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Abstract: The paper deals with description and simulation verification of one of possible methods to control of 
multivariable controlled systems. The proposed method of control uses the so called binding members and 
correction members. Binding members serve to ensure of autonomy of control loop and correction members serve 
to ensure invariance of control loop. Simulation verifications of the control method are carried out for two-
variable control loop. 
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1   Introduction 
It is often required, at large numbers controlled 
systems, that their multiple outputs be controlled 
simultaneously. To do so, multiple inputs have to be 
usually subtly manipulated. The examples these 
controlled systems are e.g. aircraft autopilots, chemical 
processes, air-conditioning plants, distillation columns, 
turbines, etc. [1]. In these cases, it means that there is 
not only larger number of independent SISO (single-
variable) control loop. These control loops are complex 
with several controlled variables where separate 
variables are not mutually independent. Mutual 
coupling of controlled variables is usually given by 
simultaneous action of each of input variables of 
controlled plant (manipulated variables and disturbance 
variables) to all controlled variables. These control 
loops are called MIMO (multi-variable) control loops 
and they are a complex of mutually influencing simpler 
control loops [1]. Special case of MIMO control loop is 
SISO control loop having only one input signal 
(manipulated variable, disturbance variable) and one 
output signal (controlled variable) [2]. 
All simulation experiments were performed in the 
simulation mathematical education and research 
software MATLAB/SIMULINK [3]. MATLAB is a 
widely used tool not in education but also in research; in 
addition to that, many researchers have produced a wide 
variety of educational tools based on MATLAB [4], [5]. 
 
 
2   MIMO Control Loop 
2.1 Description of MIMO control loop 
We will consider MIMO branched control loop with 
measurement of disturbance (see Fig.1). [1] 

 
Fig.1 - MIMO branched control loop with measurement 

of disturbance 
 
GS (s), GSV (s) are transfer matrixes of a controlled plant 
and disturbance variables and GR (s), GKC (s) are transfer 
matrixes of controller and correction members. Signal 
Y(s) [n×1] is a vector of controlled variables, U(s) [n×1] 
is a vector of manipulated variables and V(s) [m×1] is a 
vector of disturbance variables; m ≤ n 
 Transfer matrixes of controlled plant GS (s) and 
transfer matrix of disturbance variables GSV (s) are 
considered in forms 
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 Transfer matrixes of controller GR (s) and transfer 
matrix of correction member GKC (s) are considered in 
forms 
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2.2 Autonomy of MIMO control loop and invariance 

of MIMO control loop 
At MIMO control it is often required in order to control 
loop to be autonomous and invariant.  

2.1.1   Autonomy of MIMO control loop 
In order to determine the condition for autonomy of 
control loop we start from a closed loop transfer matrix 
GW/Y (s). i.e. 
 [ ] )()()()()( 1 ssss  s RSRSW/Y GGGGIG −+=  (3) 
 For ensuring autonomy of control loop it is necessary 
that the matrix GS (s) GR (s) is diagonal. On the base of 
this condition it is possible to derive the following 
relation 
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where Rij, Rkj are separate members of a transfer matrix 
of controller GR (s) and sji , sjk are algebraic supplements 
of separate elements of a transfer matrix of controlled 
plant GS (s). 
 It is considered that diagonal (main) controllers R11, 
R22,…, Rnn are usually known already from the first 
design of conception of control [1]. Relation (4) is used 
to calculation of aside from diagonal members of a 
transfer matrix of controller GR (s) (binding members), 
which means that above mentioned relation can be 
rewritten into the following form 
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2.1.2   Invariance of MIMO control loop 
In order to determine the condition for invariance of 
control loop we start from a disturbance transfer matrix 
GV/Y (s). i.e. 
 [ ] [ ])()()()()( )( 1 ssssss KCSSVRSV/Y GGGGGIG −+= −  (6) 
 For ensuring absolute invariance of control loop it is 
necessary that the disturbance transfer matrix GV/Y (s) is 
zero. This is possible if the following relation is valid 

