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Abstract: - This paper extends results about stability and stabilization of a retarded quasipolynomial obtained 
using the Mikhaylov criterion earlier. Retarded quasipolynomials appear as numerators and denominators of 
linear time-invariant time-delay systems (LTI-TDS). A LTI-TDS system of retarded type (destitute of 
distributed delays) is said to be stable if all roots of its characteristic quasipolynomial are located in the open 
left-half complex plane. The contribution transforms the formulation of spectrum assignment of a characteristic 
quasipolynomial into the language of the Nyquist criterion for the open loop of a control system. Again, the 
argument principle is utilized to derive generalized Nyquist criterion for LTI-TDS. Stability measures related to 
the criterion are discussed with the specifications for LTI-TDS. An illustrative example is presented to 
illuminate the results. 
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1 Introduction 
Asymptotic stability, spectrum analysis and 
stabilization of linear time-invariant time-delay 
systems (LTI-TDS) have been challenging tasks in 
control theory during last decades. The problems are 
nontrivial even for these simple-modeled systems 
due to their infinite dimensional nature. A vast bulk 
of various significant results was obtained and 
reported; without any attempt to be exhaustive, see 
for instance [1] – [7]. 

LTI-TDS can be represented in the input-output 
description by the Laplace transfer function as a 
ratio of so-called quasipolynomials in one complex 
variable, instead of polynomials as for delay-free 
systems. Delay in the feedback can significantly 
deteriorate the quality of control performance, 
namely stability and periodicity. For lumped delays, 
the denominator quasipolynomial decides about the 
control system asymptotic stability because of the 
fact that its zeros are system poles with the same 
meaning as for polynomials; however, the spectrum 
is infinite due to a quasipolynomial transcendental 
form. Analysis of asymptotic properties of the 
characteristic quasipolynomial and its spectrum is 
one of a possible ways how to handle LTI-TDS 
stability. 

The presented paper extends results obtained for 
a retarded quasipolynomial with two delays in [8] 
and for the control feedback with a first order LTI-
TDS in [9]. The findings in these papers were 

obtained via the argument principle (or via the 
Mikhaylov stability criterion). Applying the 
argument principle for the control feedback along 
with the knowledge the open loop frequency 
response results in the use of the well known 
Nyquist criterion. The notorious precept about the 
number of open loop unstable poles, however, is not 
easy to utilize in the case of LTI-TDS due to the 
infinite spectrum which is of an effort to be 
calculated [10]-[11]. Hence, in this paper we simply 
derive the generalized Nyquist criterion for LTI-
TDS and we turn over some stability measures, such 
as gain and phase margins and the minimum of the 
sensitivity function. There are some specific 
features about the measures LTI-TDS which are 
discussed in the paper. 

An example supported by simulations in Matlab-
Simulink is presented to clarify the results and 
statements. 

 
 

2 Preliminaries 
Recall basic results about the argument (increment) 
principle for retarded quasipolynomials and findings 
introduced in [8] and [9]. 

Theorem 1 (Argument increment principle) [12]. 
Consider a retarded quasipolynomial of the form 
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If ( ) 0≠sm  for any imaginary ωj=s , ∈ω �, 

function ( )sm  has no zero in the closed right half s-

plane iff the argument of ( )sm  reaches the increment 
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 Definition 1 (Retarded quasipolynomial 
stability). Retarded quasipolynomial of the form (1) 
is said to be asymptotically stable if it has no root in 
the closed right half s-plane, i.e. if there is no σ  
such that ( ) { } 0Re,0 ≥= σσm . ■ 
 Proposition 1 (Number of unstable roots) [13]. 
Consider a retarded quasipolynomial (1). Then the 
number UN  of poles of ( )sm  located in the closed 
right half s-plane (i.e. unstable ones) is 
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 The following results have been derived for 
simple quasipolynomials with n = 1 and h0 = 1 and 
h0 = 2, respectively. 
 Theorem 2 [9]. Consider the quasipolynomial 
 
 ( ) ( ) kqsassm +−+= ϑexp  (4) 
 
where ∈≠ 0a �; ∈> 0, ϑk � are fixed, whereas q is 
selectable. Then, if  
 
 1≤ϑa  (5) 
 
the quasipolynomial (4) is asymptotically stable iff 
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 Contrariwise, if 
 
 1>ϑa  (7) 
 
the quasipolynomial (4) is asymptotically stable iff 
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where the crossover frequency 0ω  is the minimum 
nonzero element of the set 
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 Definition 2. Consider quasipolynomial 
 
 ( ) ( ) ( )skqsassm τϑ −+−+= expexp  (10) 
 
with ∈≠ 0a �; ∈> 0,, τϑk �. Here, the set of 
crossover frequencies is defined as 
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The critical frequency Cω  is defined as 
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for a particular critical gain Cq  given by 
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 Remark 1 [8]. Elements 11 Ω∈ω  are calculated 
as all solutions of the transcendental equation 
 
