
Behavioral Modeling in System Engineering

RADEK SILHAVY, PETR SILHAVY, ZDENKA PROKOPOVA
Department of Computer and Communication Systems

Faculty of Applied Informatics
Tomas Bata University in Zlin

nám. T. G. Masaryka 5555, 760 01 Zlín
Czech Republic

rsilhavy@fai.utb.cz, psilhavy@fai.utb.cz, prokopova@fai.utb.cz http://fai.utb.cz

Abstract: - This contribution focuses on the behavioral modeling of the systems in the system engineering. The
system engineering process is described and overview of the system modeling language (SysML) is presented.
The SysML basic principles and diagrams are discussed. Practical part of the paper discusses behavioral
modeling process, which is illustrated by the set of the example models.

Key-Words: - System engineering, system modeling, behavioral modeling, sysml, uml.

1 Introduction
The System engineering [1] is understood as

complex discipline for the system design and
analysis of the system. The system is for the purpose
of the system engineering defined as a set of the
components which are interconnected and provides
the group of emergent properties [1]. These
emergent properties are derivate from the properties
of the system components, but new dimension is
added by the system integration.

A system engineering processes are about
preparing [2] generic stakeholder goals,
requirements, system design, evaluation of
alternative system designs, allocation of functional
requirements, system verification. All of these
activities lead to creation of the balanced system.

 The system development generic process is
described by waterfall model [1]. The process
should be composed of:

1) Requirements Engineering Definition and
Elicitation.

2) System Design.
3) Sub-system Development.
4) System Integration.
5) System Installation.
6) System Evolution.
7) System Decommissioning.

Fig 1: Waterfall Model of the System

Engineering

The system requirements engineering general

name for the specific sets of the software
engineering techniques, which is used at the

Recent Researches in Automatic Control

ISBN: 978-1-61804-004-6 100

beginning of the software cycle. The purpose of
these techniques is to discover stakeholder’s needs.

The requirements gathering process in system
engineering has these basics steps, which are
graphically described on the next figure.

Fig 2: Requirements Definition Model

The requirement [1] is a description of the

functionality or condition which stakeholders define
for the system. After the first round of requirements
gathering is talked about the raw or abstract
requirements. These raw requirements are list of
functionality or condition for the proposed software,
which is unanalyzed yet. The most important in this
phase is to establish the project goals, which should
be achieved.

The next group of the requirements is non-
functional requirements. The purpose of these
requirements is familiarized system designers with
problem domain and conditions in the domain.
Well-known examples of these are reliability,
performance, safety or security. These non-
functional requirements are critical in the system
evaluation very often.

The last part of the requirements gathering is so-
called system characteristics. The system
characteristics are commonly prepared in negative
way. It means, that system design specifies what
irrelevant system behavior is.

The system design phase deals with association
of the system requirements to individual sub-
system, more specific to system components. The
set of the system requirements is studied and
individual requirement is associated to proposed
component. One of the most common techniques,
which could be applied in this process, is to sub-
system design first. Than system designers is able to
associated selected requirements to the specific
subsystem. The process of the sub-systems
identification and requirements association is
interactive and is commonly modeled in form of
spiral.

In the system modeling phase is a system
architecture designed. This activity is based on sub-
system (or component) design. The system is
modeled as group of interconnected blocks, where
connection indicates data flow or other form of
dependency. The main task is to create more
concrete definition of the sub-systems, which were
set-up in the system design phase.

The sub-system development phase works with
sub-system or system components implementation.
The sub-systems are implemented in parallel. This is
because of sub-systems in the system engineering is
not only hardware/software, but also should be
create by civil engineering.

Next step in the system engineering life-cycle is
the system integration. The implemented subsystem
are integrated into the system [1]. The integration is
an incremental process. The sub-system are
integrated, when their implementation is finished.
This approach is time-less consuming, then legacy
approach, when all components were implemented
together.

The system evolution and system decommission
are the final phase of the system lifecycle. A system
designer should care about system improvements
during its production time. They also should take
care about times, when system should be prepared
for out-of-service elaboration.

The main task of the software engineering is a
system development from very beginning
(requirements elicitation) to system decommission.

2 Problem Formulation
In the system engineering lifecycle, which were

described above, basic ideas of the system
engineering were concluded. In the system
engineering are used well-known techniques for
modeling. Probably the most common is block
diagramming. This model is used for system design
and for sub-system analyze. Secondly data flow

Recent Researches in Automatic Control

ISBN: 978-1-61804-004-6 101

diagrams are common for definition of data and
process designing.

