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Abstract: - Medical images are increasingly being used within healthcare for diagnosis, planning treatment, 
guiding treatment and monitoring disease progression. Technically, medical imaging mainly processes 
uncertain, missing, ambiguous, complementary, inconsistent, redundant contradictory, distorted data and 
information has a strong structural character. As a general approach, the understanding of any image involves 
the matching of features extracted from the image with pre-stored models. The production of a high-level 
symbolic model requires the representation of knowledge about the objects to be modeled, their relationships, 
and how and when to use the information stored within the model.  

This paper reports new (semi)automated methods for the segmentation and classification of medical 
images using soft computing techniques (e.g. fuzzy logic, neural networks, genetic algorithms), information 
fusion and specific domain knowledge. Fuzzy logic acts as a unified framework for representing and processing 
both numerical and symbolic information (“hybridization”), as well as structural information constituted mainly 
by spatial relationships in biomedical imaging. Promising results show the superiority of the soft computing 
and knowledge-based approach over best traditional techniques in terms of segmentation errors. The 
classification of different anatomic structures is made by implementing rules yielded both by domain literature 
and by medical experts. Though the proposed methodology has been implemented and successfully used for 
model-driven in the domain of medical imaging, the deployed methods are generic and applicable to any 
structure that can be defined by expert knowledge and morphological image analysis. 
 
Key-Words: - medical image processing, artificial intelligence, soft-computing, knowledge-based processing, 
data fusion. 
 
 
1 Introduction 
Artificial Intelligence has proved to yield promising 
results in digital image processing and analysis 
when missing, ambiguous or distorted data is 
available. Moreover, for biomedical image analysis 
the structural character of information may 
successfully be approached by using methods of 
A.I.: Knowledge Based Systems, Expert Systems, 
Decision Support Systems, Neural Networks, Fuzzy 
Logic and Systems, Neuro-Fuzzy Systems, 
Evolutionary and Genetic Algorithms, Data Mining, 
Knowledge Discovery, Semantic Nets, Symbolic 
Calculus for knowledge representation, etc. The 
data fusion methods successfully solve the 
aggregation of numerical and linguistic information, 
and are able to cope with ambiguous, uncertain, 

conflicting, complementary, imprecise and 
redundant information, like that occurring in 
biomedical imaging domain, in order to provide a 
more accurate and less uncertain interpretation. 

In fact, all main stages of a pattern recognition 
process (i.e. image pre-processing/enhancement, 
segmentation, features selection, pattern 
classification) may have their soft computing 
approaches and it depends only on actual 
applications if these approaches are used or not. 

Clinical applications imply at least an 
adaptability capability performed through a 
knowledge-based / decision-making system, a soft-
computing method or a non-linear technique [26]. 

The specific big complexity in medical imaging 
is based on huge amounts of data, large knowledge 
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bases, incompleteness, imprecision, noise, 
inconsistency in data and knowledge (a definite lack 
for good models in many areas of medicine), 
redundancy, various ways of reasoning, including 
qualitative reasoning, heuristics, and subjective 
reasoning [24].  

Soft computing (SC) methods (fuzzy logic [13], 
genetic algorithms [15] and neural networks 
[14][18]), that include both qualitative and 
quantitative representations, fill the gap between the 
needs of the medical science and traditional 
modeling and inference methods in precise sciences 
[4][6][7][8][12][21][28]. The final stage of data 
sources processing is to combine the available 
information to derive the best data and/or decision 
through data fusion methods [19]. 

The main medical domains in which SC finds 
challenging applications are diagnosis, treatment, 
rehabilitation, prevention, screening, surgery, and 
healthcare management. These applications go from 
“classical” ones (e.g. electrocardiogram 
interpretation) to automated diagnosis, medical 
knowledge discovery, medical image bases 
management, intelligent techniques in rehabilitation, 
etc. 

SC methods for medical imaging and data fusion 
straighten their application in clinical medicine, e.g. 
in radiation therapy, general surgery, conventional 
neurosurgery, etc.  

Data fusion facilitates a better use of image data 
by providing methods for the fusion of data from 
multiple modalities, e.g. multimodal registration and 
fusion between anatomical and functional data, the 
fusion of data from different patients or with a priori 
knowledge (models and/or atlases) and the 
recognition of complex anatomical structures and 
their symbolic identifications, when they are not 
explicitly described by the image contents. As 
medical imaging is strongly domain-dependent, 
three aspects of data fusion are of particular 
emphasis on brain imaging, for instance. The first 
one concerns the combination of images and/or 
generic data; specifically, methods for 
multimodality registration and matching of data 
from different individuals by means of warping 
models. The second aspect concerns the 
identification of anatomical structures. Finally, data 
hybridization for 3D display techniques to render 
the combined data is useful for user interface.  

