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Abtract: - Time-delays (dead times) are found in many processes in industry. Time-delays are mainly caused by the 
time required to transport mass, energy or information, but they can also be caused by processing time or 
accumulation. The contribution is focused on a design of algorithms for adaptive digital control for processes with 
time-delay. The algorithm is based on pole assignment approach. The program system MATLAB/SIMULINK was 
used for simulation verification of these algorithms.  
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1   Introduction 
Time-delays appear in many processes in industry and 
other fields, including economical and biological. They 
are caused by some of the following phenomena [1]: 
 the time needed to transport mass, energy or 

information, 
 the accumulation of time lags in a great numbers of 

low order systems connected in series, 
 the required processing time for sensors, such as 

analyzers; controllers that need some time to 
implement a complicated control algorithms or 
process. 

     Consider a continuous time dynamical linear SISO 
(single input ( )u t  – single output ( )y t ) system with 
time-delay dT . The transfer function of a pure 
transportation lag is dT se−  where s is complex variable. 
Overall transfer function with time-delay is in the form 

 ( ) ( ) dT s
dG s G s e−=  (1) 

where ( )G s is the transfer function without time-delay.  
Processes with significant time-delay are difficult to 
control using standard feedback controllers. When a 
high performance of the control process is desired or 
the relative time-delay is very large, a predictive 
control strategy must be used. The predictive control 
strategy includes a model of the process in the structure 
of the controller. The first time-delay compensation 
algorithm was proposed by Smith 1957 [2]. This 
control algorithm known as the Smith Predictor (SP) 
contained a dynamic model of the time-delay process 
and it can be considered as the first model predictive 
algorithm. Historically first modifications of time-delay 
algorithms were proposed for continuous-time 

(analogue) controllers. On the score of implementation 
problems, only the discrete versions are used in practice 
in this time.  The adaptive digital SP based on pole 
assignment method is designed and verified by 
simulation in this paper.  
 
2  Digital Smith Predictors 
Although time-delay compensators appeared in the mid 
1950s, their implementation with analogue technique 
was very difficult and these were not used in industry. 
Since 1980s digital time-delay compensators can be 
implemented. In spite of the fact that all these 
algorithms are implemented on digital platforms, most 
works analyze only the continuous case. The digital 
time-delay compensators are presented e.g. in [1], [3], 
[4]. The discrete versions of the SP and its 
modifications are suitable for time-delay compensation 
in industrial practice.  
 
2.1 Structure of Digital SP 
The block diagram of a digital SP   is shown in Fig. 1. 
The function of the digital version is similar to the 
classical analogue version. The block ( )1

mG z−  

represents process dynamics without the time-delay and 
is used to compute an open-loop prediction. The 
difference between the output of the process y  and the 
model including time-delay ŷ  is the predicted error pê  
as shown is in Fig. 1 where u , w , e , es are the control 
signal, the reference signal, the error and the noise. If 
there are no modelling errors or disturbances, the error 
between the current process output and the model 
output will be null and the predictor output 
signal pŷ will be the time-delay-free output of the 
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process. Under these conditions, the controller 
( )cG s can be tuned, at least in the nominal case, as if 

the process had no time-delay. The primary (main) 
controller ( )1

cG z−  can be designed by the different 

approaches (for example digital PID control or methods 
based on polynomial approach). The outward feedback-
loop through the block ( )1

dG z−  in Fig. 1 is used to 

compensate for load disturbances and modelling errors. 
The dash arrows indicate the tuned parts of the SP.  

 
Figure 1: Block Diagram of a Digital Smith Predictor 

 
     Most industrial processes can be approximated by a 
reduced order model with some pure time-delay. 
Consider the following second order linear model with 
a time-delay 

 ( ) ( )
( )

1 1 2
1 1 2

1 21
1 21

d d
B z b z b zG z z z

a z a zA z

− − −
− − −

− −−

+
= =

+ +
 (2) 

for demonstration of some approaches to the design of 
the adaptive SP. The term z-d represents the pure 
discrete time-delay. The time-delay is equal to 0dT  
where 0T is the sampling period. For the control of the 
second–order process (2) the individual parts of the 
controller are described by the transfer functions  

              ( ) ( )
( )
1

1
1

1
m

ˆz B
G z

Â z

−
−

−
= ; ( ) ( )

( )

1
1

1 1

d

d

ˆz B z
G z ˆz B

− −
−

−
= (3) 

where ( ) ( )1
1 21

1
z

ˆ ˆˆB B z b b−

=
= = +  [5].  

