) has motivated the 
development of nonlinear model predictive control 
(NMPC), where a more accurate (nonlinear) model 
of a plant is used for prediction and optimization. 
Qin and Badgwell [3] presented a survey of 
nonlinear model predictive control applications in 

industry. In NMPC, the importance of having an 
accurate process model is crucial, and several 
nonlinear models that have been utilized for NMPC 
can be found in the literature. In Ref. [4], a Wiener-
type nonlinear black box model was developed for 
capturing the dynamics of open loop stable Multiple 
Input Multiple Output (MIMO) nonlinear systems 
with deterministic inputs. Multiple model 
approaches to modeling and control have become an 
attractive research field in recent years [5]. A 
multimodel approach has advantages in controlling 
industrial processes, especially those with inherent 
nonlinearity, a wide operating range, or load 
disturbances. Based on a divide-and-conquer 
strategy, multimodel approaches can be used to 
develop local linear models or controllers 
corresponding to typical operating regimes. Galan et 
al. [6] reported the real-time implementation of a 
multilinear model based control strategies for a 
bench top–scale pH neutralization reactor. Xue and 
Li have proposed a multiple model predictive 
control (MMPC) strategy based on the Takagi–
Sugeno (T–S) model in [7]. In their approach 
different predictive controllers were designed for 
different local models with different local 
constraints.  
The pH neutralization process was chosen as a 
benchmark for control algorithms in several studies 
as it exhibits significant nonlinear behavior.  
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2 Local Linear Models 
 
Modeling nonlinear dynamic systems from observed 
data and a priori engineering knowledge is a major 
area of science and engineering. In recent years a 
great deal of work has appeared in new areas, such 
as fuzzy modeling and neural networks. LMNs were 
first introduced by Johansen and Foss [8] to describe 
a set of submodels, each of which was valid for a 
specific regime in an operating space, weighted by 
activation function. A LMN is a generalization of a 
radial basis function (RBF) network, in which 
individual neurons are replaced by local submodels 
with basic functions defining the regions of validity 
of individual submodels, according to the expected 
operating regions of a plant.  
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Figure 1. A local model network scheme 
 
The LMN output is given by: 
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where ( )kψ  is a vector of scheduling variables,  
( )i kρ  is a normalized validity function, and  ( )iy k�   

is the output of the i-th model. The network that is 
described by Equation (1) is shown in Figure 2. The 
blending of local models is calculated using 
weighting or validity functions. Although any 
function with a locally limited activation may be 
applied as a validity function, a common choice for 
this function takes the Gaussian form. The validity 
function for the i-th model is given by: 
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where the parameters ,i ic σ  , define the Gaussian 
centre and width, respectively, and the scheduling 

variable ψ  can be a system state or any system 
variable. 
Basically, there are two ways to design controllers 
for local model structures: the linearization-based 
and local model-based approaches. In the 
linearization-based approach, the local model 
network is linearized at the current operating point, 
and the linear controller is designed. The 
linearization of the LMN is very simple due to the 
structure of the model. A linear model is obtained 
by interpolating these linear models at each sample 
point. In the second approach a local controller is 
designed for each local model, and the control 
output is then calculated as an interpolation of the 
local controller outputs according to the current 
operating point. 
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Figure 2. Controller design using linearization and 
local models (LLM = local linear model, LLC = 
local linear controller) 
 
3 pH Neutralization 
 
The system chosen for this study is a pH 
neutralization process. The process was modeled 
using a nonlinear first-principles model, which was 
computationally too demanding for MPC 
computations. Therefore it is a good benchmark 
example for local modeling and control. Based on 
the time constants of the process the sampling 
period was chosen to be 15 s. The process consists 
of an acid (HNO3) stream, a buffer (NaHCO3) 
stream and a base (NaOH) stream being continually 
mixed in the tank (Figure 3). The model is based on 
the assumptions that the streams are perfectly 
mixed, and the density is constant throughout the 
entire tank. The process is aimed at controlling the 
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pH value of the outlet stream and the level h, by 
varying the inlet base and acid streams, and , 
respectively. The outlet flow rate is dependent on 
the fluid height in the tank as well as the position of 
the valve. A differential equation that describes the 
total mass balance of the tank is  

