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Abstract: – The paper deals with continuous-time nonlinear adaptive control of a continuous stirred tank 
reactor. The control strategy is based on an application of the controller consisting of a linear and nonlinear 
part. The static nonlinear part is derived in the way of an inversion and exponential approximation of measured 
or simulated input-output data. The design of the dynamic linear part is based on approximation of nonlinear 
elements in the control loop by a continuous-time external linear model with directly estimated parameters. In 
the control design procedure, the polynomial approach with the pole assignment method is used. The nonlinear 
adaptive control is tested by simulations on the nonlinear model of the CSTR with a consecutive exothermic 
reaction. 
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1  Introduction 
From the system theory point of view, continuous 
stirred tank reactors (CSTRs) belong to a class of 
nonlinear systems with mathematical models 
described by sets of nonlinear differential equations. 
Various models of CSTRs can be found in e.g. [4], 
[10] and [12].  

It is well known that the control of chemical 
reactors often represents very complex problem. The 
control problems are due to the process nonlinearity, 
high input-output sensitivity as well as to other 
unpleasant  behaviour. The process with such 
properties is hardly controllable by conventional 
control methods, and, its effective control requires 
application some of advanced methods.  

One possible method to cope with this problem 
exploits a linear adaptive controller with parameters 
computed and readjusted on the basis of recursively 
estimated parameters of an appropriate chosen 
continuous-time external linear model  (CT ELM)  
of  the process. Some results obtained by this 
method can be found in e.g. [5] and [6]. 

An effective approach to the control of CSTRs 
and similar processes utilizes various methods of the 
nonlinear control (NC). Several modifications of the 

NC theory are described  in e.g. [1], [8] or [15].  
 
Especially, a part of the NC methods exploits   

factorization of nonlinear models of the plants on 
linear and nonlinear parts, e.g. [2], [3], [13], [14] 
or[16].  

In this paper, the CSTR control strategy is based 
on an application of the controller consisting of a 
static nonlinear part (SNP) and dynamic linear part 
(DLP). The static nonlinear part is obtained from 
simulated or measured steady-state characteristic of 
the CSTR, its inversion, exponential approximation, 
and, subsequently, its differentiation. On behalf of 
development of the linear part, the SNP including 
the nonlinear model of the CSTR is approximated 
by a CT external linear model. For the CT ELM 
parameter estimation, the  direct estimation in terms 
of filtered variables is used, see e.g. [7] and[11]. 
Then, the resulting CT controller is derived using 
the polynomial approach and pole assignment 
method, e.g. [9]. The simulations are performed on a 
nonlinear model of the CSTR with a consecutive 
exothermic reaction. 
 
2  Model of  the CSTR 
Consider a CSTR with the first order consecutive 
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exothermic reaction according to the scheme 
1 2A B Ck k⎯⎯→ ⎯⎯→  and with a perfectly mixed 

cooling jacket. Using the usual simplifications, the 
model of the CSTR is described by four nonlinear 
differential equations 

 A r r
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r r

dc q qk c c
dt V V
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= − + +⎜ ⎟

⎝ ⎠
 (1) 
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with initial conditions s
A A(0)c c= , s

B B(0)c c= , 
s

r r(0)T T= and s
c c(0)T T= . Here, t is the time, c are 

concentrations, T are temperatures, V are volumes, ρ 
are densities, cp are specific heat capacities, q are 
volumetric flow rates, Ah is the heat exchange 
surface area and U is the heat transfer coefficient. 
The subscripts are denoted (.)r for the reactant 
mixture, (.)c for the coolant, (.)f  for steady-state 
inputs and the superscript (.)s for initial conditions. 
The reaction rates and the reaction heat are 
expressed as 

 0
r

exp , 1,2j
j j

E
k k j

RT
−⎛ ⎞

= =⎜ ⎟
⎝ ⎠

 (5) 

 r 1 1 A 2 2 Bh h k c h k c= +  (6) 

where k0 are pre-exponential factors, E are 
activation energies and h are reaction entalpies. The 
values of all parameters, inlet values and steady-
state values with used units are given in Table. 1.  
 
