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Abstract: - This paper presents a new simple principle for aperiodic tuning of SISO controllers used in 
autotuning schemes. Autotuners represent a combination of relay feedback identification and some control 
design method. In this contribution, models with up to three parameters are estimated by means of a single 
asymmetrical relay experiment. Then a stable low order transfer function is identified. Subsequently, the 
controller is analytically derived from general solutions of Diophantine equations in the ring of proper and 
stable rational functions RPS. This approach enables to define a scalar positive parameter through a  pole-
placement root of the characteristic closed loop equation. A first order identification yields a PI-like controllers 
while a second order identification generates PID ones. The analytical simple rule is derived for aperiodic 
control response and the scalar tuning parameter m>0 is then tuned according to identified time constant of an 
approximated transfer function. 
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1 Introduction 
Industrial processes are usually controlled by 

PID controllers, Yu in [1] refers that more than 97 
% of control loops are of this type and most of them 
are actually under PI control.  The practical 
advantages of PID controllers can be seen in a 
simple structure, in an understandable principle and 
in control capabilities. Moreover, PID controllers 
have survived changes in technology from 
pneumatic principles through analog and digital 
representation to DCS ones. It is widely known that 
PID controllers are quite resistant to changes in the 
controlled process without meaningful deterioration 
of the loop behavior. For 70 years, the Ziegler – 
Nichols tuning rule has been glorified and vilified 
as well.  Nevertheless, the Ziegler –Nichols rule 
stay remains the most frequent method of PID 
tuning. However, there are many limitations, 
drawbacks and infirmities in the behavior of the 
Ziegler –Nichols setting. A solution for qualified 
choice of controller parameters can be seen in more 
sophisticated, proper and automatic tuning of PID 
controllers.  

The development of various autotuning 
principles was started by a simple symmetrical relay 
feedback experiment proposed by Åström and 

Hägglund in [2] in the year 1984.  The ultimate gain 
and ultimate frequency are then used for adjusting 
of parameters by original Ziegler-Nichols rules. 
During the period of more than two decades, many 
studies have been reported to extend and improve 
autotuners principles; see e.g. [3], [4], [8], [9]. The 
extension in relay utilization was performed in [1], 
[5], [7], [14] by an asymmetry and hysteresis of a 
relay. Over time, the direct estimation of transfer 
function parameters instead of critical values began 
to appear. Experiments with asymmetrical and 
dead-zone relay feedback are reported in [10]. Also, 
various control design principles and rules can be 
investigated in mentioned references. Nowadays, 
almost all commercial industrial PID controllers 
provide the feature of autotuning.  

In this paper, a new combination for autotunig 
method of PI and PID controllers with an aperiodic 
control rule is proposed and developed. The basic 
autotuning principle combines an asymmetrical 
relay identification experiment and a control design 
performed in the ring of proper and stable rational 
functions RPS. The factorization approach proposed 
in [11] was generalized to a wide spectrum of 
control problems in [10], [12], [15] - [20]. A 
different philosophy is reported in [21]. The pole 
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placement problem in RPS ring is formulated 
through a Diophantine equation and the pole is 
analytically tuned according to aperiodic response 
of the closed loop. The proposed method is 
compared by an equalization setting proposed in 
[13]. A general basic scheme of the autotuning 
principle can be seen in Fig.1. 
 

2 Relay Feedback Estimation 

The estimation of the process or ultimate 
parameters is a crucial point in all autotuning 
principles. The relay feedback test can utilize 
various types of relay for the parameter estimation 
procedure. The classical relay feedback test [2], was 
proposed for stable processes by symmetrical relay 
without hysteresis. Following sustained oscillation 
are then used for determining the critical (ultimate) 
values. The control parameters (PI or PID) are then 
generated in standard manner.  

 
Fig.1:  Block diagram of an autotuning principle 

 
Asymmetrical relays with or without hysteresis 

bring further progress [1], [14]. After the relay 
feedback test, the estimation of process parameters 
can be performed. A typical data response of such 
relay experiment is depicted in Fig.2. The relay 
asymmetry is required for the process gain 
estimation (2) while a symmetrical relay would 
cause the zero division in the appropriate formula. 

In this paper, an asymmetrical relay with 
hysteresis is used. This relay enables to estimate 
transfer function parameters as well as a time delay 
term.  For the purpose of the aperiodic tuning the 
time delay is not exploited. 

