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Abstract: - Model Based Predictive Control (MBPC) or only Predictive Control is one of the control methods which 
have developed considerably over a few past years. It is mostly based on discrete models of controlled systems. Model 
of a controlled system is used for computation of predictions of the systems output on the basis of past inputs, outputs 
and states and designed sequence of future control increments. This paper is focused in comparison of various 
approaches to computation of multi – step ahead predictions using a multivariable input – output model. Computational 
aspects of derivation of predictions can be limitting especially in adaptive predictive control.    
 
Key-Words: - Predictive control, multivariable systems, multi-step-ahead prediction, Diophantine equations, CARIMA 
model  
 
1   Introduction 
Model Based Predictive Control (MBPC) or only 
Predictive Control [1], [2], [3] is one of the control 
methods which have developed considerably over a few 
past years. Predictive control is essentially based on 
discrete or sampled models of processes. Computation of 
appropriate control algorithms is then realized especially 
in the discrete domain. 
The basic idea of MPC [4], [5] is to use a model of a 
controlled process to predict N future outputs of the 
process. A trajectory of future manipulated variables is 
given by solving an optimization problem incorporating 
a suitable cost function and constraints. Only the first 
element of the obtained control sequence is applied. The 
whole procedure is repeated in following sampling 
period. This principle is known as the receding horizon 
strategy. The computation of a control law of MPC is 
based on minimization of the following criterion 
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where e(k+j) is a vector of predicted control errors, 
Δu(k+j) is a vector of future increments of manipulated 
variables (for the system with two inputs and two 
outputs each vector has two elements), N is length of the 
prediction horizon, Nu is length of the control horizon 
and λ is a weighting factor of control increments.  
A predictor in a vector form is given by  

0ˆ yuGy +Δ=                                    (2) 
where ŷ   is a vector of system predictions along the 
horizon of the length N. The first element in the equation 

(2) represents the forced response of the system.  Δu is a 
vector of control increments and G is a matrix of the 
dynamics, y0 is the free response vector.  
The first task is computation of predictions for an 
arbitrary prediction horizon. Dynamics of most of 
processes require horizons of length where it is not 
possible to compute predictions in a simple 
straightforward way. For a particular model, it is 
necessary to compute prediction equations. The most 
often used models in applications and academic papers 
are state – space and input output models. For state-
space models computation of predictions is rather 
obvious. For input – output models there are several 
approaches how to compute prediction equations. All the 
approaches result to the same prediction equations. But 
computational demands for particular methods are 
different. Of course, the main computational problem in 
predictive control is solving the optimization problem. 
But in adaptive control [6], [7] when it is necessary to 
compute prediction equations in each sampling period 
the computational time consumption can be important. It 
can also be important while using the prediction for 
other purposes than for the predictive control. Some of 
the methods also are not algorithmically understandable 
and clear.  
One of the main advantages of predictive control is its 
simple applicability for control of multi – input multi – 
output (MIMO) systems. It is one of the most effective 
approaches to control of multivariable systems since 
multivariable systems can be handled in a 
straightforward manner. The aim of the paper is then to 
compare various approaches to computation of multi – 
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step ahead predictions using a multivariable input – 
output model. 
2   Model of the System  
Let us consider a two input – two output system. The 
two – input/two – output (TITO) processes are the most 
often encountered multivariable processes in practice 
and many processes with inputs/outputs beyond two can 
be treated as several TITO subsystems [8].  
A general transfer matrix of a two-input–two-output 
system with significant cross-coupling between the 
control loops is expressed as: 
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( ) ( ) ( )zzz UGY =                                  (4) 
where ( )zU  and ( )zY  are vectors of the manipulated 
variables and the controlled variables, respectively. 

( ) ( ) ( )[ ]Tzuzuz 21 ,=U     ( ) ( ) ( )[ ]Tzyzyz 21 ,=Y          (5) 
It may be assumed that the transfer matrix can be 
transcribed to the following form of the matrix fraction: 
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where the polynomial matrices [ ] [ ]1
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22 , −− ∈∈ zRzR BA  

are the left coprime factorizations of matrix ( )zG  and the 
matrices [ ] [ ]1

221
1

221 , −− ∈∈ zRzR BA are the right coprime 
factorizations of ( )zG . The model can be also written in 
the form 

( ) ( ) ( ) ( )zzzz UBYA 11 −− =                     (7) 
As an example a model with polynomials of second 
order was chosen. This model proved to be effective for 
control of several TITO laboratory processes [9], where 
controllers based on a model with polynomials of the 
first order failed. The model has sixteen parameters. The 
matrices A and B are defined as follows 
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A widely used model in general model predictive control 
is the CARIMA model which we can obtain from the 
nominal model (7) by adding a disturbance model   
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where ( )kse  is a non-measurable random disturbance that 
is assumed to have zero mean value and constant 
covariance and the operator delta is an integrator. The 
matrix ( )1−zC  will be further considered as 2x2 identity 
matrix. Application of this model enables to achieve 
integral action. 
Difference equations of the incremental form without the 
unknown term are as follows 
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3 Computation of Predictions 
In academic literature there are described several 
methods for computation of prediction equations for 
models based on transfer function. This paper will be 
focused in most often used approaches: methods based 
on Diophantine equations [1], methods based on matrix 
operations [10] and straightforward computation on the 
basis of the CARIMA model [11]. Particular methods 
will be described in the following subsections. 
 
