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Abstract: - This paper exploits a relatively simple framework for robust control of unstable single input – single 
output processes. A linear model-based polynomial approach to control system design is utilized together with 
robust tuning of some of the closed-loop poles. The methodology is illustrated on the task of magnetic system 
stabilization with presence of both output and input disturbances. 
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1 Introduction 
A large number of technological processes, such as 
various types of reactors, combustion systems, 
crystallizers, distillation columns, etc. possess 
instable behaviour [2], [12]. All these system need 
proper control since controlling unstable systems 
can be a real hazard [16]. In such cases the control 
designer has to understand fundamental limitations 
that stem from the process instability [11], [14].  

There are many sources devoted to the area of 
unstable systems control, often covering also the 
case of delayed and non-minimum-phase systems, 
e.g. [13], [10], [9], [4], [3]. In this work, the control 
system design is based on the algebraic approach 
using polynomials, e.g. [8], [7], [1]. The advantage 
of this approach is in its systematic and a relatively 
simple way of designing controllers – it provides 
both controller structure as well as its parameters 
and it allows imposing further control requirements 
simply. A suitable controller is then found as a 
solution of Diophantine equations. 

This paper is structured as follows: control 
system structure and requirements are stated first, 
followed by general solution using the polynomial 
approach. Further the system of magnetic levitation 
is introduced and described in detail [5]. Next 
section is focused on the controller design and fine-
tuning of its parameters in order to provide robust - 
safe control. This is done by optimization of some 
of the closed-loop poles with the help of sensitivity 
functions and spectral factorization technique [6]. 
Control results are presented and discussed at the 
end of this article. 

2 Methodology 
In this work the classical control set-up of Fig. 1 is 
considered where G  denotes a plant to be 
controlled by a controller C  and the signals , , 

,  stand for the reference, control error, control 
input and controlled variable respectively. Signals 

 and  represent general disturbances. 
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Fig. 1 Control system configuration 

 
Let us assume that the process can be described 

by a linear time-invariant continuous-time model 
given by a transfer function

 

 ( ) ( )
( )

b s
G s

a s
=  (1) 

 
where ( )b s , ( )a s  are coprime polynomials in 

the complex Laplace variable “ s ” satisfying the 
condition: 

 
 ( ) ( )deg dega s b s . (2) 
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Further, the controller C  can be also described 
by a transfer function (3) with ( )q s , ( )p s  coprime 
polynomials satisfying (4). 

 
 ( ) ( )

( )
q s

C s
p s

=  (3) 

 ( ) ( )deg degp s q≥ s  (4) 
 
Requirements for the control system are 

formulated as stability, asymptotic tracking of the 
reference signal, disturbances attenuation and inner 
properness. Besides these the system should be 
robust in order to cope with the real plant (not only 
with the adopted linear model) and possible 
disturbances. This is especially important in this 
case when dealing with unstable systems. 

From the scheme of Fig. 1 and assuming (1), (3) 
it is easy to derive following relationships between 
the controlled variable  (  in the complex 

domain) and input signals w ,  and  (

y ( )Y s

uv yv ( )W s , 

( )uV s  and  similarly); the argument “( )yV s s ” is in 
these formulas omitted somewhere to keep them 
more compact and readable): 
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 (5) 

 
Here, the symbol  defines a characteristic 

polynomial of the closed-loop given as: 
d

 
 . (6) a p b q d⋅ + ⋅ =

 
Symbols , ,  denote important transfer 

functions of the loop known as the sensitivity 
function, complementary sensitivity function, and 
input sensitivity function respectively. The 
sensitivity functions   and  are further used to 
make the designed control system robust. 

S T uS

S uS

Similarly, it is straightforward to derive formula 
(7) for the control error. 

( ) ( ) ( ) ( )u y
pE s a W s b V s a V s
d

⎡ ⎤= ⋅ − ⋅ − ⋅⎣ ⎦ . (7) 

 
2.1 Control System Stability 

 system of Fig. 1. 
 