Table 1. Parameters, steady-state inputs and initial  
              conditions. 
Vr = 1.2 m3 
Vc = 0.64 m3 
ρr = 985 kg m-3 
ρc = 998 kg m-3 
k10 = 5.616 × 1016 min-1 
k20 = 1.128 × 1018 min-1 
h1 = 4.8 × 104 kJ kmol-1 

cpr = 4.05 kJ kg-1K-1 
cpc = 4.18 kJ kg-1K-1 
Ah = 5.5 m2 
U = 43.5 kJ m-2min-1K-1 
E1/ R = 13477 K 
E2/ R = 15290 K 
h2 = 2.2 × 104 kJ kmol-1 

s
Ac  = 1.5796 kmol m-3 
s

rT  = 324.80 K 

s
Bc  = 1.1975 kmol m-3 
s

cT  = 306.28 K 
s
Afc  = 2.85 kmol m-3 
s

rfT  = 323 K 
s
rq  = 0.08 m3min-1 

s
Bfc = 0 kmol m-3 
s

cfT = 293 K 
s
cq  = 0.08 m3min-1 

In term of the practice, only the coolant flow rate 
can be taken into account as the control input. As 
the controlled output, the reactant temperature is 
considered. For the control purposes, the control 
input u(t) and the controlled output y(t) are defined 
as deviations from steady values 

 s
c c( ) ( )u t q t q= − ,  s

r r( ) ( )y t T t T= −  (7) 

The dependence of the reactant temperature on the 
coolant flow rate in the steady-state is in Fig.1.  
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Fig. 1. Dependence of the reactant temperature on 

the coolant flow rate in the steady-state. 
 
In subsequent control simulations, the operating 
interval for qc has been determined as 
 c min c c max( )q q t q≤ ≤   (8) 

With regard to the purposes of a latter steady-
state characteristic approximation, the values cLq  
and cUq  are established that denote the lower and 

upper bound of  s
cq  used for the approximation, and, 

rUT  and rLT to them corresponding temperatures. 
 
3  Controller Design 
As previously introduced,  the controller consist of a 
static nonlinear part and a dynamic linear part as 
shown in Fig. 2. 
 

CONTROLLER 
 e u0 u

SNP DLP

 
Fig. 2. The controller scheme. 
 
The DLP creates a linear dynamic relation betveen 
the tracking error e(t) and 0 rw( ) Δ ( )u t T t=  which 
represents a difference of the reactant temperature 
adequate to its desired value. Then, the SNP 
generates a static nonlinear relation betveen u0 and a 
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corresponding increment (decrement) of the coolant 
flow rate.  
 
3.1  Nonlinear part of the controller 
The SNP derivation appears from a simulated or 
measured steady-state charasteristic. The 
coordinates on the graph axis are defined as 

 
s
c cL

cL

q q
q

γ −
= ,  s

r rLT Tψ = −  (9) 

where cLq  is the lower bound in the interval  

 s
cL c cUq q q≤ ≤  (10) 

and, rLT is the temperature corresponding to cUq . 
It can be recommended to select the interval (10) 

slightly longer than (8). In this paper, lower and 
upper values in (8) and (10) were chosen 

cL 0.016q = , c min 0.02q = , cmax 0.12q = , and 

cU 0.13q = . 
In term of the practice, it can be supposed that 

the measured data will be affected by measurement 
errors. The simulated steady-state characteristic that 
corresponds to reality is shown in Fig. 3. 

Making the replacement of coordinates, the 
inverse of this characteristic can be approximated by 
a function from the ring  of  polynomial,  
exponential,  rational,  eventually,  by 
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Fig. 3. Simulated characteristics ψ  = f (γ). 
 
other type functions. Here, the second order 
exponential approximate function has been found in 
the form 

 
74071.7 2.4589 exp

3.967

74076 exp
697475

ψγ

ψ

⎛ ⎞= − + − +⎜ ⎟
⎝ ⎠

⎛ ⎞+ −⎜ ⎟
⎝ ⎠

 (11) 

The inverse characteristic together with its 
approximation is in Fig. 4. 

Now, a difference of the coolant flow rate 
c( ) ( )u t q t= Δ   in  the  output  of  the  SNP  can   be  
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Fig. 4. Simulated and approximated inverse relation  

γ = ϕ (ψ). 
 
computed for each rT  as 

 
r

c cL 0
( )

( ) ( ) ( )
T

du t q t q u t
d ψ

γ
ψ

⎛ ⎞= Δ = ⎜ ⎟
⎝ ⎠

 (12) 

The derivative of the approximate function (11) 
shown in Fig. 5 takes the form 

0.6198 exp
3.967

0.1062 exp
697475

d
d
γ ψ
ψ

ψ

⎛ ⎞= − − −⎜ ⎟
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⎝ ⎠

. 
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Fig. 5. Derivative of γ  with respect to ψ. 
 