 

 
Fig.2:  Asymmetrical relay oscillation of stable 

process 

The model for first order (stable) systems plus 
dead time (FOPDT) is supposed in the form: 
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and the process gain can be computed by the 
relation (see [22]): 
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The time constant and time delay terms are given 
by [10]: 
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where ay and Ty are depicted in Fig.2 and ε is the 
hysteresis. 

Similarly, the second order model plus dead time 
(SOPDT) is assumed in the form: 

 
2

( )
( 1)

sK
G s e

Ts

−Θ= ⋅
+

 (4) 

The gain is given by (2), the time constant and 
time delay term can be estimated according to [10] 
by the relation: 
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3 Algebraic Control Design 

The control design is based on the fractional 
approach; see e.g. [11], [12], [15] - [17]. Any 
transfer function G(s) of a (continuous-time) linear 
system is expressed as a ratio of two elements of 
RPS. The set RPS means the ring of (Hurwitz) stable 
and proper rational functions.  Traditional transfer 
functions as a ratio of two polynomials can be 
easily transformed into the fractional form simply 
by dividing, both the polynomial denominator and 
numerator by the same stable polynomial of the 
appropriate order. Then all transfer functions can be 
expressed by the ratio: 
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 max(deg( ),deg( )), 0n a b m= >  (7) 

 
Then, all feedback stabilizing controllers for the 
feedback system depicted in Fig.3 are given by a 
general solution of the Diophantine equation: 

 
 1AP BQ+ =  (8) 

which can be expressed with Z free in RPS: 

 0

0

Q AZQ

P P BZ

−
=

+
 (9) 

In contrast of polynomial design, all controllers (9) 
are proper and can be utilized. 

 

 
Fig.3:  Feedback (1DOF) control loop 

 
Asymptotic tracking is then ensured by the 

divisibility of the denominator P in (9) by the 

denominator of the reference w

w

G
w

F
= . The most 

frequent case is a stepwise reference with the 
denominator in the form: 

 ; 0w

s
F m

s m
= >

+
 (10) 

The similar conclusion is valid also for the load 

disturbance d

d

G
d

F
= . The load disturbance 

attenuation is then achieved by divisibility of P by 
Fd. More precisely, for tracking and attenuation in 
the closed loop according to Fig.3 the multiple of 
AP must be divisible by the least common multiple 
of  denominators of all input signals. The 
divisibility in RPS is defined through unstable zeros 
and it can achieved by a suitable choice of rational 
function Z in (9), see [11], [15] for details. 
 

4 PI and PID-Like Controllers  

Diophantine equation (8) for the first order systems 
(1) without the time delay term can be easily 
transformed into polynomial equation: 
 0 0( 1)Ts p Kq s m+ + = +  (11) 

with general solution: 
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where Z is free in the ring RPS. Asymptotic tracking 
is achieved by the choice: 

 
m

Z
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= −  (13) 

 
and the resulting PI controller is in the form: 
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where parameters q1 a q0 are given by: 
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For the SOPDT the design equation (8) takes the 
form: 
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and after similar manipulations the resulting PID 
controller gives the transfer function: 
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with parameters: 
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For both systems FOPDT and SOPDT the scalar 
parameter m>0 seems to be a suitable „tuning 
knob” influencing control behavior as well as 
robustness properties of the closed loop system. 
Naturally, both derived controllers correspond to 
classical PI and PID ones. It is clear that (14) 
represents  the PI controller: 
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and the conversion of parameters is trivial. 
Relation (17) represents a PID in the standard four-
parameter form [3]:  
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5 Aperiodic Tuning 

Over the past 60 years after the introduction of 
Ziegler-Nichols rule in 1942, vehement research 
activity in controller tuning has been performed. 
More than 240 tuning rules are referred  in [23], 
more than 100 rules for PI controllers. 

A simple and attractive choice for the tuning 
parameter m>0 can be easily obtained analytically. 
In the RPS expression, the closed-loop  transfer 
function Kwy is for (1) and PI controller (14) given 
in a very simple form: 
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The step response of (22) can be expressed by 
Laplace transform: 
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where A,B,C are calculated by comparing 
appropriate fractions in (23) and k1=2mT-1, 

k0=Tm
2.  The response h(t) in time domain is then 

 ( ) mt mth t A Be Cte− −= + +  (24) 

The overshoot or undershoot of this response is 
characterized by the first derivative condition 
 ( ) ( ) 0mt mt mth t mBe C e tme− − −′ = − + − =  (25) 