In the following we have approached the topic 
through two applications of SC in medical image 
processing and analysis. 

 
 

2 Knowledge – Based Contour 
Detection using Fuzzy Logic and 
Knowledge Representation 

 
The use of fuzzy logic and semantic knowledge for 
edge detection and segmentation of magnetic 
resonance (MR) images of the brain [9], [10], [11],  
shown the superiority of the knowledge-based 
approach over best traditional techniques in terms of 
segmentation errors. Our method uses: 
• a fuzzy knowledge-based contour detection 

technique; 
• a semantic net for representing domain 

knowledge; 
• robust contour detection by searching of an 

optimal path between two known points of the 
contour that optimizes a cost function, by means 
of a breadth-first graph search strategy. 
Image segmentation is one of the most important 

steps leading to the analysis of digital images, its 
main goal being to divide an image into disjoint 
parts that have a strong correlation with objects or 
areas of the real world [1][3][5][16][23]. Among the 
low-level segmentation methods, there are two 
different approaches. The first involves region-
based segmentation: classification by thresholding, 
looking for sets of attributes, region growing, 
division and merging. The second approach 
involves contour-based segmentation (looking for 
local discontinuities): derivatives operators, active 
contours (snakes), mathematical morphology, etc. 
These two groups of methods solve a dual problem, 
in the sense that each region can be represented by 
its closed boundary, and each closed boundary 
describes a region. The region adjacency graph is a 
usual example of this duality. But these methods 
often lead to missing edge pieces (gaps) or 
ambiguities if no domain specific knowledge about 
the expected contours is incorporated. Because of 
the different natures of the various edge- and region-
based techniques, they may be expected to give 
somewhat different results/information and 
consequently the segmentation itself is not unique. 
Contours in biomedical imaging have a fuzzy nature 
due to: (i) greyness ambiguity, arising from the 
contrast inhomogeneity of identical anatomical 
objects; (ii) spatial ambiguity, coming from 
variations in size, shape, position and pathological 
variability; (iii) partial volume effects, i.e. the image 
of two tissues in one voxel (or pixel). Therefore, 
exact decisions about the location of contour points 
are in principle impossible, but “best estimate” 
decisions can be made, as physicians do when 
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interactively defining the outlines of anatomical 
structures (regions of interest-ROI).  
Fuzzy Iconic Level.  A two-dimensional (2D) fuzzy 
image FIM,N is a 2D real function f(x, y) defined on 
each pixel coordinate (x, y) so that 0 ≤ x < M, 0 ≤ y 
< N and 0 ≤ f(x, y) ≤1. The fuzzy image reflects 
some specific properties, e.g. brightness, edginess 
and texture, that are defined by the membership 
function f(x,y). The membership function has often a 
triangular form. As alternatives, fuzzy logic uses 
specific nonlinear functions, such as Z, S, or Π. So, 
a fuzzy image is the projection of a digital image by 
a membership function. If more fuzzy images are 
assigned to one single 2D image, then the fuzzy 
image is represented by a 3D image whose third 
dimension is defined by the number of fuzzy 
images: 

fi(x, y) : IM,N → ; fi(x, y)∈[0, 1]; i∈{1, 2, …, K}  
      (1) 

i
MxNFI

where K indicates the number of possessed 
properties. Figure 1 shows a typical fuzzy image 
processing procedure. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 1. Diagram of typical fuzzy image processing 
 

The objective of our contour-based segmentation 
procedure is the detection of fuzzy contour of 
objects, in which “fuzzy” does not refer to the shape 
of contours but to their representation mechanism. 
The image sets are labeled with contour names (e.g. 
background/skin). Each set member is assigned a 
value on [0, l] representing its grade of membership 
for a contour. Fuzzy sets are in function notation 
with image point vectors as arguments. 

10],1,0[]...0[: _
2

_ ≤≤→ namecontournamecontour fNf ,(2) 

where N refers to the image size. The contours are 
represented in frames, which comprise parametrical 

and relational knowledge for each desired contour. 
Fuzzy sets for each contour are calculated collecting 
evidence by means of well defined 
operationalizations of knowledge in the frames. 
Some methods for operationalization are described 
below. 