From (5) it is clear that the control
will be stable if the characteristic polynomial ( )d s  
given by (6) is stable. This Diophantine equa  
after a proper choice of the stable polynomial 

tion,
( )d s , 

is used to compute unknown controller polyno  mials
( )q s , ( )p s . Sometimes it is useful to require also 

rong stability which guarantees also 
stability of the designed controller, i.e. stability of 
the polynomial 

so called st

( )p s  in (3). As control of unstable 
systems is generally more dangerous and the 
suggested design methodology relies on the 
approximate linear model of the originally nonlinear 
plant only, the strong stability condition is also 
considered in this work for safety reasons. 
 
2.2 Asymptotic Tracking of the Reference 
Signal and Disturbances Attenuation 
Let us assume that the reference signal ( )w t  is a 

 

step function, defined in the complex domain as: 
 

( ) 0wW s
s

= , (8) 

 
nd, further suppose that disturbancesa  ( )uv t , 

( )yv t  can be also approximated by step-functions: 
 

 ( ) 0u
u

vV s
s

= , ( ) 0y
y

v
V s

s
= . (9) 

 
hen substituting (8)-(9) into (7) yields: 

 

T
 

( ) 00 0 yu vw vpE s a b a
d s s s

⎛ ⎞
= ⋅ − ⋅ − ⋅⎜ ⎟

⎝ ⎠
, (10) 

 
shows that in order to guarantee zero-which 

control error in the steady-state, the denominator 
polynomial of the controller ( )p s  needs to be 
divisible by the “ s ”-term. This will be fulfilled for 
this polynomial in the form: 

 
( ) ( )p s s p s= ⋅ . (11) 

 
hen the controller (3) can be written as (12) 

 

T
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 ( ) ( )
( )

q s
C s

s p s
=

⋅
, (12) 

 
and the Diophantine equation (6) defining 

stability will be: 
 

 . (13) a s p b q d⋅ ⋅ + ⋅ =
 

2.3 Control System Inner Properness 
Inner properness of the control system is satisfied if 
all its transfer functions are proper. With regard to 
the conditions (2) and (4) and taking into account 
solvability of (6) it is possible to derive following 
formulae for degrees of the unknown polynomials: 

 
 ( ) ( )deg degq s a s= , ( ) ( )deg deg 1p s a s≥ − , (14) 
 ( ) ( )deg 2 degd s a s= ⋅ . 

 
2.4 Robust Setting of the Designed Loop 
In order to cope with external disturbances and with 
the fact that only an approximate model of a 
generally nonlinear unstable plant is used for the 
control system design, the closed loop is designed to 
be robust. This is done with the help of the 
sensitivity functions  and  from (5). The 
sensitivity function  is defined as 

S uS
S

 

 ( ) ( )
( ) ( ) ( )

( ) ( )
( )

1
1y

Y s a s p s
S s

V s G s C s d s
⋅

= = =
+ ⋅

 (15) 

 
and it describes the impact of output disturbance 
 on the process output ; moreover, it gives the 

relative sensitivity of the closed-loop transfer 
function  to the relative plant model error. The 
peak gain of its frequency response given by the 
infinity norm  is a good measure of the loop 
robustness, e.g. [15]. 

yv y

( )T s

H∞

The input sensitivity function  describes 
the impact of the input (load) disturbance on the 
process output and it is given as: 

( )uS s

 

 ( ) ( )
( )

( )
( ) ( )

( ) ( )
( )1u

u

Y s G s b s p s
S s

V s G s C s d s
⋅

= = =
+ ⋅

. (16) 

 
In this work it is suggested to use both sensitivity 

functions and their  norms to tune some of the 
closed-loop poles in order to make the designed 
control system more robust, i.e. safer. The 
procedure is shown further on the presented 
example of the magnetic system stabilization. 

H∞

3 Magnetic Levitation System 
The magnetic system CE 152 presented in Fig. 2 
below is a laboratory-scale model designed for 
studying system dynamics and experimenting with 
control algorithms. It demonstrates control problems 
associated with nonlinear unstable systems mainly. 