3.1 Method Based on Matrix Operations 
A general difference equation for one – step ahead 
prediction can be written as follows 
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where na is the order of the matrix A and nb is the order 
of the matrix B.  
Now we can formulate equation for i-step ahead 
prediction. 
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It consists of three terms. As for the notation, the arrow 
pointing right is used for strictly future – not including 
current value and arrow pointing left is used for past 
including current value. The particular terms are then 
past output values, past control increments and future 
control increments. The matrices H, P and Q are 
matrices of coefficients. Initialization of the matrices H, 
P and Q for i equal to one is as follows 
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Further a recursive substitution will be used to find 
prediction (15) 
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Following expressions which can be substituted into 
prediction equation (15) can be derived 
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Prediction equation (15) then takes this form 
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After substitution of one step ahead prediction we obtain 
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Common terms can be grouped together 
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The recursion is then performed according to the 
following expressions 
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Initialization of the matrices H, P, Q for our TITO 
example is then following 
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The recursion then proceeds according to the expressions 
(21). 
 
3.2 Method Based on Diophantine Equations 
It is possible to compute j-step ahead prediction from the 
model (10)  
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From the last term of this expression can be separated 
terms with positive powers of z where E is a polynomial 
matrix of the order j minus one and F is a polynomial 
matrix of the same order as the polynomial matrix A. 
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After substitution to equation (23) we can obtain the 
predictor in the form 
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From the original equation (23) we can compute the 
disturbance and substitute to equation (25) 
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After substitution we obtain 
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Now let us make two simplifications: a white noise case 
will be considered and future noise values will be further 
omitted. 

( ) ( ) ( )kjkjk jj yFuBEy ++Δ=+ˆ                (28) 
The matrix G is defined as follows 

jj BEG =   ( ) ( ) ( )kjkjk jj yFuGy ++Δ=+ˆ      (29)   
For the design of the j – step ahead predictor the 
following Diophantine equation is solved  
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Further it is necessary to solve a recursion of the 
Diophantine equation (30). Particular matrices in the 
Diophantine equation can be expanded as follows 
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Let us consider the Diophantine equation corresponding 
to prediction ( )1ˆ ++ jky  
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It is possible to subtract the Diophantine equation (30) 
from the Diophantine equation (34) and obtain the 
following expression 
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Now it is possible to define the following term 
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After substitution 
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it is obvious that ( ) 0~ 1 =−zR  in order to obtain the zero 
matrix on the left side of the equation (37). The matrix E 
can be then computed recursively according to the 
following expression 
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Following expressions can be obtained from the equation 
(37) 
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Initial conditions for the recursion are as follows 
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The final prediction equation has the following form 
( ) ( ) ( )kjkjk jj yFuGy ++Δ=+ˆ                (41) 

In our TITO example, the matrix A~  has the following 
form 
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Initial conditions of the recursion are  
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Initialization of the matrix of the free response and the 
matrix of the dynamics are following 
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The recursion then proceeds according to previously 
introduced steps.  
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Extension of the matrices of the dynamics and the free 
response is as follows: 
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3.3 Method Based on Direct Computation 
from CARIMA Model  
This method is based on an analytical derivation of 
certain predictions and subsequent recursive derivation 
of later predictions. The number of predictions which are 
necessary to compute directly depends on the order of 
the system. The a priori analytical computation, which is 
required, enables to reduce number of matrix operations 

which are necessary to perform during the matrix 
methods.  
The differential equations (11) can be rewritten into the 
matrix form (57) 
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It was necessary to directly compute three step ahead 
predictions in a straightforward way by establishing of 
previous predictions to later predictions. The model 
order defines that computation of one step ahead 
prediction is based on three past values of the system 
output. 
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It is possible to divide computation of the predictions to 
recursion of the free response and recursion of the matrix 
of the dynamics. The free response vector can be 
expressed as: 
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All the elements P(i,j) i=1…3, j=1…4 have to be 
directly computed to initialize the recursion. The next 
row of the matrix P is repeatedly computed on the basis 
of the three previous predictions until the prediction 
horizon is achieved. As an illustrative example it is 
given the computation of the next element of the first 
column: 
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The recursion of the matrix G is similar. The next 
element of the first column is repeatedly computed and 
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the remaining columns are shifted. This procedure is 
performed repeatedly until the prediction horizon is 
achieved. If the control horizon is lower than the 
prediction horizon a number of columns in the matrix is 
reduced. The technique is apparent from the equations 
(62) and (63). 

