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Abstract: - In this paper the simulation results of the adaptive control inside the tubular chemical reactor with  
counter-current cooling in the jacket is shown. The adaptive controller is based on the choice of the External  
Linear Model as a linear representation of the originally nonlinear system parameters of which are identified  
recursively. The polynomial method together with spectral factorization and pole-placement method satisfies  
the basic control requirements. The controller could be tuned via position of the closed-loop root. Although the 
system has strongly nonlinear behaviour the proposed controller provides good control results.
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1 Introduction
Tubular chemical reactor is tool frequently used in 
chemical  industry  for  production  of  the  several 
chemicals.  From  the  mathematical  point  of  view 
This type of reactor belongs to the class of systems 
with  distributed  parameters  [1] from  the 
mathematical point of view. Configuration with one 
main  pipe  with  several  pipes  inside  used  in  this 
work offers cooling in the remaining  space of the 
main pipe with the same or opposite direction to the 
flow direction of the reactant. The direction of the 
cooling could be with the same direction as the flow 
of  the  reactant  (co-current)  or  with  the  opposite 
direction  (counter-current).  It  was  proofed  e.g.  in 
[2],  that  the  counter-current  cooling  used  in  this 
work has better  cooling efficiency than co-current 
cooling.

Controlling of such processes with conventional 
methods  with  fixed  parameters  of  the  controller 
could  be  problem mainly  in  the  cases  where  the 
working point changes. This inconvenience should 
be overcome with the use of some of “new” control 
strategies  such  as  adaptive  control,  predictive 
control  etc.  This  work  show  process  of  the 
designing  of  the  adaptive  controller  [3].  The 
adaptation is process known from the animals and 
plants  which  adapts  their  behaviour  to  the 
environment.  This  process  means  the  loss  of  the 
energy collects  information and experiences  about 
the system.

Adaptive approach here is based on the choice of 
the  External  Linear  Model  (ELM)  of  originally 
nonlinear system, parameters of which are estimate 
recursively  and  parameters  of  the  controller  are 

recomputed in each step according these identified 
ones. 

The  delta  models  [4] were  used  in  ELM. 
Although  these  models  belongs  to  the  class  of 
discrete-time  models,  parameters  of  such  models 
approaches  to  the  continuous-time  ones  for  small 
sampling period [5].

The polynomial approach together with the pole-
placement  method  [6] which  are  used  for  the 
designing  of  the  controller  satisfy  basic  control 
requirements  such  as  stability,  disturbance 
attenuation or reference signal tracking.

All  simulations  were  done  in  the  mathematical 
simulation software Matlab, version 6.5.

2 Nonlinear System
The  nonlinear  system  under  the  consideration  is 
represented  by  the  tubular  chemical  reactor  with 
simple  exothermic  reaction  A  →  B  →  C  [7]. 
Mathematical  description  of  such  process  is  very 
complex and so we introduce some simplifications. 
We  neglect  heat  losses  and  conduction  along  the 
metal wall of the pipes, but heat transfer through the 
wall  is  consequential  for  a  dynamic  study. 
Furthermore,  we  expect  that  all  densities,  heat 
capacities and heat transfer coefficients are constant.

This  type  of  chemical  reactor  provides  two 
options for cooling from the direction point of view 
– (I.)co-current  and (II.)counter-current  cooling.  It 
was proofed for  example  in  [2],  that  the  counter-
current  cooling  has  better  cooling  efficiency  and 
that is why this type of cooling is used here. The 
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graphical  representation  of  the  tubular  chemical 
reactor can be found in Fig. 1.

2.1 Mathematical Model
The mathematical model is in this case described by 
the set of five PDE derived from the balances inside 
the reactor:
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where  T is  the  temperature,  d represents 
diameters,  ρ are  densities,  cp means  specific  heat 
capacities,  U stands  for  the  heat  transfer 
coefficients, n1 is a number of tubes and L represents 
the  length  of  the  reactor.  Index  (•)r means  the 
reaction compound, (•)w is for the metal wall of the 
pipes and (•)c for the cooling liquid. Variables vr and 
vc are  fluid  velocities  of  the  reactant  and  cooling 
liquid, respectively, as 

 v r=
qr

f r
; vc=

qc

f c
(6)

where q are flow rates and f are constants 

f r=n1⋅
⋅d1

2

4
; f c=


4
⋅d 3

2−n1⋅d 2
2   (7)

