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Abstract: The paper is aimed to the design of linear continuous controllers for unstable 

single input – output systems. The controller design is studied in the ring of (Hurwitz) stable 

and proper rational functions RPS. All stabilizing feedback controllers are given by a general 

solution of a Diophantine equation in RPS. Then asymptotic tracking and disturbance 

attenuation is obtained through the divisibility conditions in this ring. The attention of the 

paper is focused on a class of unstable systems. Both, one and two degree of freedom 

(1DOF, 2DOF) control structure. The methodology brings a scalar parameter for tuning and 

influencing of controller parameters. As a result, a class of PI, PID controllers are developed 

but the approach generates also complex controllers. Simulations and verification are 

performed in the Matlab+Simulink environment. 
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1 Introduction 
The dynamics of many technological plants exhibit 

unstable behavior. Probably, the reason can be seen 

in nonlinearity of many industrial processes and 

plants. Such nonlinear systems exhibit multiple 

steady states and some of them may be unstable. The 

situation where linear systems have unstable poles 

may occur e.g. in a continuous-time stirred 

exothermic tank reactor, in distillation columns,  in 

polymerization processes or in a class of biochemical 

processes where the processes must operate at an 

unstable steady state. Moreover, a time delay can be 

also an inherent part of many technological plants. 

The most frequent tool for feedback industrial 

control has been still PID controller. It is believed 

that more than 90 % feedback loops are equipped 

with this controller. Also, a great amount for PID 

assessing and tuning rules has been developed. The 

traditional engineering design approach of PID like 

controllers was performed either in the frequency 

domain or in polynomial representation (see e.g. [1], 

[2], [3]). Most of them are scheduled for stable 

systems without or with time delay, see e.g. [1], 

[2].The unstable cases are studied e.g. in [4], [5].  

In this contribution, a general technique for a 

class of unstable systems is proposed. The control 

design is performed in the ring of proper and 

Hurwitz stable rational functions RPS.  All stabilizing 

controllers are given by all solutions of Diophantine 

equation in this ring and asymptotic tracking and 

disturbance attenuation is then formulated by 

additional conditions of divisibility. This fractional 

approach proposed in [6], [10], [17] enables a deeper 

insight into control tuning and a more elegant 

derivation of all suitable controllers. The situation 

and details for stable and time-delay free systems can 

be found in [12] - [16] for various control problems. 

This technique introduces a scalar parameter m > 0 

which influences a control responses and also robust 

behaviour. The RPS ring also enables to utilize the H∞ 

norm as a tool for perturbation evaluation.  

 

2 Descriptions over Rings 
Linear continuous-time dynamic systems have been 

traditionally described by the Laplace transform. So 

polynomials became a basic tool for the stability 

analysis and controller design. Since the 

characteristic feedback polynomial has two known 

(plant) and two unknown (controller) polynomials, 

the Diophantine equations began to penetrate into 

synthesis method, see e.g. [9]. However, the ring of 

polynomials induces some drawbacks with solutions 

of Diophantine equations. Almost all from the 

infinite number of solutions cannot be used for 

controller transfer functions because they are not 

proper, see e.g. [10], [15]. These problems were 

overcome by introducing of the different ring of 

proper and stable rational functions. The pioneering 

work in the so called fractional approach is the work 

[17], further extension can be found in [10], [15]. 

Simply speaking, a ratio of polynomials is replaced 

by a ratio of two Hurwitz stable and proper rational 

functions. In this paper, the following ring RPS(m)  is 

utilized.   
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The ring RPS(m) denotes the set of rational 

functions having no poles in the plane Re(s)≥-m. 

Generally, polynomial transfer functions in the ring 

RPS(m) take the form: 
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where m>0. Also, signals in control systems can be 

expressed similarly. The stepwise reference signal w 

and harmonic disturbance v are in the rational 

description given by ratios: 
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The load disturbance n is supposed also in the 

form of (2), (3). The divisibility of elements in Rps is 

defined through the all unstable zeros (including 

infininy) of the rational functions, see [18] for 

details.  