 
(a) Gradient 
Evidence for a contour is its high grey value 

gradient. So, with the assertion “The 
Background/Skin contour has a high gradient in the 
ρ image” and |gρ(x)| is the magnitude of the gradient 
of ρ, normalized to the interval [0, l], we follow that 

)()(/ xgxf skinbackground ρ≤ .      (3) 

We use “≤” as the conjunction of the above 
assertion and all other assertions about this specific 
contour should be used to define the fuzzy set for 
the contour. A conjunction is expressed by a 
minimum operation in fuzzy logic. Of course, the 
initial value of each fuzzy set value should be one, 
as no assertion can increase fuzzy values. 

 
(b) Direction 

FI(x,y) I’(x,y

Membership 
data base 

Defuzzification 
data base 

Fuzzy logical operations 

Fuzzy 
logic 

As long as we are dealing with convex objects, we 
may employ valuable information using direction of 
the gradient. We define a center cρ of our images 
and a direction vector dρ , depending on x. 

xcxd
x
xx

c −==
∑
∑

ρρ ρ
ρ

)(,
)(
)( .           (4) 

The assertion “The direction of the ρ gradient is 
inside for the Background/Skin contour” can be 
operationalized with unit vectors g’ρ and d’ρ : 

( ))()()( ''
/ xdxgNxf posskinbackground ρρ ⋅≤  .      (5) 

Npos is a normalization function that maps all 
negative values to 0 and normalizes all positive 
values linearly to the interval [0, 1]. The constraint 
function is proportional to the angle between the 
gradient and dρ. If the direction is outside, dρ is used 
with opposite sign. 

 
(c) Relations 

In addition, we may also use relations among 
contours. With an assertion like “The 
background/skin contour is outside the skin/bone 
contour” we may say that fbackground/skin(x) must not 
exceed the largest value of fskin/bone along a line 
between x and cρ: 

( ))((max)( /
10

/ xdxfNxf boneskindskinbackground ρ
λ

λ+≤
≤≤

(6) 

I(x,y) Fuzzy 
operators 

Defuzzification Fuzzification 
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Nd is again a normalization factor, which is 
determined for each d to map values on [0, 1]. If the 
maximum-term is very low, there is a low 
plausibility for the fskin/bone contour inside point x and 
therefore a low plausibility for x being outside of 
fskin/bone . 

Similarly, inside can be defined as 

( ))((max)( /
0

/ xdxfNxf boneskindbrainbone ρ
λ

λ+≤
≤

 .   (7) 

Knowledge representation. We used these 
methods of operationalization in conjunction with a 
suitable knowledge representation technique for 
four contours in our magnetic resonance images (in 
brackets we quote the image on which the procedure 
is applied): background/skin(ρ), skin/bone(ρ), 
bone/brain(ρ) and brain/ventricles(T1). The frame 
representations of knowledge about these contours 
are: 
 
background/skin:       skin/bone: 
has-a-high-gradient-in : ρ   has-a-high-gradient-in: ρ 
gradient-direction-is:            gradient-direction-is:  
inside, ρ   outside, ρ 
is-outside-of : skin/bone  
 
bone/brain:        brain/ventricles: 
has-a-high-gradient-in: ρ  has-a-high-gradient-in: T1 
gradient-direction-is :             gradient-direction-is: 
inside, ρ   inside, T1 

is-inside-of : skin/bone        is-inside-of: bone/brain 
 

As can be seen, the slot gradient-direction-is has 
two values, one giving the direction and the other 
referring to the gradient image to be used.  

All fuzzy sets for contours are initialized with 1 
for each pixel and each pixel has the highest 
membership value for each contour. The assertions 
represented in the above slots of each contour frame 
are implemented using the operationalization of 
knowledge. Relational assertions can be used only if 
the argument (the value of, e.g., is-outside-of) is a 
frame with no slots that have not been applied. That 
is, one can use a contour as argument of relational 
assertions of other contours if all knowledge has 
already been applied. The algorithm for knowledge 
application is simple, but practical situations lead to 
complex representations. 

Robust contour detection. As traditional edge 
detectors applied to fuzzy contours yield unwanted 
gaps, we approached this task as a search of an 
optimal path between two known points of the 
contour that optimizes a cost function, by using a 
breadth-first graph search strategy. Four initial 

points acting both as starting point and end point of 
different contour segments were chosen. The result 
is a closed border made by four contour segments. 

