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Abstract: A stochastic model of the signal transduction process in the human body is proposed and investigated.
Conversion of signals external to the cells into internal responses is mediated by a protein crucial to the control of
the cells biochemical reactions to external stimuli, leading to the production of a secondary hormone or messenger,
such as cAMP(Cyclic adenosine monophosphate). The G-protein coupled receptors (GPCRs) of external signals
carried by messenger molecules are spread over the cell membrane surface. Experimental data on cAMP measure-
ments exhibit seemingly random fluctuations as time progresses. Some researchers have suggested that the cell
receptors receive the chemical signals in a stochastic fashion (Ueda and Shibata, 2007). The deterministic model
discussed by Rattanakul et al. (2009) has thus been modified into a system of stochastic differential equations
in order to take into account such stochastic nature. Estimations of the model parameters, together with related
statistics, are found so that helpful understanding may be reached concerning the possible impacts of stochastic
effects on the systems dynamic behavior leading to helpful conclusions.

Key–Words: G-protein coupled receptors, Parameter estimation, Signal transduction, Stochastic differential equa-
tion.

1 Introduction
A cell is the smallest unit of life which is func-

tional in the living organism. The functions of a cell
are growth, metabolisms, creation, protein synthesis,
and so on. To perform its function, each cell has to in-
teract with each other. One way this is done is through
signaling. If the cell perceives and transmits the signal
correctly, this can lead to proper development, repair-
ing, and so on. However, if the cell responds to the
signals incorrectly, this can cause many serious dis-
eases [1].

The signaling process involves extracellular sig-
naling molecules and cell-surface receptors. The ex-
tracellular signaling can transmit the signal over a

short distance to stimulate cells that are close to the
source or transmits the signal throughout the body.
There are three types of signaling: autocrine signal-
ing, paracrine signaling and endocrine signaling. The
autocrine signaling is the process of signaling within
the cell. This means that the cell uses the extracellular
signaling to transmits the signal to its own receptors.
For the paracrine signaling, the signal is sent from the
cell to other cells that are close to the signal releasing
cell. Lastly, the endocrine signaling is the process of
signaling the cell that is far away from the signal re-
leasing cell. The signal that is transmitted is actually
hormones, which is secreted into the bloodstream and
carried to the target cells [3].
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The molecule that receives the signal is called a
receptor. It is located on the surface of the cell. In ad-
dition, each cell has many receptors and each receptor
responds to specific kinds of chemical signals. After
the receptor receives the signal, it will relay the signal
into a series of internal signaling molecules [6].

A cell signaling process can be divided into 3
stages: signal reception, signal transduction and cel-
lular response [3]. The signal reception concerns the
target cells detection of a signal transmitted from the
cell’s surrounding environment and the signal is de-
tected when the ligand binds to a receptor. The signal
transduction converts the external stimuli into a form
which can bring about a specific cellular response. In
the third stage of cell signaling, the transduced signal
triggers a specific cellular response [3].

One type of receptors that comprises a large pro-
tein family of transmembrane receptors is called a G-
protein-coupled receptor, which can only be found in
eukaryotes. Their function is to detect molecules out-
side the cell and activate inside signal transduction
pathways. It transmits various extracellular signals
such as hormones, growth factors and neurotransmit-
ters to the effectors such as adenylyl cyclase (AC) and
phospholipase. Studies have indicated that a defect in
the function of either the G-protein or GPCRs can lead
to different kinds of human diseases [4, 17].

2 Transduction Process

Cells have a mechanism for detecting and re-
sponding to external signals. One of the more com-
plex tactics for doing this concerns a three-stage G
protein coupled enzyme cascade [17], a schematic di-
agram of which is in Figure 1.

In the first stage, the basal stage, the G protein
which is constituted of 3 subunits: α, β and γ sub-
units, with GDP bound to the α - subunit, is activated
by the receptor’s interaction with a particular ligand.

In the second stage, the transduction stage, after
the receptor has been activated and turned on the het-
erotrimeric G protein, by causing the G protein to re-
place GDP (guanosine diphosphate) by GTP (guano-
sine triphosphate), the GTP-bound α-subunit then dis-
sociates from β and γ subunits and either or both reg-
ulates effector unit whose activity produces secondary
messengers (cAMP).

The G protein subunit is transsient and it is ter-
minated by the GTPase activity of the α - subunit.
GTPase converts bound GTP to GDP then the protein
becomes inactivated.

Figure 1: The G-protein GTPase cycle.