 ( ) ( )( )( )111 sincos ωτϑτωω −= a  (14) 
  ■ 
 Theorem 3 [8]. If ( ) 0sin >Cτω , then 
quasipolynomial (10) is stable iff 
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 Contrariwise, if ( ) 0sin <Cτω , then 
quasipolynomial (10) is stable iff 
 

 
( )

( ) k

a

k

a
q

C

CC −
≥

−
>

τω
ϑωω

sin

sin
 (16) 

 
where Cω  is the critical frequency. ■ 

 

3 Main Result – Nyquist Criterion 
In this chapter the Nyquist criterion for retarded 
LTI-TDS based on the argument principle is 
presented. As usual, the Nyquist criterion gives 
information about the closed-loop stability based on 
the knowledge of the overall phase shift (argument 
increment) of the open-loop transfer function around 
the critical point -1. 
 Consider a simple control system as in Fig. 1 and 
the corresponding closed loop transfer function 
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where ( )sG0  is the open-loop transfer function. 
Note that for LTI-TDS transfer functions are no 
longer rational but meromorphic. 
 Express the transfer functions as 
 
 ( ) ( ) ( )sasbsG /= , ( ) ( ) ( )spsqsGR /=  (18) 
 
where ( )sa , ( )sb , ( )sq , ( )sp  are retarded 

quasipolynomials and ( )sG  is strictly proper and 

( )sGR  is proper (the properness is defined as for 
delay-free systems using the highest s-power). Then 
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where the characteristic quasipolynomial ( )sm  reads 
 
 ( ) ( ) ( ) ( ) ( )sbsqsaspsm +=  (20) 
 
 We can formulate and prove the following 
theorem. 
 Theorem 4 (The Nyqusit criterion for retarded 
quasipolynomials). Let the plant and the controller 
have transfer functions as in (18) and the control 
system be in a simple form as in Fig. 1. Let ( )sa  

and ( )sp  have no root on the imaginary axis, i.e. 

( ) ( ) 0,0 ≠≠ spsa  for any imaginary ωj=s , ∈ω �. 
 Then, if 
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The closed-loop system is asymptotically stable if 
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where n is the highest s-power in the closed-loop 
characteristic quasipolynomial ( )sm  as in (20). ■ 

 
Fig. 1 Simple feedback control loop 

 
 Proof. Since the plant transfer function is strictly 
proper, the highest s-power n of 

( ) ( ) ( ) ( ) ( )sbsqsaspsm +=  equals that of ( ) ( )sasp . If 
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then the closed-loop system is asymptotically stable 
according to Theorem 1 (i.e. it characteristic 
quasipolynomial has all roots in the open left-half s-
plane), and, simultaneously, 
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 From (17) and (18) is, moreover, obvious that 
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and the proof is finished. □
 Thus, to test the closed-loop asymptotic stability, 
one can figure the Nyquist plot of ( )sG0  and count 
its overall number of encirclements around the 
critical point -1, or more precisely, the overall phase 
shift of the curve. 
 Now, the natural question is, whether the 
notorious precept about the number of unstable 
poles of ( )sG0  (as for delay-free systems) can be 
used. The answer is the following modification of 
Theorem 4.  
 Theorem 5 (The Nyqusit criterion for retarded 
quasipolynomials – an alternative formulation). Let 
the plant and the controller have transfer functions 
as in (18) and the control system be in a simple form 
as in Fig. 1. Let ( )sa  and ( )sp  have no root on the 

imaginary axis, i.e. ( ) ( ) 0,0 ≠≠ spsa  for any 

imaginary ωj=s , ∈ω �. 
 Then, the closed-loop system is asymptotically 
stable if 
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where nU is the number of poles of ( )sG0  with 
positive real parts (i.e. unstable poles). ■ 
 Proof. Assume results from Theorem 4 and 
Proposition 1. If there in no pure complex conjugate 
pair of poles of ( )sG0  (i.e. roots of ( ) ( )spsa ), all 
unstable poles have positive real parts. The number 
of unstable poles is given by (3). If notations (21) 
and (26) are taken into account, one can write 
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Substitution (27) into (22) yields (26), finally. □ 
 
 

4 Stability Measures 
Using the Nyquist plot, a factor of stability can be 
measured by the gain margin and the phase margin 
which characterize the “distance” of the plot from 
the critical point. As alternate measure, one can take 
the minimum of the sensitivity function into account. 
All these measures can serve not only for the 
stability measurement but also for the controller 
tuning. 
 The classic conception of some of the measures 
is deficient in many cases. For example, the gain 
margin means the amplification of ( )sG0  so that the 
closed loop becomes unstable (or equivalently, 
remains stable). Traditionally, it is supposed that the 
Nyquist plot crosses the negative real axis in the 
coordinate grater than -1; in other words, the gain 
margin is greater than one. However, this is not true 
in general. Similarly, the phase margin expresses the 
phase shift which makes the closed loop being on 
the stability border; however, there can be more 
than one these frequencies. Thus, we suggest these 
definitions of the gain margin and the phase margin: 
 Definition 3. Consider that the closed loop 
system is stable. The lower gain margin min,mA  is 

defined as 
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The upper gain margin max,mA  reads 
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where min,CPω  and max,CPω  are the appropriate phase 

crossover frequencies (through the imaginary axis) 
from sets 
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 Definition 4. Consider that the closed loop 
system is stable. The phase margin mϕ  is defined as 
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where CAω  is the appropriate gain (amplitude) 
crossing frequency. ■ 
 Corollary 1. The closed loop system remains 
stable iff the open loop gain varies within the 
interval 
 