The procedure starts from cρ (4), searches for 
initial points in the four directions π/4 separated, 
and selects the points having the maximal product of 
|gρ(x)| and fuzzy contour values for each. 

To each image pixel four features are attached: 
(i) ))(/)(()( xgxgarctgx yx=Φ , gradient direction; 

(ii) |g(x)|, gradient magnitude; 
(iii) 2/)x()x(C π+Φ=Φ , contour direction⋅(mod π); 
(iv) fcontourname(x), fuzzy contour values. The transfer 
cost function for each possible contour point is 
defined as 

C(x, x’) = (C1(x, x’) + w C2(x, x’)) f(x’),        (8) 

x and x’ being two neighboring points with x’ a 
candidate successor of x and w a weight. The terms 
of (8) are as follows: 
C1(x, x’) = Δg(x, x’) = |g(x’) − g(x)| + |g(x’) − g(xend)|  

(9) 
with xend the predefined contour end point. This term 
assures local continuity when referring to gradient 
values. 

C2(x,x’) = Δα(x,x’) = [|ΦC(x) − α(x,x’)| + |ΦC(x’) − 
α(x,x’)|] / 2,                (10) 

with α denoting the direction of (x-x’) line. C2(x) is 
upper bounded by a threshold value, θα, whose 
exceeding sets C2 to infinity. Both terms capture 
small global variations of gradient and assure early 
quit of paths with high costs. This cost function 
favors smooth contours and small deviations of the 
path direction α from the contour direction ΦC(x). 

The term f(x’) in (8) is defined as 

f(x’) = 2 − fcontourname(x’)   (11) 

and it comes from the knowledge-based contour 
detection phase. 

The search algorithm begins at a certain start 
point as root node. Each node is expanded according 
to its 8 neighbors if transfer cost does not equal 
infinity and contains the cumulative cost and a link 
to its predecessor. The breadth-first graph search 
technique implies the simultaneous expanding of all 
nodes with the same number of predecessors, till the 
end point is reached. After all nodes with low 
transfer costs have been expanded, the optimal 
contour is found by tracing the nodes from xend back 
to xstart along the predecessor path. At each point an 
estimate of the costs to xend is added as a heuristic 
term. For lowering the number of graph nodes, at 
each level this number is limited to the best n nodes. 
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Results. We used experimentally the following 
values for tuning the cost function: w=0.70 in (8), θα 
=700. n=30 nodes were used for graph search 
procedure. 

Results of the contour detection for the images in 
Figure 2 are displayed in Figures 3, 4 and 5, 
respectively. In order to assess the effectiveness of 
fuzzy contour detection, a comparison with two 
traditional edge detection methods (Sobel and 
Canny operators [23]) has been shown. In our study 
only little knowledge about the desired contour was 
used.  

Figure 5 presents a ρ-weighted image of a brain 
with tumor. One can observe its low contrast, which 
is a severe impediment for traditional edge detection 
techniques. In comparison with the very popular 
Canny filter our method yields superior results 
concerning the accuracy of edge detection. Figure 6 
shows segmentation results obtained by using model 
knowledge and semantic networks. Thus, ventricles 
from T1-image (Figure 2b), the tumor from 
“Tumor”-image and the imagistic fuzzy set 
inside(bone) with contours superposed were 
obtained after a short processing time.  

Another advantage of the use of iconic fuzzy sets 
is that they partially overcomes the problems of 
image preprocessing (contrast normalization, 
histogram equalization, filtering a.s.o.), which must 
be used with traditional techniques when we are 
faced with low/variable contrast and noisy images. 

 

   
(a) ρ image      (b) T1 image           (c) T2 image 
Fig. 2. ρ, T1 and T2 images of an axial MRI section 

 
 

       
(a) (b)  

 

    
     (c)        (d) 

Fig. 3. ρ image:  Sobel (a); Canny (b); fuzzy contour 
(c); (c) and Figure 2(a) superposed (d) 

 

       
(a) (b)     

  

    
 (c)      (d) 

Fig. 4: T2 image:  Sobel (a); Canny (b); fuzzy contour 
(c); Fig.(c) and Fig.2(c) superposed (d) 

 
 

   
(a) (b)  

 

   
 (c)      (d) 

Fig. 5. “Tumor” image (a); Canny (b); fuzzy (c); 
figures (a)+(c) superposed (d) 
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      (a)                               (b)   (c) 

Fig. 6. Ventricles from T1 image (a); tumor from 
“Tumor” image (b); inside(Bone) from T1 (c) 

 
 
3 Contour-Based Image Segmentation 

using Genetic Algorithms 
 
We have developed a semi-automated contour-
based segmentation method in which first the 
domain expert manually traces different contours of 
objects of interest. Then, these contours are used as 
a training data set for a contour tracking method 
based on an elastic-contour model, optimized by a 
genetic algorithm. 