3 The Governing Equations
3.1 Deterministic model

We could think of the intracellular signal trans-
duction in this way. Adenylyl cyclase (AC) occurs in
two stages: active (R∗) and inactive (R). R is con-
verted into R∗ by a GDP bound α-subunit of G pro-
tein denoted by A and R∗ is converted into R by GDP
bound α-subunit whose amount is given by I . More-
over, A and I are activated by external signal mem-
brane surface concentration (S). The activation of AC
leads to the synthesis of cAMP (C) which regulates a
downstream reaction to amplify the initial signal.

Figure 2: The reaction scheme

According to the several works [14, 15, 16]. We
could consider the above dynamics in this way.

The equation of R∗ can be written as

dR∗

dt
= −k−rIR

∗ + krAR (1)

where the first term on the right is the removal rate
and the last term is the activation rate.
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Assuming that the total amount of AC is constant
denoted by RT so that RT = R∗ + R, Equation (1)
becomes

dR∗

dt
= − (k−rI + krA)R∗ + krART (2)

From the scheme seen in Figure 2, the dynamics
of activator density (A) and inhibitor density (I) are
described by the following equations

dA

dt
= −k−aA+ kaS (3)

and
dI

dt
= −k−iI + kiA (4)

where the first terms on the right are the corre-
sponding removal rates and the last terms are the
corresponding rates of production.

The concentration of the second messenger or
cAMP (C) which is synthesized as a result of enzyme
R∗ activation [13], satisfies the following equation

dC

dt
= −k−cC + kc1[R

∗]2 + kc2 (5)

where the first term on the right is the removal rate
and the last two terms represent the synthesis rate, kc2
being the zero order rate of production.

The dynamics of S follows the equation

dS

dt
= −k−sS −

b1S

b2 + S
+ ksC (6)

where the first term on the right is the removal rate,
the second term is the rate at which it is internalized
through the cell membrane and the last term repre-
sents the signal amplification due to the secondary
hormone C.

As argued in [5, 8], we may assume that the dy-
namics of R∗, A and C are relatively fast compared to
the dynamics of I and S. Then, the values of R∗, A
and C equilibrate quickly to

R∗ =
krART

k−rI + krA
(7)

A =
ks
ka
S (8)

C =
kc1
k−c

[R∗]2 +
kc2
k−c

. (9)

Substituting (8) in (4), we obtain

dI

dt
= −a1I + a2S. (10)

where a1 = k−i and a2 =
kak−i

k−a
.

Substituting (7), (8), (9) in (6), we have

dS

dt
= −a3S −

b1S

b2 + S
+

a4S
2

(a5S + I)2
+ a6 (11)

where a3 = k−s, a4 =
kc1ks
k−c

(
kakr
k−ak−r

RT

)2

,

a5 =
kakr
k−ak−r

and a6 =
kc2ks
k−c

.

3.2 Formulation of the gradient-sensing
SDEs model

Following the earlier works [2, 10, 11, 18], we
could think about the above system (10)-(11) in this
way.

Substituting Equation (7) in (9), one obtains

C = k

[
a4S

2

(a5S + I)2
+ a6

]
(12)

where k =
1

ks
.

Then, we can write (11) as

dS

dt
= −a3S −

b1S

b2 + S
+
C

k
, S(0) = S0 (13)

when C is considered to be erratic.

We hypothesize that C is perturbed by a Gaussian
white noise ξ,

C → C + σ̃ξ

where σ̃ is a positive unknown parameter representing
the noise intensity factor.

Then, we obtain

dS

dt
= −a3S −

b1S

b2 + S
+
C + σ̃ξ

k
(14)

Substituting σ̃/k with σ,

dS =

(
−a3S −

b1S

b2 + S
+
C

k

)
dt+ σdW (15)
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or

dS =

(
−a3S −

b1S

b2 + S
+

a4S
2

(a5S + I)2
+ a6

)
dt

+σdW (16)

where W represents a standard Brownian motion.
Therefore, we arrive at the model consisting of

the following equations

dI

dt
= −a1I + a2S, I(0) = I0 (17)

dS =

(
−a3S −

b1S

b2 + S
+

a4S
2

(a5S + I)2
+ a6

)
dt

+σdW, S(0) = S0 (18)

C = k

[
a4S

2

(a5S + I)2
+ a6

]
(19)

4 Parameter Estimation

4.1 Experimental data

To determine the above system (17) - (19) gives
a proper model for the transduction process, we
measured intracellular cAMP by using Fisher rat
thyroid cells stably expressing type II antidiuretic
hormone receptors, FRT-V2R, cultured in F-12
modified Coon’s medium (Sigma) supplemented
with 10% fetal bovine serum, 100 U/ml penicillin
and 100 µg/ml streptomycin at 37◦C in a humidified
atmosphere of 5% CO2.