The reaction velocities,  ki, in equations  (1) -  (2) 
and   equations  are  nonlinear  functions  of  the 
temperature computed via the Arrhenius law:

k j=k 0j⋅exp
−E j

R⋅T r
, for j=1,2  (8)

where  k0j represents  pre-exponential  factors,  E 
means activation energies and  R is a gas constant. 
Qr in the equation (3) is reaction heat computed as 

Qr=h1⋅k 1⋅c A+h2⋅k 2⋅c B  (9)

and hj is used for reaction enthalpies.
The mathematical model shows that this plant is 

a  nonlinear  system  with  continuously  distributed  
parameters [1]. Strong nonlinearity can be found in 
Equation  (3),  and  the  system  is  with  distributed 
parameters  because  of  the  presence  of  the  PDE 
where the state variable  is  related not  only to  the 
time variable, t, but the space variable, z, too. 

In  this  case  the  initial  conditions  are
cA(z,0)  =  cA

s(z),  cB(z,0)  =  cB
s(z),  Tr(z,0)  =  Tr

s(z), 
Tw(z,0)  =  Tw

s(z)  and  Tc(z,0)  =  Tc
s(z)  and boundary 

conditions  cA(0,t)  =  cA0(t),  cB(0,t)  =  cB0(t)  =  0,
Tr(0,t) = Tr0(t) and Tc(L,t) = TcL(t). 

Fixed parameters of the reactor  [7] are shown in 
the following Table 1:

d1 = 0.02 m
d2 = 0.024 m

d3 = 1 m
n1 = 1200
L = 6 m

qr = 0.15 m3.s-1

qc = 0.275 m3.s-1

ρr = 985 kg.m3

ρw = 7800 kg.m3

ρc = 998 kg.m3

cpr = 4.05 kJ.kg-1.K-1

cpw = 0.71 kJ.kg-1.K-1

cpc = 4.18 kJ.kg-1.K-1

U1 = 2.8 kJ.m-2.K-1.s-1

U2 = 2.56 kJ.m-2.K-1.s-1

k10 = 5.61×1016 s-1

k20 = 1.128×1016 s-1

E1/R = 13477 K
E2/R = 15290 K

h1 = 5.8×104 kJ.kmol-1

h2 = 1.8×104 kJ.kmol-1

cA0
s = 2.85 kmol.m-3

Tr0
s = 323 K

Tc0
s = 293 K

Table 1: Fixed parameters of the reactor

2.2 Steady-state and Dynamic Analyses
The  steady-state  and  dynamic  analyses  usually 
precede  the  design  of  the  controller  because  they 
help  with  the  understanding  of  the  system's 
behaviour.

From the mathematical  point of view, the static 
analysis means solving of the set of PDE  (1) -  (5) 
for the time close to infinity, which means that all 
derivatives with respect to time are equal  to zero. 
The position derivatives can be replaced easily by 
the first forward differences, i.e.

 

dx
dz∣z=z0

≈
x (i)−x (i−1)

hz

dx
dz∣z=z0

≈
x ( j+1)− x ( j)

hz

(10)

where x is a general variable, hz is an optional size 
of  the  step in  axial  direction,  i =  1,  2,  …,  n and
j  = n,  n-1,  …,  0.  The  defined  input  boundary 
conditions,  x0,  for  i =  1  are  equal  to  boundary 
conditions  x(0).  If  the  reactor  is  divided  into  Nz 

equivalent parts, the discretization step is 

Fig. 1 Tubular chemical reactor
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hz=
L
N z

 (11)

where  L denotes  the  length  of  the  reactor  and
Nz = 100. 

The steady-state analysis  results  in the working 
point which is in this case defined by the volumetric 
flow rate of the reactant  qr

s = 0.150  m3.s-1 and the 
volumetric flow rate of the coolant qc

s = 0.275 m3.s-1. 
The  second,  dynamic,  analysis  examines  the 

behaviour after the step change of one of the input 
variables. Because the set of PDE (1) - (5) includes 
again derivatives with the respect to axial variable z, 
the discretization (11) must be used. The set of PDE 
is then transformed to a set of ODE which is then 
solved by the standard Runge-Kutta's method.