3Q 1Q

 ( 1 2 3
1dh Q Q Q c h

dt A
= + + − )  (3) 

where c is a valve constant, A is the tank cross-
sectional area, and h is the tank level. 
The differential equations for the effluent reaction 
invariants   and   can be derived as 
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where   and  are the chemical reaction 
invariants of the i-th stream. The variables are 
defined in Table 1. 

aiW biW

Table 1 Parameters of the pH neutralization plant 
Symb. Variable Nom. value 

A Tank area 207 cm2 

h Tank level 14 cm 

Q1 Acid flow rate 16.6 ml/s 

Q2 Buffer flow rate 0.55 ml/s 

Q3 Base flow rate 15.6 ml/s 

c Valve constant 8 /ml s cm

Wa1 [ ]3 1
HNO  0.003 mol 

Wa2 
3 2NaHCO− ⎡ ⎤⎣ ⎦  -0.03 mol 

Wa3 [ ]
[ ]

3 3

3

NaHCO

NaOH

−

The pH can be determined from  and , using 
an implicit equation: 
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Solving the equation for H +⎡⎣ ⎤⎦

⎤⎦

 , the pH can be 

computed from  
    (6) log10pH H += ⎡⎣
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Figure 3. pH neutralization plant scheme. 
 
4 Modeling the MIMO process 
 
The steady state analysis (Figure 4) shows the 
nonlinearity of the process. Five operating areas 
with almost linear behavior can be identified. A 
local model network that describes the nonlinear 
plant was constructed using local auto-regressive 
with exogenous input (ARX) models of the first 
order. To obtain models relating to the pH, the base 
and acid flow rate was perturbed about their 
nominal values. Due to the relationship of the pH 
value to the acid and base flow-rate only the pH 
value at the time instant k-1 is used for scheduling 
the local models. The local models had the form of a 
first-order ARX model: 

−  -0.00305 mol 

Wb1 [ ]3 1
NaHCO  0 mol 

Wb2 [ ]3 2
NaHCO  0.03 mol 

Wb3 [ ]3 3
NaHCO  0.00005 mol 

pKa1 -log10Ka1 6.35 

pKa2 -log10Ka2 10.33 

pKw -log10Kw 14 
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This open loop data was used to construct 5 local 
models at the operating point at the centers of the 
linear parts. 
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Figure 4. Steady state graph 
 
To quantify the similarity between two systems a 
gap metric [9] is used. The gap metric is much more 
suitable to measure the distance between two linear 
systems than a metric based on norms. The gap 
metric between the local models associated with the 
clusters are computed. The gap metric for two SISO 
dynamic models   is defined as: 

 1 2
1 2 2 2

1 2

( ) ( )
( , )

1 ( ) 1 ( )
sup M j M j

M M
M j M jω

ω ω
δ

ω ω

−
=

+ +
 (8) 

where 0≤ δ ≤ 1, 1( )M jω   and  2 ( )M jω represent the 
frequency responses of the system 1M and 2M    
respectively. Two models have similar behavior in 
close-loop if the value of δ is close to 0 and behave 
differently for value of δ close to 1.  
For MIMO system the value of gap metric can be 
deduced by comparing corresponding transfer 
functions 
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Table 2 Distances between the linear models 
measured using the gap metric 
 1 2 3 4 5 
1 0 0.72 0.03 0.24 0.01 
2 0.72 0 0.70 0.53 0.72 
3 0.03 0.70 0 0.21 0.03 
4 0.24 0.53 0.21 0 0.24 
5 0.01 0.72 0.03 0.24 0 

 

Table 2 shows the gap metric between the pairs of 
five linear models representing the whole operating 
range of the nonlinear process. The obtained values 
shows the similarity between the models 1,3 and 5. 
The similarity between models 1, 3, and 5 can be 
explained physically by the fact that these models 
represent low-sensitivity regions.  
 