Every two weeks, the FRT-V2R cells were
selected with medium containing 500 µg/ml Zeocin,
500 µg/ml Geneticin and 350 µg/ml hygromycin.
Then, the FRT-V2R cells were plated in 24-well
plates overnight. After obtaining 80% of confluence,
the cells were washed three times with PBS and
incubated with 100 nM dDAVP (Sigma-Aldrich), a
selective V2R agonist.

The incubation time was varied from 5 seconds
to 16 minutes. The reaction was terminated by
lysis buffer. After the incubation, cell lysate was
transferred to 96-well plates. Then, the intracellular
cAMP measurement using cAMP Biotrak EIA sys-
tem (Amersham, GE Healthcare). The measurement
protocol follows manufacturer’s instructions, and
samples were determined at optical density 450 nm
[15].

Lowry method (1951) [9] was used to determined
the amount of intracellular cAMP expressed per unit
amount of protein.

To estimate the parameter values, we con-
sider that the unknown model parameters (θ =
[a1, a2, a3, a4, a5, a6, b1, b2, σ]) could be estimated
given the 2 equations. We use Euler-Maruyama ap-
proximation and Maximum likelihood estimator [12]
to estimate the parameters upon the measured experi-
mental data described above.

4.2 Euler-Maruyama approximation

Next, we consider the Itô SDE [7]

dXt = f(Xt, θ)dt+ g(Xt, θ)dWt, (20)
X(0) = X0

where W is an m - dimensional standard Wiener
process and

f : R×Θ→ R and g : R×Θ→ R1×m

are known functions depending on an unknown
finite-dimensional parameter vector θ ∈ Θ.

Considering the the Itô SDE (20) on [t0, T ], for
a given discretization t0 < t1 < · · · < tn < · · · <
tN = T of [t0, T ], an Euler-Maruyama approximation
is a continuous time stochastic process satisfying the
iterative scheme

Yn+1 = Yn + hnf(Yn) + g(Yn)∆Wn, (21)

Y0 = X0, n = 0, 1, . . . , N − 1

where

Yn = Yn(tn), hn = tn+1 − tn is the stepsize,

∆Wn = W (tn+1)−W (tn) ∼ N (0, hn)

with W (t0) = 0 and N is the normal distribution.

4.3 Maximum likelihood estimator

The maximum likelihood estimator (MLE) of θ
can be calculated if the transition densities p(xt;xs, θ)
of X are knows, s < t. The log-likelihood function
of θ is given by

ln(θ) =

n∑
i=1

log p(xi, xi−1, θ) (22)
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and the maximum likelihood estimator θ̂ can be found
by maximizing (22) with respect to θ. Under mild
regularity conditions, θ̂ is consistent, asymptotically
normally distributed and asymptotically efficient as n
tends to infinity.

4.4 Results

The estimated parameter values can be found as
given in Table 1.

Table 1: Estimated model parameters.

parameter estimated value

a1 0.90817 ± 0.03345

a2 0.29170 ± 0.01829

a3 2.14885 ± 9.38365

a4 0.06629 ± 0.28644

a5 0.31687 ± 0.88463

a6 0.07902 ± 0.24257

b1 0.31918 ± 2.49458

b2 0.11690 ± 0.30378

σ 0.00954 ± 0.00249

Simulation results of the identified model are
shown in Figure 3 and Figure 4.

Figure 3: Plots the numerical solution over 50 trajec-
tories. The experimental measurements are shown as
white dots.

Figure 4: Plots the empirical mean (green solid line),
95% confident interval (dashed lines), Q1 - Q3 quar-
tiles of the numerical solution (dotted lines) over
50 trajectories. The experimental measurements are
shown as empty circles, while the empirical mean is
shown here as a solid curve.

5 Conclusion
The aim of this paper was to estimate the param-

eters of the model for the experiment data in signal
transduction involving G protein coupled receptors.

We developed a mathematical model by modi-
fying the deterministic model proposed in [14] into
stochastic model. Then, we estimated the parameter
values by using the Euler-Maruyama Approximation
and maximum likelihood estimators. Nine of the un-
known parameter values could be estimated moder-
ately well, given the limited data set of only 13 sam-
ples.
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