3.2 CT external linear model of nonlinear 

elements 
The second order CT ELM of the SNP in conjuction 
with a nonlinear model of the CSTR was chosen on 
the basis of pre-computed step responses of the 
SNP+CSTR in the form of the second order linear 
differential equation 
 1 0 0 0( ) ( ) ( ) ( )y t a y t a y t b u t+ + =  (13) 

or, in the transfer function representation as 
 

 0
2

0 1 0

( ) ( )( )
( ) ( )

bY s b sG s
U s a s s a s a

= = =
+ +

 (14) 

where s is the complex variable (parameter of the 
Laplace transform). 
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3.3  CT ELM parameter estimation 
The method of the CT ELM parameter estimation 
can be briefly carried out as follows. 

Since the derivatives of both input and output 
cannot be directly measured, filtered variables u0f 
and yf  are established as the outputs of filters  
 0f 0( ) ( ) ( )c u t u tσ =  (15) 
 f( ) ( ) ( )c y t y tσ =  (16) 

where d dtσ =  is the derivative operator, c(σ) is a 
stable polynomial in σ that fulfills the condition 
deg ( ) deg ( )c aσ σ≥ . It can be easily proved that 
the transfer behavior among filtered and among 
nonfiltered variables are equivalent. Using the L-
transform of (15) and (16), the expressions  
 0f 0 1( ) ( ) ( ) ( )c s U s U s sμ= +  (17) 
 f 2( ) ( ) ( ) ( )c s Y s Y s sμ= +  (18) 

can be obtained with μ1 and μ2 as polynomials of 
initial conditions. Substituting (17) and (18) into 
(14), and, after some manipulations, the relation 
between transforms of the filtered input and output 
takes the form 

 f 0f

0f

( )( ) ( ) ( )
( )

( ) ( ) ( )

b sY s U s M s
a s

G s U s M s

= + =

= +
 (19) 

where M(s) is a rational function as the transform of 
any function μ(t) which  expresses an influence of 
initial conditions of filtered variables.  

The filtered variables including their derivatives 
can be sampled from filters (15) and (16) in discrete 
time intervals tk = k TS , k = 0,1,2, ...   where TS is 
the sampling period. Denoting deg a = n and deg b = 
m, the regression vector is defined as 

 
(1) ( 1)

f f f

(1) ( )
0f 0f 0f

( ) ( ) ( ) ... ( )

( ) ( ) ... ( ) 1

n
k k k k

m
k k k

t y t y t y t

u t u t u t

−⎡= − − −⎣
⎤
⎦

Φ
. (20) 

Now, the vector of parameters  

 [ ]0 1 1 0 1( ) ... ...T
k n mt a a a b b b−=Θ  (21) 

can be estimated from the equation  

 ( )
f ( ) ( ) ( ) ( )n T

k k k ky t t t tμ= +Θ Φ . (22) 

 
3.4  Linear part of the controller 
The DLP is inserted into the control loop as shown 
in Fig. 6. In the scheme, w is the reference signal, v 
is the disturbance, y is the controlled output, u0 is 
the input to the  ELM and  e is the tracking error.  

The  transfer  function  G(s) of the ELM is given 

 u0 

-

 y

 v 

ew
DLP CT ELM

 
 
Fig. 6. Simplified scheme of the control loop. 
 
by (14). Both the reference w and the disturbance v 
are considered to be step functions with transforms  

 0( ) wW s
s

= ,  0( ) vV s
s

=  (23) 

The transfer function of the DLP is in the form 

 0 ( ) ( )( )
( ) ( )

U s q sQ s
E s p s

= =  (24) 

where q and p are polynomials in s, and, 
deg degq p≤ . 

The controller design described in this section 
stems from the polynomial approach. General 
conditions required to govern the control system 
properties are formulated as stability, internal 
properness, asymptotic tracking of a step reference 
and step disturbance attenuation. 

