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Abstract: This paper deals with the three-dimensional mathematical formulation of a transient problem for the
heat-exchanger consisting of rectangular fins attached to both sides of a plane wall (double-fin assembly). The
problem is reduced by conservative averaging method to the two-dimensional system. Analytical solution based
on Green function approach is proposed. This solution is obtained in the form of the 2nd kind Fredholm integral
equations.
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1 Introduction
Extended surface is used specially to enhance the heat
transfer between a solid and surrounding medium.
Such an extended surface is termed a fin. Extended
surfaces are widely examined in [8] - [10]. The rate
of heat transfer is directly proportional to the extent
of the wall surface, the heat transfer coefficient and to
the temperature difference between solid and the sur-
rounding medium. Finned surfaces are widely used in
many applications such as air conditioners, aircrafts,
chemical processing plants, etc. In [4] is considered
performance of a heat-exchanger consisting of rect-
angular fins attached to both sides of plane wall. In
[3, 4] works one-dimensional steady-state double-fin
assembly problem is compared with the single-fin as-
sembly. In paper [2] mathematical three-dimensional
formulation of transient problem for one element with
one rectangular fin is examined, reduce it by conser-
vative averaging method [5] to the system of three
heat equations with linear sink terms. In [6] was con-
sidered exact analytical solution for two-dimensional
steady-state process for system with one rectangular
fin by the method of Green function [1]. In [7] three-
dimensional exact analytical solution for the distribu-
tion of the temperature field in the wall with one rect-
angular fin in the form of the 2nd kind Fredholm inte-
gral equation is constructed.

2 Mathematical Formulation of 3D
Problem

In this section we present mathematical three-
dimensional formulation of a transient problem for

one element with two rectangular fins attached to both
sides. We will use following dimensionless argu-
ments, parameters:

x =
x

′

B +R
; y =

y
′

B +R
;

z =
z
′

B +R
; l =

L

B +R
;

l1 =
L1

B +R
;w =

W

B +R
;

b =
B

B +R
; δ =

D

B +R
;

β =
h(B +R)

k
;β0 =

h0(B +R)

k

and dimensionless temperatures:

V =
Ṽ (x, y, z, t)− Ta

Tb − Ta
;

V 0 =
Ṽ0(x, y, z, t)− Ta

Tb − Ta
;

V 1 =
Ṽ1(x, y, z, t)− Ta

Tb − Ta
;

Θ =
Θ̃(x, y, z, t)− Ta

Tb − Ta
;

Θ0 =
Θ̃0(x, y, z, t)− Ta

Tb − Ta
.

We have introduced following dimensional ther-
mal and geometrical parameters: k - heat conductiv-
ity coefficient for the wall and fins (the same for all
components), h - heat exchange coefficient from the
right side (cold side), h0 - heat exchange coefficient
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from the left side (hot side), 2B - fin width (thick-
ness), L - right fin length, L1 - left fin length, D
- thickness of the wall, W - walls’ width (length),
2R - distance between two fins (fin spacing). Fur-
ther, Θ̃0 is the surrounding (environment) tempera-
ture on the left (hot) side (the heat source side) of
the wall, Θ̃ - the surrounding temperature on the
right (cold - the heat sink side) of the wall. Fi-
nally, Ṽ0(x, y, z, t), Ṽ (x, y, z, t), Ṽ1(x, y, z, t) are the
dimensional temperatures in the wall, right fin and left
fin where Ta, Tb are integral averaged environment
temperatures over appropriate edges which are time
independent:

Ta =

∫ w
0 dz ·

∫ 1
b Θ(D, y, z)dy

w(1 + l)

+

∫ δ+l
δ dx ·

∫ w
0 Θ(x,B, z)dz

w(1 + l)

+

∫ w
0 dz ·

∫ b
0 Θ(D + L, y, z)dy

w(1 + l)
,

Tb =

∫ w
0 dz ·

∫ 1
b Θ(0, y, z)dy

w(1 + l1)

+

∫ 0
−l1 dx ·

∫ w
0 Θ(x,B, z)dz

w(1 + l1)

+

∫ w
0 dz ·

∫ b
0 Θ(−L1, y, z)dy

w(1 + l1)
.

The one element of the wall (base) is placed in the
domain {x ∈ [0, δ], y ∈ [0, 1], z ∈ [0, w]}. The rect-
angular right fin in dimensionless arguments occupies
the domain {x ∈ [δ, δ + l], y ∈ [0, b], z ∈ [0, w]},
but the left fin occupies the domain
{x ∈ [−l1, 0], y ∈ [0, b], z ∈ [0, w]}.
We describe the temperature field by functions
V 0(x, y, z, t), V (x, y, z, t), and V 1(x, y, z, t) in the
wall and fins :

1

a2
∂V 0

∂t
=
∂2V 0

∂x2
+
∂2V 0

∂y2
+
∂2V 0

∂z2
, (1)

1

a2
∂V

∂t
=
∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z2
, (2)

1

a2
∂V 1

∂t
=
∂2V 1

∂x2
+
∂2V 1

∂y2
+
∂2V 1

∂z2
. (3)

We must add initial conditions for the heat equa-
tions (1) – (3):

V 0|t=0 = V
0
0(x, y, z), (4)

V |t=0 = V
0
(x, y, z), (5)