Although  there  are  several  input  variables,  the 
dynamic  analysis  here was done for different  step 
changes of the volumetric flow rate of the cooling 
liquid,  Δqc

s.  The  output  variable  y(t)  illustrate  the 
difference between the actual values of the reactive 
temperature, Tr, at the end of the reactor (z = L) and 
its steady-state value  Tr

s. Mathematically speaking, 
there input and output variables are described as

 
u (t)=

qc(t)−qc
s

qc
s ⋅100[% ]

y (t )=T r (t , L)−T r
s [K ]

(12)

The  output  response  displayed  in  Fig.  2 shows 
that this output should be expressed for example by 
second  order  transfer  function  with  relative  order 
one for the case of non-minimum phase behaviour:

G( s)=
b( s)
a( s)

=
b1 s+b0

a2 s2+a1 s+a0
 (13)

where  the  parameter  a2 is  a2 =  1  due  to 
simplification. 

3 Adaptive Control
The  adaptive  approach  here  is  based  on  the 
recursive parameter identification of the ELM  (13) 
which  represents  originally  nonlinear  system  and 
parameters  of  the  controller  are  recomputed 
according to the estimated parameters in every step 
too [3].

The  controller  is  designed  via  polynomial 
synthesis  [6] which  fulfils  basic  control 
requirements  and it  can be used for  systems  with 
negative  control  properties. The  control 
configuration with  one degree-of-freedom (1DOF) 
is displayed in Fig. 3. 

Block Q in Fig. 3 represents the transfer function 
of  the  controller,  G denotes  the  transfer  function 
(13) of the plant, w is the reference signal, e is used 
for the control error, v is the disturbance at the input 
to the system,  u determines the input variable, and 
finally y is the output variable. Polynomials a(s) and 
b(s) in the transfer function (14) are commensurable 
polynomials  in  complex  s-plane.  The  feasibility 
condition is fulfilled if the system is proper, i.e. deg 
a(s) ≥ deg b(s).

The transfer function of the controller then is

 Qs= q s
s⋅p s (14)

where polynomials  q(s) and  p s are computed 
from the Diophantine equation

a s⋅s⋅p sb s⋅q s=d s  (15)
by  the  method  of  uncertain  coefficients  which 

compares  coefficients  of  individual  s-powers.  The 
polynomial  d(s) on the right side of  (15) is stable 
optional  polynomial  which  fulfills  the  stability  of 
the controller.

Degrees of the polynomials  q(s),a p s  and  d(s) 
are for the transfer function (14) 

deg p s≥deg as−1=1
deg q s=deg a s=2

degd s=deg a sdeg p s1=4
 (16)

which  means  that  the  transfer  function  of  the 
controller  in  Equation  (14) could  be  rewritten  to 
form

Q s=
q2 s2q1 sq0

s⋅p1 sp0
 (17)

Fig. 3 1DOF control configuration
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The optional polynomial d(s) is in our case
 d (s)=m (s)⋅n( s) (18)

where  m(s) is  m s=s 2 for  α > 0 and  n(s) 
comes from the spectral factorization of a(s):

 
n*( s)⋅n( s)=a* (s)⋅a (s)

n0=√a0
2

n1=√a1
2+2n0−2a0

(19)

Polynomials  a(s) and  b(s) in  (13),  (15) and  (19) 
are known from the recursive identification.

The  delta  (δ–)  models  were  used  for  the 
estimation model. Although the delta models belong 
to the class of discrete-time models, parameters of 
such model approach to the continuous-time model 
for small sampling period [5].

The δ–model introduces a new complex variable 
γ computed as (see [4]): 

 γ= z−1
β⋅T v⋅z+(1−β)⋅T v

(20)

where β is a parameter from the interval 0 ≤ β ≤ 1 
and Tv means a sampling period. It is clear that we 
can obtain infinite number of  δ–models for various 
β.  A so called forward δ-model for β = 0 was used 
and γ operator is then 

 γ= z−1
T v

(21)

The continuous  model  (13) is  then rewritten  to 
the form

 aδ (δ ) y (t ' )=bδ (δ )u(t ' ) (22)
where  polynomials  aδ(δ)  and  bδ(δ)  are  discrete 

polynomials and their coefficients are different from 
those of the CT model a(s) and b(s).