Today state-of-art in research of graphical
documentation of the system development is System
Modeling Language (SysML). The SysML is a
graphical modeling language [2], which is derivate
from Unified Modeling Language (UML). UML is
an industry standard in the scope of the software
engineering. SysML is a extension of UML, this two
basic technique shared basic principles and some
types of diagrams are used in both. The SysML take
important role in the system engineering, because its
usability in all phase of software engineering
process.

3 System Modeling Language
SysML is relatively young modeling language.

Its history is written from 2001, when Systems
Engineering Domain Special Interest Group were
set-up [3]. Today, there is 1.2 version from 2010
valid.

3.1 Language Overview

The modeling project support analysis,
specification, design, verification and validation of
systems. SysML therefore support all phases of the
system engineering lifecycle.

The system components should be described by
structural composition, interconnection and
classification. Secondly by function-based approach
which is based on messages between objects. This
aspect should respect to constrains, which are
derived from physical system structure or from
performance properties. Important role takes
association of system functionality to each of the
system components.

In the SysML nine of diagrams are of recognized
[2].

Requirements diagram is used for graphical
interpretation of requirements and their connection
to other requirements and to other elements and
entities in project – such test cases, use cases. For
those how are familiars to UML, this diagram is
new in SysML and have never be used in UML.

Activity diagram is based on UML activity
diagram; there is slightly different usage of it.
Basically is used for modeling of flows of actions
based on the availability of inputs, outputs or
control. Transformation of actions is also modeled
by activity diagram in SysML.

Sequence diagram is used for representing of
message flow between objects.

State machine diagram presents set of state of the
modeled entity and events which generated message
upon which entity state is switched.

Use Case diagram is used for the system function
description. This model is composed of the actors,
which are external entity and of the use cases. The
use cases represent system functions or algorithms.
Each of the use case has to realize one of the
requirements as minimum.

Block definition diagram is used instead of the
class model in UML. The purpose of the block
definition is to model system structure.

Internal block diagram is similar to UML
composite structure. The main idea of this diagram
is to model internal structure of the each individual
part of the proposed block. Very important here is
modeling of interface and communication between
block´s entities.

Parametric diagram is SysML origin and have no
predecessor in UML principles. Is used for
modeling system parameters and constrains, should
be used for critical – hazard system states.

Package diagram is useful for model organizing.
Model elements should clustered by its stereotypes.
Packages also should be used for creation of a large
project structure.

4 Behavioral Modeling Process
In this chapter will be introduced sample

projects, which contains example model of each
type of the diagrams. For purpose of this article
authors adopted project which was prepared by
SparxSystems as sample project in SysML language
[4].

In this sample is described development of the
audioPlayer. The main task of the project team was
to offer a solution which was successfully in
usability and which offers appropriate functionality.

For purpose of this description authors used
modified version of behavioral modeling process
[4].

Recent Researches in Automatic Control

ISBN: 978-1-61804-004-6 102

Fig 3: Behavioral Modeling Process

The behavioral modeling is a description (Figure

3) how the proposed system will interact with the
actors and with entitles which is out of boundary of
the system.

The first step in the creation of the system
behavioral model is the requirements gathering.

In the figure can be seen model of the
requirements. The diagram illustrates hierarchical
structure of the requirements. On the top of the tree
the Specification package can be seen. Other parts
are interconnected by containment association. The
specification is clustered into sever groups. Groups
are User Friendliness, Durability, Performance and
Media Capacity.

 custom Specifications

«requireme...
User

Friendliness

«requireme...
Performance

«requireme...
Durability

«requireme...
Media Access

«requireme...
Fidelity

«requireme...
Noise

Reduction

«requireme...
Graphical User

interface

«requireme...
Keys Layout

«requireme...
Scroller

«requireme...
Battery
longevity

«requireme...
Weather

resistance

«requireme...
Shock

Resistance

«requirement»
Storage
Capacity

«requireme...
External ports

Specifications

Fig 4: Requirements Model

The user friendliness group defines set of the

requirements, which deal with quality of service of
the audio player. Keys Layout, Graphical User
Interface and Scroller are primary requirements,
which take important role in user satisfaction.