 )()()( 1 sss SVSKC GGG −=  (7) 
 Correction members KC of transfer matrixes of 
correction members GKC (s) can be determined from the 
relation 
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where det GS is a determinant of transfer matrix of 
controlled plant GS (s), ski are algebraic supplements of 
separate elements of a transfer matrix of controlled plant 
GS (s) and SV,kj are separate members of a transfer matrix 
of disturbance variables GSV (s). 
 In case diagonal members of a transfer matrix of 
disturbance variables GSV (s) are considered as a dominant 
it is possible to simplify the above mentioned relation. In 
this case it is considered that internal couplings are 
omitted at MIMO control loop and thus n SISO branched 
control loops with measuring of a disturbance variable are 
gained. Connection of all SISO branched control loops is 
the same and they differ only in separate transfers of 
controlled plants, controllers, correction members and 
disturbance variables (see Fig.2) [1]. 

 
Fig.2 - Block diagram of SISO branched control loop 

with measuring of disturbance variable vi 
 
 Transfer of correction members KC is then determined 
by using the following equation 
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where SV,ii are separate members of transfer matrix of 
disturbance variables GSV (s) and Sii are separate 
members of transfer matrix of controlled plant GS (s). 
 
2.3 Control of MIMO control loop 
One of the possible approaches to control of MIMO 
control loops is described in the following part of the 
paper. Generally it is possible to divide this problem into 
three parts 
• Design of main controllers (diagonal controllers) by 

arbitrary synthesis method of SISO control loops, i.e. 
design of parameters of main controllers for n SISO 
control loops (R11, R22, …, Rnn). It is considered that 
original diagonal transfer functions Sii (i = 1, …, n) of 
transfer matrix of controlled plant GS (s) are modified 
to diagonal transfer functions Sii,x (i = 1, …, n). In 
these modified transfer functions influences of aside-
from diagonal transfer functions of transfer matrix of 
controlled plant GS (s), i.e. Sij (i ≠ j, i, j = 1, …, n) on 
original diagonal transfer functions, i.e. Sii (i = 1, …, n) 
are included. Transfer functions Sii,x, i.e S11,x, S22,x, S33,x 
etc. are determined from equation (10) by using 
relations (3) and (4) 
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where sii, sij are algebraic supplements of separate 
elements of a transfer matrix of controlled plant GS (s) 
and Sij are separate members of a transfer matrix of 
controlled plant GS (s). 

• Ensuring of autonomy of control loop via binding 
members (5) of transfer matrix of controller GR(s). 

• Ensuring of invariance control loop via correction 
members KC by using of equations (8) or (9). 
Relation (9) can be used when influences of aside 
from diagonal elements of a transfer matrix of 
disturbance variables GSV (s) are not dominant. In this 
case invariance of control loop is ensured by using n 
SISO branched control loops with measuring of 
disturbance variables. 

 The other strategy of control of MIMO control loop 
can be found e.g. in [6], [7], [8]. 
 
 
3   Simulation Verification of Described 
Method of Control of MIMO Control Loop 
For simulation verification of described method of control 
of multivariable control loop the following two-variable 
control loop is considered (see Fig.1 and Fig.3). 

 
Fig.3 - Two-variable branched control loop with 

measurement of disturbance 
 
3.1 Multi-variable controlled plant 
It is considered two-variable controlled plant, i.e. controlled 
plant having two input signals and two output signals (see 
Fig.1 and Fig.3). The Laplace transform of an output 
(controlled) variable is given by the following relation 
  )()(  )()(  )( sssss SVS VGUGY +=  (11) 
then 
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where y1, y2 are controlled variables, u1, u2 are manipulated 
variable and v1, v2 are disturbance variables. 
Transfer matrixes GS(s) and GSV(s) are considered in the 
following form 
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Step response and Nyquist diagram of transfer matrix of 
the controlled plant GS (s) and of transfer matrix of 
disturbance variables GSV (s) are presented in the 
following figures (see Fig. 4 - Fig.7). 
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Fig.4 - Step response of transfer matrix of the controlled 

plant GS(s) 
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Fig.5 - Step response of transfer matrix of the 