 
Fig. 2 The CE 152 magnetic levitation apparatus 

 
The system consists of a coil levitating a steel 

ball in the magnetic field. A basic control task is to 
control the ball position. Description of the system 
can be found in [5] and the references cited therein. 

A mathematical model of this system can be 
derived in the following form [5]: 

 

 
2 2 2

2

0
0

fvk DA i c
k

AD x AD x AD

AD x

km k k u ky y m
k k k k y k y x

k k

− = −
⎛ ⎞−

−⎜ ⎟
⎝ ⎠

g , (17) 

 
where  denotes the controlled variable - ball 

position and  is the control input proportional to 
the voltage from the D/A converter. Other symbols 
are clearly defined in Table 1. 

y
u

 
Table 1 Parameters of the magnetic system 

Symbol Description Value and unit 
ADk  A/D converter gain 0.2 MU a/V 
DAk  D/A converter gain 20 V/MU a

fvk  Damping constant 0.02 N ⋅ s /m 
xk  Position sensor gain 821 V/m 
ik  Power amplifier gain 0.3 A/V 
ck  Coil constant 1.769x10-6N ⋅ m2/A2

km  Ball mass 8.27 x 10-3 kg 

0x  Coil offset 7.6 x 10-3 m 
g  Gravity  constant 9.81 m/s2

0y  Position sensor offset 0.0183 V 
( )y t  Ball position MU a

( )u t  Input signal MU a
a Voltage converted to 0-1 machine unit (MU). 
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For the purpose of controller design the 

nonlinear model (17) can be linearized to the form 
of a second-order proportional system (18) [5]:

 

 ( ) ( )
( )

0
2

1 0

b s bG s
a s s a s a

= =
+ ⋅ +

. (18) 

 
Then, for the ball levitating in the middle of the 

space the transfer functions is [5]:
 

 ( ) 2

18400
2.418 3998

G s
s s

=
− ⋅ −

. (19) 

 
It is easy to check that the system has one stable 

and one unstable pole located on the real axis, 
nearly symmetrically with respect to the origin. 

 
 

4 Control System Design 
The task is to design a control system for the 
described magnetic system. It is based on the 
nominal linear model (19) but it must fulfil the 
given requirements stated in the section 2 of this 
paper also for different operating points. 

Assuming the transfer function of the controlled 
system (18)-(19), the degrees of the unknown 
polynomials will according to (14) be: ( )deg 2q s = , 

 and . Therefore the 
simplest controller structure according to (12) will 
be: 

( )deg 1p s ≥ ( )deg 4d s =

 

 ( ) ( )
( ) ( )

2
2 1

1 0

q s q s q s qC s
s p s s p s p

0⋅ + ⋅ +
= =

⋅ ⋅ ⋅ +
. (20) 

 
Its coefficients are obtained by a solution of the 

Diophantine equation (13) for some stable 
characteristic polynomial ( )d s . Therefore, the next 
task is to choose this polynomial. Here it is 
suggested to have it in this form: 

 
 ( ) ( )( )2s+d s n s α= , (21) 

 
where 0α  is a free tuning constant and ( )n s  

is a stable polynomial computed from the 
denominator polynomial of the controlled system 

( )a s  using the spectral factorization technique [6]: 
 

 ( ) ( ) ( ) ( )* *a s a s n s n s= . (22) 
 

This choice of the characteristic polynomial will 
not only guarantee stability of the resultant control 
system but also connection to the original process 
behaviour and it will leave space enough for further 
possible tuning. Solving (22) yields: 

 
 ( ) 2 2

1 0 126.483 3998n s s n s n s s= + ⋅ + = + ⋅ + .(23) 
 
It is easy to check that whereas the original 

polynomial ( )a s  has poles  and 1 64.5p =

2 62.0p = − , i.e. the first one is unstable, the result 
of the factorization ( )n s  (23) provides both stable 
poles 1 64.5p = −  and . Now the 
characteristic polynomial (21) can be rewritten as: 

2 62.0p = −

 
 ( ) ( ) ( 22 126.483 3998d s s s s )α= + ⋅ + ⋅ + , (24) 

 
where the only free parameter 0α  can be used 

for further tuning. In this work this is done using the 
sensitivity functions of the loop  and ( )S s ( )uS s  in 
order to make the designed control system robust, as 
outlined in the section 2.4 of this paper. 