The  transfer  function  G(s)  in  (13) could  be 
rewritten to the form of differential equation:

 
yk =−a1

 y k−1−a0
 yk−2 ...

b1
 uk−1b0

 uk−2
(23)

which is in the vector form
y=

T k ⋅ k−1 (24)
and the vector of the parameters, θδ, and the data 

vector, φδ, are then

 
 k =[a1

 , a0
 ,b1

 , b0
 ]T

 k −1 =[−y k−1 ,− yk −2

 , uk−1 , u k−2 ]T
(25)

yk = y k −2yk−1 y k−2
T v

2

y k−1=
y k−1− y k−2

T v

y k−2=y k−2

uk−1=u k−1−uk−2
T v

u k−2=uk−2

 (26)

The goal of the identification is to estimate vector 
of  parameters   θδ   in  ARX  model  (24) from the 
previous values of the input and output variables in 
the time intervals remote by sampling period Tv. The 
recursive  least-squares  method  with  exponential 
forgetting was used for identification in this work.

4 Simulation Results
All simulations were done for time Tf = 10 000 s and 
five  different  step  changes  every  2  000  s were 
simulated during this time. The sampling period was 
Tv = 1.5  s and the controller was set to  α = 0.007, 
0.01 and 0.02.

Simulation  results  displayed  in  Fig.  4 and  Fig.  5 
clearly  shows  that  the  increasing  value  of  the 
parameter  α results in quicker output response but 
overshoots  especially  if  the  the  value  of  the 
reference signal w(t) jumps from the higher value to 
the lower one. Jumps from lower value to the higher 
has  generally  much  better  responses.  The  highest 
value  of  α,  i.e.α =  0.021  also  generates  much 
quicker and shaking changes of the input  variable 
u(t) (see  Fig.  5) which is  not  very good from the 
practical point of view while this variable represents 
the  twist  of  the  valve  and  rapid  changes  could 
influence the vitality of the valve.

Fig. 4: The course of the output variable y(t) for 
various α
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The  course  of  the  identified  parameters 
a1

δ , a0
δ , b1

δ ,b0
δ shown  in  Fig.  6 -  9 also  shows 

usability of this control method. The only problem 
with the identification could be found at  the very 
beginning of the  control  when the controller  does 
not  have  enough  information  about  the  plant 
because the estimated vector starts from the general 
form  θδ( k )=[0.1 , 0.1 , 0.1 , 0.1]T .  On  the  other 
hand,  the  step  changes  does  not  provide  such 
problems and estimation to the new variables is very 
quick. The quality of  the  control  is  qualified with the 

control quality criteria Su and Sy computed as

S u=∑
i=St

N

(u (i)−u (i−1))2[ -] ;

S y=∑
i=St

N

(w (i)− y (i ))2 [K 2];

for N =
T f

T v
(27)

where St is starting time of the computation which is 
in  this  case due to  inaccurate  identification at  the 
very beginning after the second step change in time 
2 000  s, i.e.  St = 2000/Tv.  The results for all three 
simulations are shown in Table.

Su [-] Sy [K2]

α = 0.007 335 16 077

α = 0.01 5 012 9 130

α = 0.02 22 425 7 547

Table 2 Control quality criteria Su and Sy

This  table  clearly  shows,  that  the  control 
configuration with α = 0.02 has the best results from 
the output point of view (criterion Sy). On the other 
hand,  the  controller  with  α =  0.007  has  the  best 
results for the input (Su).

Fig. 5 The course of the input variable u(t) for 
various α
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Fig. 6 The course of the identified parameter a1
δ for 

various α
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Fig. 7 The course of the identified parameter a0
δ for 

various α

0 2000 4000 6000 8000 10000
0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

aδ 0(t)
[-]

t [s]

 α  =0.007
 α  =0.01
 α  =0.02
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5 Conclusion
The goal of this contribution was to show suitable 
control  approach  for  controlling  of  a  nonlinear 
process represented by the tubular chemical reactor. 
This adaptive controller could be tuned via position 
of the root α and it was proofed that the increasing 
value  of  this  parameter  results  in  quicker  output 
response but bigger overshoots. 

Although this system has nonlinear behaviour, the 
proposed  controller  provides  good  control  results 
and it  can be used for controlling such processes. 
The  next  step  should  be  verification  on  the  real 
plant.
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