The experiments were made both on synthetic 
images and on real CT images of the brain, 
interpreted by medical experts from the 
Neurosurgery Hospital in Iasi, Romania. 
 
 
3.1 Elastic contour model 
A classic segmentation method [20] represents the 
contour to be tracked as a deformable curve, also 
called “snake”, whose shape is finally determined 
by different forces and external constraints. Each 
force acts along the direction of the scan line to 
which its start edge point belongs. The amplitude of 
these forces is computed from image features. A 
pseudo-energy functional, that contains both internal 
energy of the curve and those forces that attract the 
curve towards the contour to be detected, is defined.  

The best contours are represented by the lowest 
energy values, so the segmentation task becomes the 
optimization problem to minimize the energy 
function given by the formula 

( ) dssvEsvEsvEE conimg )))(())(()((
1

0 int∫ ++=  ,  (12) 

where v(s) = (x(s), y(s)) is the parametric equation 
of the curve, Eint is the internal energy of the 
„snake”, Eimg accounts for forces yielded by image 
parameters, and Econ stands for external constraints.  

The internal energy is given by  

2
/)()(/)()( 222

int

dssvdsdssdvs
E

βα +
= ,   (13) 

where α(s) and β(s) are two parameters. 

The attractive field generated by image edges is 

Eimg = wl El + wm Em + wterm Eterm , (14) 

where wl , wm şi wterm are weights chosen by the 
user. The function used for El is the intensity 
(brightness) of the image: El = I(x, y). 

The term that acts for attracting curve by the 
edges is given by 

2),( yxIEm ∇−= .  (15) 

Eterm takes into account segment ends and corners 
and is given by 
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+−
= ,   (16) 

where Is(x, y) = Gσ(x, y) ∗ I(x, y) is the convolution 
of I(x, y) with a Gaussian kernel and the terms in 
(16) are obtained by deriving the gradient angle 
arctan( s

y
s
x II ) with respect to the unit vector, 

normal to the gradient direction. 
The „discrete” formula of the total energy (12) is 

)()()(
1

int iEiEiEE conimg

n

i
d ++= ∑

=

, (17) 

where the sum of the last two terms is called Eext. 
By passing to finite differences, we may write 

for the internal energy 

4

2
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2
1

int 2
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2
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i

ii
i

+−− +−
+

−
= βα . (18) 

The optimization condition implies the deriving 
the total energy and equaling it to zero. This 
operation yields in matrix notation 

Ax + fx(x, y) = 0  (19) 

Ay + fy(x, y) = 0 , 

where A is a penta-diagonal matrix and fx(i) = 
(dEext/dxi ), fy(i) = (dEext/dyi ). 

Solving the above equation system determines 
the coordinates x and y of each contour pixel. The 
fully-automated method needs a seed contour placed 
near the desired local minimum of energy to prevent 
it to be caught by other possible minima, so some 
knowledge brought by the user and semi-automated 
approach are more than appropriate. 
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3.2 Designing the contour detection 
optimized by genetic algorithms 

Our contour tracking method uses two stages: 
(1) a non-linear contour detector; 
(2) an interpolation block based on „snake” model. 

As the overall precision depends on both these 
modules, a genetic algorithm (GA) achieves the 
global optimization. First, it acts on the training set 
of manually delineated contours and maximizes a 
fitness function that yields a value that represents 
the degree of similarity between the references and 
the contours in the input image. The set of edge 
points yielded by the contour detector is interpolated 
with an elastic model, the procedure is initiated by 
the training contours set, and then is applied to the 
whole input image. 
 
The contour detector. A  second-order polynomial 
filter is used for edge detection. The scan geometry 
(Fig. 7) shows that for each point Ph,k-1  of the 
contour Ck-1 one defines the scan segment Lh, 
centered around Ph,k-1 , that is Sw pixels in length, 
along the direction of the normal to Ck-1 in Ph,k-1. 
Within this line of Sw pixels the input image is 
resampled. 