From (25) time of the extreme of response h(t) 
is then easily calculated by the relation: 
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Since the aperiodic response means that the 
extreme does not exist for positive  te, it implies   te 
< 0 and after all substitutions of A,B,C, k1, k0   
relation  (26) takes the simple form 
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The denominator of (27) must be positive and 
less than 1 and m>0  which implies the inequality: 
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Any positive parameter m from (28) ensures 
aperiodic response. It is a question for further 
investigation and simulation what choice from 
interval (28) is the best. For autotuning philosophy 
time constant T is always an estimation then the 
middle value of (28) would be reasonable, it means 
the choice 
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Also another tuning principles for aperiodic 
tuning certainly exist. For the mentioned algebraic 
synthesis,  the equalization method developed by 
Gorez and Klán in [13]. The idea goes out from PI 
controller in the form (19). The tuning rule is very 
simple and it leads in relations: 

 
1

0.4
2P I uK T T
K
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where K is a process gain and Tu is the ultimate 
period obtained from the Ziegler-Nichols 
experiment. However, the fulfillment of (30) by 
unique value of m>0  is impossible, see [16]. The 
exact fulfillment of both relations in (30) could be 

obtained in the case of two distinct roots in 
denominator (22), so (s+m1)(s+m2) instead of 
(s+m)

2.  
 

6 Examples and Analysis 

The following examples illustrate the situation 
where the estimated model is always of the first 
order ones (1) without time delay and the controller 
has a PI structure (14). 

Example 1: The first order system governed by 
the transfer function G(s) was after the relay 

experiment estimated by ( )G sɶ in the form:  
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Fig. 4  Step responses of nominal and estimated  

systems (31) 
The PI controller was then generated for three 
values  
of m within the interval given by (28), m=0.185; 
0.278; 0.370, respectively. The responses are 
depicted in Fig.5. 
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Fig. 5  Control responses (Example 1) 

 
This choice represents the lowest, middle and upper 
limit values in derived interval (28). Responses in 
Fig. 5demonstrate that all ones have aperiodic 
behavior. 

Example 2: A second order (stable) system G(s) 
without  a time delay was estimated by a first order 
model in the above mentioned relay experiment. 
Both transfer functions have the form: 
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The above mentioned relay experiments enable 
to estimate the original system by the first or second 

order transfer functions (1), (4). Step responses 
without time delay terms are depicted in Fig.6. The 

PI controller generated from the approximated 
system )(

~
sG was designed by (17), (18)for three 

values of tuning parameters m>0  with respect the 
interval given by (28). The responses are shown in 
Fig.7. Also, the aperiodic responses are achieved. 
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Fig. 6  Step responses of systems (32) 
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Fig. 7  Control responses (Example 2) 

 
Example 3: A higher order system (8th order) 

with transfer function G(s) is supposed. Again, after 
the relay experiment, a first order estimation )(

~
sG  

was identified, both governed by: 
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The step responses of systems (33) are shown in 
Fig. 8. Naturally, the step response of the estimated 
system is quite different from the nominal system 
G(s). Again, PI controllers are generated from (17), 
(18) and the tuning parameter m>0 can influence 
the control responses. Since the difference of 
controlled and estimated systems is considerable, it 
can be expected that not  all values of and some of 
m>0 represent acceptable behavior. With respect of 
(28), three responses are shown in Fig.9. Generally, 

larger values of m>0 implicate larger overshoots 
and oscillations. As a consequence, for inaccurate 
relay identifications, lower values of m>0 in 
interval (28) can be recommended. 
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Fig.2:  Step responses of systems (24) 

 
In all control simulations, the reference value is 
changed in 1/3 of the simulation horizon and the 
load disturbance is injected in the 2/3 of the 
simulation horizon. All simulations were performed 
in Simulink environment. In the case of (33), the 
best response is achieved for m= 0.142. 
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Fig.3:  Control responses 

 

7 Conclusions 

This contribution gives a new combination of relay 
feedback identification and a control design 
method. 

The estimation of a low order transfer function 
parameters is performed from asymmetric limit 
cycle data. The control synthesis is carried out 
through the solution of a linear Diophantine 
equation according to  [11], [15], [16]. This 
approach brings a scalar tuning parameter which 
can be adjusted by various strategies. A first order 
estimated model generates PI-like controllers while 
a second order model generates a class of PID ones. 
The aperiodic tuning through the parameter m>0 is 
proposed by the analytic derivation. The 
methodology is illustrated by several examples of 
various orders and dynamics.  
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