Dependence of the -norms of both sensitivity 
functions on the parameter 

H∞

α  is presented in Fig. 3. 
 

 

Fig. 3 H∞ -norm of sensitivity functions ,  withS uS α  
 
From the plot it is obvious that the smaller value 

of the constant α  the more sensitive the closed-loop 
system is, and vice versa – the higher value of α  
the more robust control system (regarding the 
influence of both disturbances and possible changes 
in the process model). Based on this information the 
free tuning parameter α  was chosen 200 as α = . 
This choice will provide robust control system and 
approximately the same sensitivity for both 
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disturbances. Besides this it can be seen as a trade-
off between the desired robustness of the loop and 
limitations on the control input (higher values of α  
result in more aggressive control action and 
consequently more overshoots and oscillations). 

Then, the designed controller has this form: 
 

 
( ) ( )

( ) ( )

( )

2
2 1 0

1 0

23.25 479 8691
528.9

q s q s q s qC s
s p s s p s p

s s
s s

⋅ + ⋅ +
= =

⋅ ⋅ ⋅ +

⋅ + ⋅ +
=

⋅ +

=

, (25) 

 
with the coefficients computed from (13),(24) as:  
 

 ( )
( )

2
1 0 1 1 0 0

2
1 1 0 0 0 0

2 1 0 1 0 0 0

1; 2 ; ;

1 2 ;

2

0

.

p p n a q n

q n n a p b

q n n a p a b

α α

α α

α

= = ⋅ + − = ⋅

⎡ ⎤= ⋅ + + ⋅ ⋅ − ⋅⎣
= ⋅ ⋅ + − ⋅ −

b

⎦ (26) 

 
It is easy to check that the strong stability 

condition (besides stability of the control system 
also stability of the controller is required – see 
section 2.1) will be fulfilled as the coefficient 0p  is 
always positive for 0α . 

 
 

5 Experiments 
Several experiments were performed on the 
magnetic system in order to test the designed control 
loop. First, control in different operating points were 
analysed for two settings of the tuning parameter α  
- robust one ( 200α = ) and, non-robust ( 50α = ). 
Some of the control responses are presented below 
in Fig. 4 and Fig. 5. 
 

 
Fig. 4 Control response in different operating 

points: robust setting ( 200α = ) 

 
Fig. 5 Control response in different operating 

points: non-robust setting ( 50α = ) 
 
From the graphs it is obvious that the suggested 

robust setting for ( 200α = ) provides more stable 
response and better tracking of the reference signal. 
It gives relatively big overshoots but this can be 
improved by e.g. different control configuration, as 
shown in [5]. 

Further attention was focused on the disturbance 
attenuation. During the control both disturbances 
(affecting control input at the time 1 sec. and 
controlled output at the time 2 sec.) were injected 
into the loop and the response was analysed. Both 
disturbances were step-functions as assumed in 
section 2.2 of this paper and their amplitude was 
10% of the set-point signal. The figures below show 
some of the achieved responses.  

 

 
Fig. 6 Disturbance attenuation: robust setting 

( 200α = ) 
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Fig. 7 Disturbance attenuation: non-robust setting 

( 50α = ) 
 
As can be clearly seen from the graphs, the 

robust setting of the tuning parameter α  provides 
better responses to both disturbances. 

 
 

6 Conclusion 
This paper presented a relatively simple framework 
for control of unstable single input – single output 
processes. The resultant controller is designed to be 
robust with respect to both, changes in the operating 
point (adopted model) and disturbances affecting 
manipulated or controlled variables. The presented 
experimental results show applicability of the 
approach to safer control of unstable processes. 
Further, it can be easily extended to cover also multi 
input – multi output processes. 
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