It is well known from the algebraic control 
theory that a controller which satisfies above 
requirements is in the polynomial ring given by a 
solution of the polynomial (Diophantine) equation 
 ( ) ( ) ( ) ( ) ( )a s p s b s q s d s+ =  (25) 

with a stable polynomial d(s) on the right side. 
For step input signals w and v, the polynomial p 

is in the form  
 ( ) ( )p s s p s= . (26) 

For deg a = 2 and step input signals, the degrees of 
unknown polynomials in (25) and (26) are given as 
 deg 2q = ,  deg 1p = ,  deg 4d =  (27) 

and, the controller transfer function takes the form 

 
2

2 1 0

0

( )( )
( ) ( )

q s q s qq sQ s
s p s s s p

+ +
= =

+
. (28) 

In this paper, the polynomial d with roots 
determining the closed-loop poles is chosen as 

 2( ) ( )( )d s n s s α= +  (29) 

where n is a stable polynomial obtained by spectral 
factorization 

 ( ) ( ) ( ) ( )a s a s n s n s∗ ∗=  (30) 

and α is the selectable parameter that can usually be 
chosen by way of simulation experiments. Note that 
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a choice of d in the form (29) provides the control of 
a good quality for aperiodic controlled processes. 
The polynomial n has the form 

 2
1 0( )n s s n s n= + +  (31) 

with coefficients 

 2
0 0n a= ,  2

1 1 0 02 2n a n a= + − . (32) 

The controller parameters can be obtained from 
solution of the polynomial equation (25). 

Evidently, the controller parameters can be 
adjusted by the selectable parameter α. The 
complete adaptive control system is shown in Fig. 7. 
 

-e  

q, p  

ST  ST  

ψ  

cq  u  rT  0u  
 CSTR  SNP  DLP 

 Filter  Filter 

minr r−T T  

DLP parameter 
   computation 

              CT ELM  
     parameter estimation 

s
cq s
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Fig. 7. Adaptive control system.  
 
4  Control Simulations 
The control simulations were  performed in a 
neighbourhood of the operating point ( s

cq  = 0.08 

m3min-1, s
rT  = 324.8 K). For the start (the adaptation 

phase), a P controller with a small gain was used in 
all simulations. 

The effect of the pole α on the control responses 
is transparent from Figs. 8 and 9. Here, on the basis 
of precomputed simulations, three values of α were 
selected. The control results show sensitivity of the 
controlled output and the input coolant flow rate to 
α. Obviously, careless selection of this parameter 
can lead to controlled outputs with overshoots or 
even to instability.  Further, an increasing α leads to 
higher values and changes of the input signals. This 
fact can be important in control of some reactors 
where expressive input changes are undesirable.  

A presence of the integrating part in the DLP 
enables rejection of various step disturbances 
entering into the process. Here, step disturbances 

3
Af 0.1kmolmc −Δ = ±  at times v1 210mint =  and 

v2 510mint =  were  injected into the CSTR. The 
DLP  parameters  were  estimated  only  in  the first  
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Fig. 8. Controlled output for α = 0.05 (1), α = 0.075 

(2), α = 0.1 (3). 
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Fig. 9. Coolant flow rate for α = 0.05 (1), α = 0.075 

(2), α = 0.1 (3). 
 
(tracking)  interval   t < 200 min.  The experiences 
of authors of this paper proved that an utilization of 
recursive identification in the phase of a constant 
reference and in a presence of step disturbances 
decreases the control quality. From this reason, 
during   interval   t ≥ 200 min, fixed DLP parameters 
were used. The controlled output responses are 
shown in Fig. 10. 
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Fig. 10. Step disturbance rejection. 
 

An influence of the SNP is evident from the 
control responses shown in Fig. 11. Here, the 
standard adaptive control without the nonlinear part 
of the controller was used. The simulation has been 
performed under the same conditions as by above 
presented cases for α = 0.075. The responses in Fig. 
11 show priority of the nonlinear control especially 
for greater changes of the reference signal. 
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Fig. 11. Comparison of nonlinear adaptive control 

(1) with standard adaptive control (2). 
 
5  Conclusions 
In this paper, one approach to the nonlinear 
continuous-time adaptive co ntrol of the reactant 
temperature in a continuous stirred  tank reactor   
was  proposed.  The  control  strategy  is based on a 
factorization of a controller into the linear and the 
nonlinear part. A design of the controller nonlinear 
part employs simulated or measured steady-state 
characteristics of the process and their additional 
modifications. Then, the system consisting of the 
controller nonlinear part and a nonlinear model of 
the CSTR is approximeted by a continuous time 
external linear model with parameters obtained 
through direct recursive parameter estimation. The 
resulting continuous-time controller linear part is 
derived using the polynomial approach and given by 
a solution of a polynomial equation. Tuning of its 
parameters is possible via closed-loop pole 
assignment. The presented method has been tested 
by computer simulation on the nonlinear model of 
the CSTR with a consecutive exothermic reaction. 
Simulation results demonstrated an applicability of 
the presented control strategy and its usefulness 
especially for greater changes of input signals in 
strongly nonlinear regions.  
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