disturbance variables GSV(s) 
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Fig. 6 - Nyquist diagram of transfer matrix of the 

controlled plant GS(s) 
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Fig. 7 - Nyquist diagram of transfer matrix of the 

disturbance variables GSV(s) 
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3.2 Control of two-variable control loop 
In the next part of the paper the principal described in 
the paragraph 2.3 is used to control of two-variable 
control loop. First transfers of main controllers R11, R22 
are determined for modified diagonal transfer functions 
S11,x and S22,x (equation (10), (15)) then autonomy of 
control loop by using relation (4) is being solved and in 
the end fulfilment of the condition of invariance of 
control loop is ensured by using equation (8). 
 To calculation of transfer functions Sii,x was used, as 
mentioned above, equation (10), hence 
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then 
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 At design of main controllers parameters, which are 
diagonal elements of transfer matrix of controller 
GR (s), the following methods were used 
a) method of optimal module [9], [10] 
b) pole placement method (by using polynomial 

approach for 1DoF configuration) [11], [12] 

 Beside above mentioned methods of design of 
parameters of main controllers (diagonal elements of 
transfer matrix of controller GR (s)) is possible to use 
also other SISO synthesis methods, e.g. Ziegler Nichols 
step response method, Chien, Hrones and Reswick 
method, the Cohen-Coon method, the method of desired 
model, the Naslin's method, the Whiteley method, the 
symmetrical optimum method, etc. [1], [9], [10], [13]. 
 Binding members Rij, which are aside-from diagonal 
elements of transfer matrix of controller GR (s), were 
calculated from relation (4). Then these members were 
determined from following relations 
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 Correction members KCii were determined from 
relation (8) 
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 Transfer matrix of controllers GR(s) with utilization 
of chosen methods of synthesis were given by the 
following relation 
a) method of optimal module 
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b) pole placement method 
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Transfer matrix of correction members was given by the 
relation (8) (it was the same for all used SISO synthesis 
methods) 
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Mathematical programme MATLAB/SIMULINK [3] is 
used for simulation verification of proposed control 
method. Simulation scheme presented in the Fig.8 is 
used for these purposes. 
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Fig.8 - Simulation scheme of two-variable control loop 

in the program MATLAB/SIMULINK 
 

3.3 Simulation results and their evaluation 
Simulation courses of two-variable control loop with 
utilization of chosen SISO synthesis methods, which are 
used at design of parameters of main controllers, are 
presented in the following figures (see Fig.9, Fig.10). 
The following parameters were chosen at all simulation 
experiments 
• time vector of setpoints (tw1, tw2): [10, 50] 
• vector of setpoints (w1, w2):  [0.7, 0.7] 
• time vector of disturbances (tv1, tv2): [30, 70] 
• vector of disturbances (v1, v2): [0.5, 0.5] 
• total time of simulation (tS): 90 
• time step (k): 0.02 
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Fig.9 - Simulation course of control loop with utilization 

method of optimal module 
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Fig.10 - Simulation course of control loop with 

utilization of pole placement method 
 
 It is obvious from the simulation courses of control 
loop shown in the Fig.9, Fig.10 and from other simulation 
experiments that the control loop is autonomous and also 
invariant. Autonomy of control loop was ensured via of 
aside-from-diagonal elements of transfer matrix of 
controller GR (s), i.e. via binding members Rij. Absolute 
invariance of control loop was ensured separate elements 
of transfer matrix of correction members GKC (s), i.e. via 
correction members KCij. 
 
 
4   Conclusion 
The main aim of the paper was to describe one of the 
possible methods to control of MIMO control loops. The 
control method enables to use already known SISO 
synthesis method to design of main (diagonal) 
controllers. This method further combines classical way 
of ensuring of autonomy of control loop via binding 
members and the use of the correction members for 
ensuring absolute invariance of control loop. Simulation 
verification of proposed method of control was presented 
on two-variable control loop. 
 The proposed control method is valid under the 
following condition, i.e. this method can be used only 
for multi-variable controlled system with same number 

input and output signals. The future work will be 
focused on simulation verification of proposed method 
for concrete multi-variable controlled systems. 
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