The basic control problem is then formulated as 

follows within the context of Fig.1: Consider the 

known transfer function (1), the reference and 

disturbance (2), (4). The task is to design a proper 

transfer function C(s) so that the closed loop system 

is asymptotic stable and the tracking error 

( ) ( ) ( )e t w t y t= − tends to zero. Moreover, a step-

wise disturbance n(t) has to be eliminated without a 

non-zero steady-state error (disturbance attenuation). 

 

3 Control and Disturbance Rejection 

Design in RPS 

Suppose a general closed loop control system 

depicted in Fig.1. The controller C(s) generates the 

control variable u according the equation: 

 Pu Rw Q y n= − +  (4) 

 

where n is a load disturbance. Note that a traditional 

one degree-of-freedom (1DOF) feedback controller 

operating on the tracking error is obtained for Q = R. 

 

Basic relations following from Fig. 1 are 
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and w, v, n  are independent external inputs into the 

closed loop system. 
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Fig. 1 General closed loop system 

 

Further, the following equations hold: 
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The 1DOF (FB) structure is obtained for R=Q 

(depicted in Fig.2) and the last relation gives the 

controlled error e=w-y: 
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Fig. 2 Structure 1DOF (FB) of the close loop system 

 

The first step of the control design is to stabilize 

the system by a proper feedback loop. It can be 

formulated in an elegant way in RPS by the 

Diophantine equation: 

 1AP BQ+ =  (8) 

 

with a general solution for SISO systems P=P0+BT, 

Q=Q0-AT; where T is free in RPS and P0, Q0 is a pair 

of particular solutions (Youla – Kučera 

parameterization of all stabilizing controllers). 

Details and proofs can be found e.g.[10], [15], [16], 

[18]. Then control error for FBFW structure: 
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Now, it is necessary to solve both structures 1DOF 

and 2DOF separately. For asymptotic tracking and 

the 2DOF (FBFW) structure, the second Diophantine 

equation gets the form: 

 1wF Z BR+ =  (10) 

where Z ∈ RPS is not used in the control law. 

The tracking error e tends to zero if 

 

a) Fw divides AP for 1DOF (11) 

b) Fw divides 1-BR  for 2DOF (12) 

 

Another control problem of practical importance 

is  disturbance rejection and disturbance attenuation. 

In both cases, the effect of disturbances v and n 

should be asymptotically eliminated from the plant 

output. Since the both disturbances are external 

inputs into the feedback part of the system, the effect 

must be processed by a feedback controller. It means 

that the second and third parts in (11) and (12) are 
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must belong to RPS(s), i.e. all AP+BQ, Fv, Fn should 

cancel. In other words, a multiple Fv, Fn must divide 

P. More precisely Fv, must divide the multiple AP 

and Fn the multiple BP. When define relatively 

prime elements A0, Fv0 and B0, Fn0 in RPS(s) 
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then the problem of disturbance rejection and 

attenuation is solvable if and only if the pairs Fv, B 

and  Fn, B are relatively prime and the feedback 

controller is given by 
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where P1, Q is any  solution of the equation 
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4 Simple controllers 
The fractional approach performed in the ring Rps 

enables a control design in a very elegant way. 

Probably, the simplest unstable system is an 

integrator with the transfer function: 
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The basic stabilizing equation (8) takes the form 
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and all solutions can be expressed by 
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with T free in Rps. For the integrator, the condition of 

divisibility between stepwise Fw and A is generically 

fulfilled because they are the same and the simplest  

controller is proportional with the gain m/b0. The 

influence of tuning parameter m is shown in Fig.3 

where responses for three various parameters are 

depicted (b0=1). Naturally, this controller is not able 

to compensate any load disturbance. 