The output of the filter, o(xi), for each point xi 
and Np filtering pixels, is given by 

∑∑
=

−
=

−− ⋅⋅+⋅+=
p

l

p

KK

N

kl
dilk

N

k
didiki xcxxccxo ,,

,
1

,
0)( ,  (20) 

where c0, ,  (k, l=1, ..., Np) are filter 

coefficients and (k=1, ..., Np) are the 
displacements along the scan line, with respect to xi 
(i = 1, ..., Sw), of the Np pixels. All the above 
parameters are optimized by the GA. 

,
kc ,,

, lkc

kd

A threshold criterium will then select a subset of 
edge points xi for which the value of o(xi) is greater 
than a value T, and all o(xi)=1 for those samples. 

 
 

3.3 Segmentation through contour detection 
optimized by genetic algorithms 

Genetic algorithms are bio-inspired optimization 
methods that are capable to solve applications where 
deterministic techniques fail or in which the 
computing load is too high [2][15][17][22][27]. 

In our approach, for each line Lh the edge 
detector yields a set of points, { Xi , i = 1,..., N(h) }, 
defined as { xj ∈ Lh⏐o(xj) > 0, j = 1,..., Sw }. It is 
possible that in certain scan regions N(h) = 0 or N(h) 
> 1, thus the actual position of contour points being 
altered by noise. Now the elastic contour model and 
genetic optimization go into action. 

Lh 

Ck

Ck-1

LH 

Ph,k-1 

Sw 

L0

PH,k-1 

P1,k-1 

Lh 

Ck

Ck-1

LH 

Ph,k-1 

Sw 

L0

PH,k-1 

P1,k-1 

 
 

Fig. 7. Scan geometry for contour detection 
 
 
Let us denote by fk(h), k=1, ..., N(h) the 

coordinates of the contour points Xk extracted on the 
scan line Lh , and by y(h) the coordinates of the 
contour point that must be detected. Thus, the 
contour y(h) is the locus of points that minimize the 
energy functional (12), that may be rewritten as:          

∫ ∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅+=

=
],0[

)(

1

2,, )()()()(
H

hN

i
ii dhhphhyyE β ,    (21) 

where βi(h) is the stiffness  of the „spring” 
corresponding to the contour point Xi(h). In formula 
(12) or (21) we consider Eimg = 0, this treating the 
possible important variations in contour shape. 

By using the above notations, we can define the 
fitness function used by the GA: 

( )∑
=

−−=
H

k

r kykyKyF
1

2)()(})({ ,  (22) 

where  is the distance, along Lh, between the 
contour point belonging to the training contour and 
the origin of the reference system for Lh , that equals 
the corresponding edge point on Lh-1 . K is a 
constant chosen so that F({y})≥0, and H is the 
number of reference contours. 

)(kyr

 
 

4  Results 
 

4.1 Tests on generated images 
A 3D phantom object was generated, that can be 
software sectioned. In this manner pseudo-
tomographic slices result, having a volume of 58368 
voxels, a geometric resolution of 512x512 pixels 
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and a 8-bit grey scale. The region of interest is a 
128x128 area.  

First, to test the sensitivity to noise, a zero-mean 
gaussian noise with standard deviations of 
respectively 25 and 50, was added (Fig. 8). The test 
shown a good robustness to noise: the precision of 
contour detection significantly lowers only when 
σ>50 grey levels. The effectiveness of contour 
detection was computed as reconstruction error of 
the 3D object, based on its sections, whose mean 
value is less than 1,5% (see Table 1).  

The tests with GA implementation were made 
using Matlab® programming environment, by 
means of ga function that allowed efficient 
computation of the fitness function. 

 
Table 1. The estimated volume, cumulated error, 

percentage error and mean error for software-generated 
object and for real CT images 

 
Noise level (σ) V̂  E E% E  

0 58826 425 0,78 10,11
25 59037 873 1,13 20,78
50 59258 1429 1,5 34,02

CT images  9571 687 3,11 16,35
 

The above parameters are defined as follows: 
(1) ,where  is the estimated object area 

on the k 2D-slice; so, V  is the total estimated 
volume;  

∑= kVV ˆˆ
kV̂

ˆ

(2) if , with Vi being the real object area 
in section i, then 

iii VVV −=Δ ˆ

∑Δ= iVE  (total cumulated 
error);  

(3) )1ˆ(100% −⋅=
∑
∑

i

i

V
V

E  (percentage error);  

(4) HEE /= (absolute mean error). 
 