 ( )max,min, , mm AA  (32) 

 
and the absolute value of the open loop phase shift 
change is lower than mϕ . ■ 
 Some authors [14], [15] suggest to use a single 
parameter maxM , instead of both ⋅,mA , mϕ , which is 

the maximum (peak) of the sensitivity function. 
 Definition 5. The maximum (peak) of the 

sensitivity function is defined as 
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 The value of maxM  corresponds directly with a 
dumping ratio of a closed-loop system; the lower 

maxM  is, the more dumped the system is. Regarding 

the Nyquist plot the inverse value of maxM  means 
the distance of a point on the Nyquist plot from the 
critical point -1, i.e. 
 
 ( ) 1jinf/1 0max += ω

ω
GM   (34) 

 
 

5 Demonstration Example 
Example 1. Let the LTI-TDS plant be described by 
the transfer function 
 

 ( ) ( )
( )
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( )ss

s
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==
exp5

1.1exp
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 The controlled system is unstable which is clear 
from the Mikhaylov plot ( )ωja  displayed in Fig. 2 
(a detailed zoom to the origin of the complex plane 
is added) since the overall phase shift (the argument 
change) is 2/5π− , i.e. 5−=l . In other words, the 
plant has three unstable poles because of Theorem 
1. Consider a proportional controller 0qq = and the 

task is to find the appropriate range of 0q  so that the 
closed loop is asymptotically stable. 

Recent Researches in Automatic Control

ISBN: 978-1-61804-004-6 83



 

 
Fig. 2 Mikhaylov plot of ( )sa  from Example 1 

(a) and a detail of the vicinity of the origin (b). 
 
 Let us use the Mikhaylov criterion first. Hence, 
the closed-loop characteristic quasipolynomial reads 
 
 ( ) ( ) ( )sqsssm 1.1expexp5 0 −+−−=  (36) 
 
 According to Remark 1, one can calculate the set 
of crossover frequencies as 

{ },...498.12,385.10,702.6,741.4,953.01 =Ω  and 
easily verify that the critical frequency satisfying 
definition (12) is 953.0=Cω which gives rise to the 

critical gain 803.5=Cq . Since ( ) 0953.0sin > , 
Theorem 3 results in the stabilizing interval 
 
 803.55 0 << q  (37) 
 
 Because 1=n , the closed loop is stable 
according to the Nyquist criterion (see Theorem 4 
and Theorem 5) if 
 
 

)
( )( ) π

ωω
31arg 0

,0[j,
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 (38) 

 
 Set e.g. 4.50 =q  and display the Nyquist 

plot of the open loop, see Fig. 3. Indeed, the overall 
phase shift around the point -1 is π3 .  

 

 
Fig. 3 Nyquist plot of ( )sG0  from Example 1 (a) 

and a detail of the vicinity of the critical point -1 (b), 
for 4.50 =q . 

 
In order to measure the stability, find phase 

crossing frequencies defined in (30). Amazingly, it 
holds that  

 
 max,min,1 CPCP Ω∪Ω=Ω  (39) 

 
which also means that the phase crossing frequencies 
are independent of 0q . ( ){ }min,0 jRe CPG ω  are 

{ },...411.0,781.0,362.18,08.1 −− , whereas the set of 

( ){ }max,0 jRe CPG ω  is { }...408.0,548.0,931.0 −−− , 

which gives rise to 926.0min, =mA ,  075.1max, =mA . 

This result agrees with boundaries (37).  
 Gain crossing frequencies can be calculated as 

{ }756.5,354.3,634.0=ΩCA  yielding 

{ } 031.0595.0,988.0,031.0min =−−=mϕ rad. 

 Obviously, the measures indicate a very low 
closed-loop stability safeness since the 
recommended values are approximately 

3,3 πϕ ≈≈ mmA . 
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4 Conclusion 
The paper was aimed to present the Nyquist 
criterion modified to be valid also for LTI-TDS of 
the retarded type. It was i.a. verified that the 
obligatory statement about the number of open-loop 
unstable poles holds for these systems as well. 
Stability measures related to the Nyquist criterion 
were put more precisely for retarded LTI-TDS. This 
contribution extended authors´ previous results 
about the Mikhaylov criterion for first order LTI-
TDSs, which is demonstrated on a simulation 
example. 
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