.  
   Since ( )1

mG z− is the second-order transfer function, 

the main controller ( )1
cG z− can be a digital PID 

controller or suitable controller based on polynomial 
approach. 
 
2.2  Digital Pole Assignment SP 
The main controller ( )1

cG z− applied in this paper was 

designed using a polynomial approach. Polynomial 
control theory is based on the apparatus and methods of 

a linear algebra [6], [7]). The polynomials are the basic 
tool for a description of the transfer functions. They are 
expressed as the finite sequence of figures – the 
coefficients of a polynomial. Thus, the signals are 
expressed as infinite sequence of figures. The controller 
synthesis consists in the solving of linear polynomial 
(Diophantine) equations. The design of the controller 
algorithm is based on the general block scheme of a 
closed-loop with two degrees of freedom (2DOF) 
according to Fig. 2. 
  

 
 

Figure 2: Block Diagram of a Closed Loop 2DOF 
Control System 

 
     The controlled process is given by the transfer 
function in the form  

 
1

1
1

( ) ( )( )
( ) ( )p

Y z B zG z
U z A z

−
−

−= =  (4) 

where A and B are the second-order polynomials. The 
controller contains the feedback part Gq and the 
feedforward part Gr. Then the digital controllers can be 
expressed in the form of a discrete transfer functions 

 ( ) ( )
( )

1
1 0

11
11r

R z rG z
p zP z

−
−

−−
= =

+
 (5) 

 ( ) ( )
( ) ( )( )

1 1 2
1 0 1 2

1 1 1
11 1q

Q z q q z q zG z
P z p z z

− − −
−

− − −

+ +
= =

+ −
 (6) 

     According to the scheme presented in Fig. 2 (for es = 
0), the output y can be expressed as  

 ( ) ( ) ( )
( ) ( ) ( )1 1

1
p r

p q

G z G z
Y z W z

G z G z
− −=

+
 (7) 

     Upon substituting from Equation (4) - (6) into 
Equation (7) it yields  

 
1 1

1 1
1 1 1 1

( ) ( )( ) ( )
( ) ( ) ( ) ( )

B z R zY z W z
A z P z B z Q z

− −
− −

− − − −=
+

 (8) 

where  

 1 1 1 1 1( ) ( ) ( ) ( ) ( )A z P z B z Q z D z− − − − −+ =  (9) 

is the characteristic polynomial. 

_ 

_ 

+

+ 
Gm (z-1)

w e u y 

+ 

+ 
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Gc(z-1) Gp (z-1) 
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+
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     The procedure leading to determination of 
polynomials Q, R and P in (5) and (6) can be briefly 
described as follows [8]. A feedback part of the 
controller is given by a solution of the polynomial 
Diophantine equation (9). An asymptotic tracking is 
provided by a feedforward part of the controller given 
by a solution of the polynomial Diophantine equation 

 ( )1 1 1 1 1( ) ( ) ( ) ( )wS z D z B z R z D z− − − − −+ =  (10) 

     For a step-changing reference signal value 
( )1 11wD z z− −= −  holds and S is an auxiliary 

polynomial which does not enter into controller design.  
A feedback controller to control a second-order system 
without time-delay will be derived from Equation (9).              
A system of linear equations can be obtained using the 
uncertain coefficients method 

 

1 0 1 1

1 2 1 22 1 1

2 3 22 1 2 1

1 42 2

ˆ 0 0 1 ˆ1
ˆ ˆ ˆ ˆˆ0 1

ˆˆ ˆ ˆ ˆ0
ˆ0 0

b q d a
q d a ab b a
q d ab b a a
p db a

⎡ ⎤ + −⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ −−⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥+−⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦−⎣ ⎦

 (11) 

 where the characteristic polynomial is chosen as  

 ( )1 1 2 3 4
1 2 3 41D z d z d z d z d z− − − − −= + + + +  (12) 