 
4.2 Tests on real CT images 
 
The tests evaluated both quantitatively and 
qualitatively the quality of contour tracking. In this 
case the training process was made using fewer 
images than in the case of artificial objects. 

Yet, the mean error of the contour detection was 
under 5% for very „clean” images (S/N ratio ≥ 
50dB). Thus, our approach based on elastic contour 
and genetic optimization was successfully verified. 
Moreover, the low reconstruction errors obey a zero-
mean distribution. This fact also illustrates the 
„fuzzy” character of contours delineation in CT 

cerebral images, when noise often occurs, and the 
partial volume effect is present in 3D tomographic 
reconstruction too, due to the thickness of the used 
planar sections. 
 

    
(a) (b) 

 

 
   (c) 
Fig. 8. O software-generated section: noiseless (a) and 
with gaussian noise [(σ = 25 in (b) and σ = 50 in (c)] 

 
  

 
 
 

 
Fig. 9. Contour detection on a CT image using 

„snake” model and GA optimization 
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5 Clinical Applications of Image 
Segmentation and Registration 

 
5.1  Planning Surgery of the Brain and Skull 

Base 
In neurosurgery, the structure of interest delineation 
and the combination of MR and CT images of the 
head (the so called registration procedure) can be 
useful in planning certain types of neurosurgical 
procedures, as the relationship between the soft 
tissue contrast provided by MRI and bone details 
provided by CT can be useful when a single 
modality is insufficient. The clinical motivation of 
good contour detection and registration stage is to 
provide the surgeon with an improved 
understanding of the relationship among the lesion, 
adjacent critical structures, and possible surgical 
approaches. This can result in better positioning of 
craniotomies, reduced craniotomy size, and quicker 
operations with less time under anesthetic. 
  
 
5.2  Localizing Electrodes in the Brain 
Functional neurosurgical procedures include 
implantation of electrodes over the surface of the 
brain or depth electrodes into brain parenchyma to 
localize an epileptogenic region or focus by 
subsequent neurophysiological recording in patients 
with intractable epilepsy. This is done to plan 
surgical resection of the epileptogenic area of the 
brain, so good anatomical localization of the 
electrode is crucial for the success of the operation. 
Another type of functional neurosurgical procedure 
is the implantation of electrodes into the 
subthalamic nucleus in patients with Parkinson’s 
disease, to alleviate tremor.  
 
 
5.3  Radiotherapy Planning 
The recent development of 3D CT-based 
radiotherapy planning has involved the use of 
multiple CT slices to show a tumor in all three 
dimensions. This allows “conformal” radiotherapy 
to be planned, where multiple radiation beams are 
used, configured as tightly as possible to the contour 
of a tumor to spare adjacent potentially 
radiosensitive normal tissues from damage. This 
technique has been of most use in the head and skull 
base and to preserve brain and optic nerves, and has 
also been applied to the prostate. MR images seem 
ideal for the purposes of planning, as the much 
greater soft tissue contrast of MR allows better 
definition of the boundaries of a tumor from 
adjacent normal tissues and structures. 

In the brain, MR techniques such as functional 
studies or perfusion imaging can also provide 
information about eloquent areas of the brain that 
would have significant consequences for the patient 
if damaged, or the physiology of an already treated 
tumor, which may influence whether further 
treatment is required. When a tumor is irradiated, 
the margins of the radiation beams carefully and 
precisely calculated on the planning images must 
correspond exactly spatially to the beams used to 
irradiate the patient. The images used for planning 
purposes must be geometrically accurate. But MR is 
subject to distortions to a greater extent than CT. 
Moreover, CT has a further important advantage 
over MR: the intensities of image voxels (measured 
in Hounsfield units) represent electron density and 
can be used to calculate dose distributions directly. 
These two factors have limited the use of MR scans 
so far for radiotherapy planning.  

In this respect, the precise segmentation of the 
anatomic structures of interest is crucial for a 
successful radiotherapy procedure. Also, the 
registration of CT and MR images provides one way 
to overcome the imagistic problems in 
neurosurgery, as utilizing different information from 
both modalities can enhance treatment. 
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