( ) ( )
( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )
( )

( )
( )

( )
( ) ( )
( ) ( )

( )
( )⎥⎦

⎤
⎢
⎣

⎡
+Δ

Δ

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+Δ
+Δ

Δ
Δ

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=Δ

1
1,21,3
1,11,2

01,1

1
1

2,41,42,61,6
2,31,32,51,5
2,21,22,41,4
2,11,12,31,3

002,21,2
002,11,1

2

1

2

1

k
k

GG
GG

G

ku
ku

ku
ku

gggg
gggg
gggg
gggg

gg
gg

u
u

uG
 (62) 

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )⎥⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−−
−−

+

+⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−−
−−

+

+⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−−
−−

=

=++=

=⎥
⎦

⎤
⎢
⎣

⎡
=

2,21,2
2,11,1

1
1

2,41,4
2,31,3

2,61,6
2,51,5

1
1

1,11,21,3
2,81,8
2,71,7

1,4

75

31

8765

4321

75

31

321

gg
gg

aa
aa

gg
gg

aaaa
aaaa

gg
gg

aa
aa

gg
gg

GAGAGA

G

        (63) 

 
4   Simulation Results 
Predictions of the following systems behaviour is given 
here as an example.  

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−−
+−+−

= −−−−

−−−−
−

2121

2121
1

0830.04564.010886.00167.0
1797.00220.01745.05827.01

zzzz
zzzzzA

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−+
++−= −−−−

−−−−
−

2121

2121
1

3489.00371.03107.02783.0
2197.01484.00955.00035.0

zzzz
zzzzzB

 
                                                                                     (64) 
Fig. 1 shows the plant‘s step response 

 
Fig. 1 Step response of the plant 

As the input of the system it was chosen a random signal 
with zero mean value. Values of the signal were 
generated a priori. Predictions are computed so that such 
a number of outputs is predicted which corresponds to 
the value of the prediction horizon. Only the first 
predicted value is taken and the procedure is repeated. 
Results obtained for particular methods were compared 
each other. In all cases were obtained identical courses 
of systems output predictions. It means that each 
different method makes the same final prediction 
equations. The results were also compared to results of 
simulation, which means simple input – output response. 
Courses of the outputs were also identical and 
correctness of all methods was proved. In the following 
figures are results of simulation and prediction (only one 
figure for prediction is presented because as it was 
mentioned the results were identical). Both prediction 
and control horizons were set to 10. 

 
Fig. 2 Prediction 

 
Fig. 3 Simulation 
 
All three methods resulted to the same prediction 
equations. But computational demands for particular 
methods are different. Computational time demands on 
CPU of personal computer for particular methods were 
evaluated. Algorithms for recursive computation of 
matrices of coefficients, where particular methods differ, 
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were considered. The sequences of commands were 
tested using Matlab. During these experiments only the 
simulation programs for particular methods run on the 
computer. Measurement for each method was performed 
thirty times and the results were averaged. Individual 
time periods of computation for particular methods did 
not differ significantly so that the results can be 
considered as authentic. Results of the time 
measurements are in the following table 
 

Table. 1 Time periods of computation 

Method based 
on matrix 
operations 

Method based 
on Diophantine 

equations 

Direct 
computation 

from CARIMA 
model 

0,0109 s 0,0154 s 0,0007 s 

 
5   Conclusion 
Three methods of computation of multivariable systems 
output prediction were algorithmically realized. 
Correctness of all methods was verified by simulation. 
Simulation results proved applicability of the methods. 
The methods were evaluated from the point of view of 
computational time demands. From this evaluation 
results that the method based on direct computation of 
predictions from CARIMA model is significantly faster 
than the remaining two methods, where comparable 
results were achieved. If the methods are applied for 
predictive controllers based on models with fixed 
parameters then the computation of predictions is 
necessary to perform only once. In this case saving of 
computational time does not have significant 
importance. But in case that the predictive controller is 
realized as an adaptive predictive controller the 
computation of predictions is necessary to perform in 
each sampling period. Saving of computational time then 
has particular significance. It can also be important while 
using the prediction for other purposes than for the 
predictive control. 
From the algorithmic point of view the method based on 
Diophantine equations seems to be less understandable 
and clear. The method of computation of predictions is 
not as straightforward as the remaining two methods, 
where computation is quite clear. A disadvantage of 
direct computation from CARIMA model is necessity of 
direct analytical computation of a certain number of 
predictions. 
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