     For a step-changing reference signal value it is 
possible to solve Equation (10) by substituting z = 1 

 1 2 3 4
0

1 2

1(1)
(1)

d d d dDR r
B b b

+ + + +
= = =

+
 (13) 

      The 2DOF controller output is given by 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

0 0 1 2

1 1

1 2

1 1 2

u k r w k q y k q y k q y k

p u k p u k

= − − − − − +

+ + − + −
(14) 

 
3  Recursive Identification Procedure 
The regression (ARX) model of the following form 

( ) ( ) ( ) ( )T
sy k k k e k= +Θ Φ  (15) 

is used in the identification part of the designed 
controller algorithms, where 

( ) [ ]1 2 1 2
T k a a b b=Θ  (16) 

is the vector of model parameters and 
( ) ( ) ( ) ( ) ( )1 1 2 1 2T k y k y k u k u k− = ⎡− − − − − − ⎤⎣ ⎦Φ  

  (17) 
is the regression vector. The non-measurable random 
component es(k) is assumed to have zero mean value   

E[es(k)] = 0 and constant covariance (dispersion) 
R = E[es

 2(k)]. 
     All digital adaptive SP controllers use the algorithm 
of identification based on the Recursive Least Squares 
Method (RLSM) extended to include the technique of 
directional (adaptive) forgetting. Numerical stability is 
improved by means of the LD decomposition [8], [9].   
This method is based on the idea of changing the 
influence of input-output data pairs to the current 
estimates. The weights are assigned according to 
amount of information carried by the data. 
 
4 Simulation Verification Adaptive 
Digital SP Controller Algorithms  
Simulation is a useful tool  for the  synthesis of control 
systems, allowing one not only to create mathematical 
models of a process but also to design virtual 
controllers in a computer. The mathematical models 
provided are sufficiently close to a real object that 
simulation can be used to verify the dynamic 
characteristics of control loops when the structure or 
parameters of the controller change. The models of the 
processes may also be excited by various random noise 
generators which can simulate the stochastic 
characteristics of the processes noise signals with 
similar properties to disturbance signals measured in 
the machinery.  
     The above mentioned SP controllers are not suitable 
for the control of unstable processes. Therefore, three 
types of processes were chosen for simulation 
verification of digital adaptive SP controller algorithms. 
Consider the following continuous-time transfer 
functions: 

1) Stable non-oscillatory ( ) ( )( )
4

1
2

1 4 1
sG s e

s s
−=

+ +
 

2) Stable oscillatory ( ) 4
2 2

2
4 2 1

sG s e
s s

−=
+ +

  

3) With non-minimum phase  

( ) ( )( )
4

3
5 1

1 4 1
ssG s e

s s
−− +

=
+ +

. 

Let us now discretize them a sampling period 
0 2 sT = . The discrete forms of these transfer functions 

are (see Equation (2))   

( )
1 2

1 2
1 1 2

0 4728 0 2076
1 0 7419 0 0821

. z . zG z z
. z . z

− −
− −

− −

+
=

− +
 

( )
1 2

1 2
2 1 2

0 6806 0 4834
1 0 7859 0 3679

. z . zG z z
. z . z

− −
− −

− −

+
=

− +
 

( )
1 2

1 2
3 1 2

0 5489 0 8897
1 0 7419 0 0821

. z . zG z z
. z . z

− −
− −

− −

− +
=

− +
  

     A simulation verification of proposed design was 
performed in MATLAB/SIMULINK environment.  A 
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typical control scheme used is depicted in Fig. 3. This 
scheme is used for systems with time-delay of two 
sample steps. Individual blocks of the Simulink scheme 
correspond to blocks of the general control scheme 
presented in Fig. 1.  Blocks Compensator 1 and 
Compensator 2 are parts of the SP and they correspond 
to ( )1

mG z−  and ( )1
dG z−  blocks of Fig. 2 respectively. 

The control algorithm is encapsulated in Main Pole 
Assignment Controller which corresponds to ( )1

cG z−  

Fig. 1 block. The Identification block performs the on-
line identification of controlled system and outputs the 
estimates of 2nd order ARX model (a1, b1, a2, b2) 
parameters. 
 