When the requirements model is finished, next
step is use case model. In the use case model there is
an algorithmic definition of the actors’ activity in
the system. In the figure system boundary, actor and
use cases can be seen. The boundary is named as
Playlist Maintenance, because this model describes
only activities of the listener, which are available as
maintain the playlist. Inside of the each individual
use case is scenario description. The scenario is a
sequence of steps, which describes a track, should
be downloaded. In this Use Case model include
association is used. The “include” association is
used for situation, when the use case contains other
use case for achieving its goal.

Recent Researches in Automatic Control

ISBN: 978-1-61804-004-6 103

 uc Maintain Playl...

Playlist Maintenance

Listener

Connect To Computer

Create Playlist

Copy track from
external media

Download track

View Existing Playlist

View New Tracks

Maintain Playlist (Interaction)

«include»

«include»

Fig 5: Use Case Model

The Use Case models (Figure. 5) are derivate

from requirements. The Use Cases are commonly
prepared for individual system blocks. This is
rigorous connection between the requirement and
the use case. This connection should be modeled as
realization in the use case model or can be
documented in form of the responsibility matrix.

The interaction in form of sequence diagram is
useful for modeling overview of operations. In the
Fig 7 can be seen overview of diagram, which
describes all possible activity of the actor, called
Listener. There are used fragments, which used for
referencing individual activity descriptions. These
are named as ref. The alt abbreviation is used for
conditions. In this context the viewnewtracks can be
executed only if the playlist exists.

 sd Maintain Playl...

deviceInContext
:Portable Audio

Player
listener :Listener

ref
ConnectToComputer

ref
CopyTracks

ref
DownloadTracks

ref
CreatePlaylist

alt

[playlistsExists]

ref
ViewNewTracks

ref
ViewExistingPlaylists

alt

[playlistEditable]

ref
ModifyPlaylist

Maintain Playlist - Use Case

Fig 6: Sequence Diagram for Playlist

Maintaining

The last view of the system can be done by state

machine diagram. The most important noticeable
fact here is, that by state machine diagram is
modeled same system in the different view only.

The Figure 8 shows modified version of the state
machine diagram. It does not present only two basic
states – idle and connected. The state connected is
describes in form of the activity diagram. In the
connected state tracks could be copied and
downloaded. These two operations are in a parallel
section, which is created by using fork/join artifacts.

Recent Researches in Automatic Control

ISBN: 978-1-61804-004-6 104

 stm Playlist Maintenan...

Idle

stm Connected

Copy Tracks Download Tracks

View Playlists

Create Playlist

View NewTracks

Modify Playlist

[loadNewTracks]

[retrieve]

[createplaylist]

[modifyplaylist]

[connect]
[disconnect]

Fig 7: State Machine Diagram with Activity

4 Conclusion
The idea of the contribution was to introduce

System Modeling Language for modeling system
behavior. The system engineering were described
and connection between system modeling language
diagrams and the system engineering phases were
illustrated.

For the example purpose part of the the audio
player model were presented.

The modeling project support analysis,
specification, design, verification and validation of
systems. SysML therefore support all phases of the
system engineering lifecycle.

The SysML uses number of diagram, which
allow to a system designer model the proposed
system in many views.

The system behavioral modeling deals with
requirements engineering, use cases elicitation and
state modeling of the system.

Further research in system modeling is focused
on the improvement of the simulation environment
and to the model based development, which
probably the most important in the development of
the system engineering.

Acknowledgments
This work was supported by the Ministry of
Education, Youth and Sports of the Czech Republic
under the Research Plan No. MSM 7088352102.

References:
[1] SOMMERVILLE, Ian. Software Engineering.

Eight Edition. Harlow : Pearson Education
Limited, 2007. 824 s. ISBN 978-0-321-31379-9.

[2] FRIENDENTHAL, Sanford; MOORE, Alan;
STEINER, Rick. A Practical Guide to SysML :
The Systems Modeling Language. USA :
Morgan Kaufmann, 2009. 5769 s. ISBN 978-
0123786074.

[3] Object Management Group. Systems
Engineering Domain Special Interest Group
[online]. 2007-2011 [cit. 2011-03-20]. Available
on WWW: <http://syseng.omg.org/>.

[4] ROSENBERG, Doug; MANCARELLA, Sam.
Embedded Systems Development using SysML.
[s.l.] : Sparx Systems Ply Ltd, ICONIYX, 2010.
68 s.

Recent Researches in Automatic Control

ISBN: 978-1-61804-004-6 105