The prediction of the local model network is given 
by: 

 
1
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The centers of the validity functions were obtained 
from steady-state characteristic and parameters of 
local models by least-squares method using the data 
in the vicinity of the centre of the operating region.    
The remaining unknown parameter 2

iσ from (6) is 
obtained by minimization the following criterion 
using the validation data: 

 (
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N
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The resulting distribution of the local models in the 
operating space of the system is shown in Figure 5. 
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Figure 5. Validity functions of linear models 
 
The modeling performance of the global model with 
5 linear local models is depicted in Figure 6 where 
the output of the model is compared with output of 
the system. The obtained global model of the system 
is used for prediction within the framework of the 
predictive control. At each sampling point the global 
model was linearized using the scheduling vector 
and validity functions: 
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Figure 6. Modeling performance of LMN with 5 
models  
 
 5 GPC control  
 
A multivariable controlled auto-regressive 
integrated moving average (CARIMA) model for a 
system with R outputs and S inputs can be described 
by 

 1 1 ( )( ) ( ) ( ) ( 1) kz k z k ξ− −= − +
Δ

A y Β u  (13) 

where  is the difference operator, 
whose function is to guarantee integral action in the 
controller to eliminate any offset. The terms 

11 ,z z− −Δ = − 1

( ), ( ), ( )k k kξy u  are the output, input, and noise 

vectors, respectively. The terms  

are the matrix polynomials of  , 
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where na and nb are the orders of the model output 
and input, respectively. To design a GPC controller 
it is necessary to derive predictions k-step ahead:  
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where S represents the free response of the system 
and  
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The cost function used in the GPC algorithms is 
defined as: 
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where ( )t k+W  is the reference trajectory at a 
future time point k, N is the output prediction 
horizon, and is the control increment horizon.  uN
This criterion can be rewritten in a matrix form 

 0
1
2

T TJ = Δ Δ + Δ +u H u b u f  (18) 

where , , 0H b f   are defined as 
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T R
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H G QG

b S W QG

)S W S W
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Since the vector 0f  is a constant vector and does 

not have an effect on the quadratic programming 
result, the constrained optimization problem can be 
defined as 

 
1
2

T TJ

ω

= Δ Δ + Δ

Δ ≤

u H u b u

uΛ
 (20) 

where ωΔ ≤uΛ   defines the constraints for a 
control action increments.  
 
Saturation constraints in the manipulated variables 
are imposed to take into account the 
minimum/maximum aperture of the valve regulating 
the base flow rate. A lower limit of 0ml/s and an 
upper limit of 20 ml/s are chosen for this variable. 
The prediction horizon was set to 8 samples as a 
result of using different values and comparing 
control performances. A control horizon of 4 
samples was selected since further increase did not 
add significant improvement in terms of 
performance. The weighting matrix Q associated 
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with the error from set point was set two times 
greater than matrix R associated control signal 
changes.  
  (21) 2 ,I= =Q R I
The model predictive control algorithm described in 
Section 5 was implemented using the "quadprog" 
function in MATLAB’s Optimization Toolbox to 
minimize the cost function. To reduce the on-line 
computational load, the control sequence computed 
at the step k − 1 was shifted backwards and used as 
an initial guess for the computation of the future 
controller output at time k. The resulting control 
courses for stepwise set-point changes are shown in 
Figure 7. 
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Figure 7. The LMN-GPC performance when 
subjected to step-like set point changes 
 
6 Conclusion  
 
A nonlinear model-based predictive control strategy 
based on a local model network has been presented. 
The simplicity of the modeling and the performance 
of the controller make the design very attractive for 
a designer. The use of a local model network makes 
the global nonlinear model more transparent and 
user-friendly than a model based on a neural 
network, where the information given by the 
parameters is not very clear to the user. A 
linearization of the LMN was used as a system 
model for the GPC algorithm. The advantage of this 

technique is that time-consuming numerical 
optimization methods and an uncertainty in the 
convergence to the global optimum, which are 
typically seen in conventional nonlinear model-
based predictive control, are avoided. Moreover, the 
control actions obtained based on local incremental 
models contain integration actions that can naturally 
eliminate static offsets. This approach was 
implemented experimentally to control the pH and 
level in pH neutralization process.  
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