 
 
 
 
 
 
 
 
 
Figure 3: Simulink control scheme 
 
     The internal structure of the Main Pole Assignment 
Controller block is shown in Fig. 4. Block MATLAB 
Fcn is the heart of the controller. The inputs to this 
function are current ARX estimates, current and 
previous values of process without time-delay, 
reference signal as well as previous control values and 
sample time. The MATLAB Fcn is a standard m-
function which carries out desired control algorithm as 
described in Section 2. 

 
Figure 4: Internal structure of the controller 
 
     Block MATLAB Fcn is the heart of the controller. 
The inputs to this function are current ARX estimates, 
current and previous values of process without time-

delay, reference signal as well as previous control 
values and sample time. The MATLAB Fcn is a 
standard m-function which carries out desired control 
algorithm as described in Section 2. 

The on-line identification part of the scheme, which 
is represented by block Identification block in Fig. 3, 
uses several parameters that are entered via standard 
SIMULINK dialog. This dialog is presented in Fig. 5. 
 

 
 
Figure 5: Dialog for setting identification parameters 
 
     The most important parameters form the point of 
view of the problem this papers is coping with are 
sample time, initial parameters estimations and dead 
time. The dead time is not entered in time units but in 
sample times. The other parameters affect the method 
used to compute ARX model and their detailed 
description can be found in Bobál et al. 2005 [7]. 
 
5  Simulation Results 
The configuration for simulation verification of the 
designed adaptive digital SP algorithm was chosen as 
follows: 
 The control loops were verified in the non-adaptive 

versions without a random noise. 
 All control loops were verified in the adaptive 

versions with a random noise. Firstly, without a 
priori information (the initial values of the model 
parameter estimates were chosen randomly). 
Secondly, using a priori information (the initial 
estimates were chosen based on the previous 
experiments). 
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 The outputs of the process models were influenced 
by White Noise Generator with mean value E = 0 
and covariance R = 10-4. 

 
5.1 Simulation Verification (Non-adaptive 

Version) 
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Figure 6:  Control of the Model ( )1

1G z−  
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Figure 7:  Control of the Model ( )1

2G z−  
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Figure 8:  Control of the Model ( )1

3G z−  

      Figs. 6 - 8 illustrate the simulation non-adaptive 
control performance using Pole-Assignment controller 
(14). A suitable pole assignment was chosen on the 
basis of previous experiments. The control quality is 
very good (the process output y is without overshoot 
and controller output u has non-oscillatory course). 
 
5.2  Simulation Verification (Adaptive Version) 
Figs. 9 - 12 illustrate the simulation control 
performance using adaptive Pole-Assignment controller 
(14). From Figs. 9 and 10 (the control of the stable 
model ( )1

1G z− ) it is obvious that the control process is 

not dependent on knowledge of a priori information 
(the control courses in both cases are practically 
identical).  
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Figure 9: Control of model ( )1

1G z−  (without a priori 

information) 
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Figure 10: Control of the model ( )1

1G z− (with a priori 

information) 
 
      Fig. 11 illustrates the simulation control 
performance of the stable oscillatory model ( )1

2G z− . 
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The control process is relatively slow without overshot 
of y and u (it is the cautious adaptive controller). 
     Fig. 12 illustrates the simulation control 
performance of the non-minimum phase 
model ( )1

3G z− . The control process is good after initial 

part. 
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Figure 11: Control of the model ( )1

2G z− (with a priori 

information) 
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Figure 12: Control of the model ( )1

3G z− (with a priori 

information) 
 
6  Conclusion 
Digital Adaptive Smith Predictor algorithms for control 
of processes with time-delay based on polynomial 
design (pole assignment) were proposed. The 
polynomial controllers were derived purposely by 
analytical way (without utilization of numerical 
methods) to obtain algorithms with easy 
implementability in industrial practice. Three models of 
control processes were used for simulation verification 
(the stable non-oscillatory, the stable oscillatory and the 
non-minimum phase). Achieved results of simulation 
verification can be regard as the first suppositions for 

usage of the proposed adaptive SP controllers for 
implementation in real time conditions.    
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