Now, it is necessary to find such a free parameter T 

in (20) so that controller b

Q
C

P
=  ensures asymptotic 

tracking for a stepwise load disturbance (2). So, the 

condition (11) is achieved for 0

0

m
t

b
= −  and the 1 

DOF controller takes the form of PI one: 
2
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2m m
s

b bQ
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+
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It is clear that tuning parameter m is incorporated 

into controller parameters in a nonlinear way. The 

influence for control behaviour is then demonstrated 

in Fig. 4 (also for b0=1).   

A bit more complex situation occurs for 

disturbance rejection with harmonic signal (3). Then 

the parameterization (20) leads to the expression: 
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It is necessary to find parameters t0, t1 satisfying the 

identity in (22). Equating of coefficients in (22), the 

following linear equations for  t0, t1  are: 
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with the solution 
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Fig. 3 Simple integrator with P controller 
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Fig. 4 Simple integrator with PI controller 

The resulting feedback controller ( )
Q

C s
P

=  has no 

more of the PI or PID structure but it takes the form: 
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The control responses for three different values of m 

are depicted in Fig.5. 

The feedforward part of the 2DOF structure for 

integrator (18) is given by (10) with a particular 

solution 
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and the feedforward transfer function of the control 

structure is then obtained 
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Fig. 5 Integrator with harmonic disturbance 

compensation 

 

A second set of controllers for unstable systems 

can be derived for system governed by the transfer 

function: 

0
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with a0>0. The stabilization feedback equation (8) 

takes the form 

 0 0
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with all parameterization solutions 

 

 0 0 0

0

1 ;
b m a s a

P T Q T
s m b s m

+ −
= + = −

+ +
 (32) 

In this case (for the stepwise reference) the 

divisibility condition Fw\ AP is not generically 

fulfilled and it is achieved for 0
0

0

p m
T t

b
= = − . The 

final feedback part is again in the form of PI 

controllers: 

 1 0q s qQ
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Simulations for three values m (0.6, 1.0, 2.5) for the 

particular case b0=2, a0=0.5 are shown in Fig.6. 

Two remarkable facts can be seen in Fig.4, Fig.6. 

The first one is that increasing value of the tuning 

parameter m lowers overshoot of the control 

response. The second one is that the divisibility 

condition enables to compensate the stepwise load 

disturbance which is injected in the time t=20. 

Another question is a total rejection of overshoot. 

It can be achieved by utilizing of control structure 

2DOF and equation (10). The control responses for 

m=1.0 is depicted in Fig.7. Generally, the 2DOF 
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structure always reduces overshoots after step 

changes of input signals (reference, load 

disturbance). 
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Fig. 6 Unstable system (30) with 2DOF control 

structure 
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Fig. 7 Unstable system (30) with 2DOF control 

structure 

 

The third class of controllers is derived for a 

frequent case of unstable systems with the integrator 

in the form 

0

0
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The divisibility condition for a step-wise reference 

with w

s
F

s m
=

+
 is fulfilled, so the stabilizing 

equation (8) also ensures asymptotic tracking. This 

equation in this case takes the form 
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It is easy to express parameters pi, qi and the 

particular controller has the transfer function 
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Fig. 8 Unstable system (30) 
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Simulations for the case b0=1 and a0=0.5 and three 

parameters are shown in Fig.8. 

 

6 Conclusions 
The task of simultaneous regulation and disturbance 

attenuation for a class of unstable systems is 

considered. A controller design methodology is 

based on fractional representation in the ring of 

proper and stable rational functions. Resulting 

control laws in 1 DOF structure give a class of PI, 

PID controllers. Itch is important from application 

point of view. More complex structure 2 DOF gives 

more sophisticated controllers which have no more 

the PID structure but the benefit is in control 

response. The proposed methodology brings a scalar 

parameter m>0 which enables to tune and influence 

the robustness and control behaviour. The tuning 

parameter can be chosen arbitrarily or it can be a 

result of some optimization or calculation. Also 

problems of disturbance attenuation are analysed. 

The proposed results were verified in the Matlab + 

Simulink environment. 
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