V 1|t=0 = V
0
1(x, y, z). (6)

We assume heat fluxes from the flank surfaces (edges)
and from the top and the bottom edges:

∂V 0

∂z
|z=0 = Q0,2(x, y, t), (7)

∂V 0

∂z
|z=w = Q0,3(x, y, t), (8)

∂V

∂z
|z=0 = Q2(x, y, t), (9)

∂V

∂z
|z=w = Q3(x, y, t), (10)

∂V 1

∂z
|z=0 = Q1,2(x, y, t), (11)

∂V 1

∂z
|z=w = Q1,3(x, y, t). (12)

3 Reducing to the 2D Model

Such type of boundary conditions (BC)(7) – (12) al-
lows us to make the exact reducing of this three-
dimensional problem to two-dimensional problem by
conservative averaging method [5]. Let us introduce
following integral averaged values:

V0(x, y, t) = w−1 ·
∫ w

0
V 0(x, y, z, t)dz, (13)

θ0(x, y, t) = w−1 ·
∫ w

0
Θ0(x, y, z, t)dz, (14)

V (x, y, t) = w−1 ·
∫ w

0
V (x, y, z, t)dz, (15)

θ(x, y, t) = w−1 ·
∫ w

0
Θ(x, y, z, t)dz, (16)

V1(x, y, t) = w−1 ·
∫ w

0
V 1(x, y, z, t)dz. (17)

Realizing the integration of main equations (1) –
(3) by usage of the BC (7) – (12) we obtain:

1

a2
∂V0
∂t

=
∂2V0
∂x2

+
∂2V0
∂y2

+Q0(x, y, t), (18)

1

a2
∂V

∂t
=
∂2V

∂x2
+
∂2V

∂y2
+Q(x, y, t), (19)

1

a2
∂V1
∂t

=
∂2V1
∂x2

+
∂2V1
∂y2

+Q1(x, y, t). (20)

Here

Q0(x, y, t) =
Q0,3(x, y, t)−Q0,2(x, y, t)

w
,

Q(x, y, t) =
Q3(x, y, t)−Q2(x, y, t)

w
,

Q1(x, y, t) =
Q1,3(x, y, t)−Q1,2(x, y, t)

w
.
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We add to the main partial differential equations
(18) – (20) needed BC as follows:(

∂V0
∂x

+ β0(θ0(x, y, t)− V0)
)
x=0

= 0,

y ∈ (b, 1), (21)(
∂V0
∂x

+ β(V0 − θ(x, y, t))
)
x=δ

= 0,

y ∈ (b, 1), (22)
∂V0
∂y
|y=0 = Q0,0(x, t), x ∈ (0, δ), (23)

∂V0
∂y
|y=1 = Q0,1(x, t), x ∈ (0, δ). (24)

We assume them as ideal thermal contact between
wall and fins - there is no contact resistance:

V0|x=δ = V |x=δ, (25)
∂V0
∂x
|x=δ =

∂V

∂x
|x=δ, (26)

V1|x=0 = V0|x=0, (27)
∂V1
∂x
|x=0 =

∂V0
∂x
|x=0. (28)

We have following BC for the right fin:(
∂V

∂x
+ β(V − θ(x, y, t))

)
x=δ+l

= 0,

y ∈ (0, b), (29)(
∂V

∂y
+ β(V − θ(x, y, t))

)
y=b

= 0,

x ∈ (δ, δ + l), (30)
∂V

∂y
|y=0 = Q0(x, t), x ∈ (δ, δ + l). (31)

We have following BC for the left fin:(
∂V1
∂x

+ β0(θ0(x, y, t)− V1)
)
x=−l1

= 0,

y ∈ (0, b), (32)(
∂V1
∂y

+ β0(V1 − θ0(x, y, t))
)
y=b

= 0,

x ∈ (−l1, 0), (33)
∂V1
∂y
|y=0 = Q1,0(x, t), x ∈ (−l1, 0). (34)

Finally, we introduce integral averaged values as
(13) – (17)and add initial conditions for the heat equa-
tions (18) – (20):

V0|t=0 = V 0
0 (x, y), (35)

V |t=0 = V 0(x, y), (36)
V1|t=0 = V 0

1 (x, y). (37)

4 Exact solution of 2-D simplified
problem

In this section we would explain the main idea of so-
lution for the 2-D case of periodical system with con-
stant dimensionless environmental temperatures θ0 =
1(Θ0 = Tb) and θ = 0(Θ = Ta). Additionally, we
neglect the heat fluxes from flank edges. We con-
sider U(x, y, t) is the temperature of the right fin,
U0(x, y, t) temperature of the wall and U1(x, y, t) is
the temperature of the left fin. So, the main equations
are:

1

a2
∂U0

∂t
=
∂2U0

∂x2
+
∂2U0

∂y2
, (38)

1

a2
∂U

∂t
=
∂2U

∂x2
+
∂2U

∂y2
, (39)

1

a2
∂U1

∂t
=
∂2U1

∂x2
+
∂2U1

∂y2
. (40)

The BC (23), (24), (31), (34) are assumed to be
homogeneous:

∂U0

∂y
|y=0 =

∂U0

∂y
|y=1 =

∂U

∂y
|y=0 =

∂U1

∂y
|y=0 = 0.

Instead of BC (21), (22), (29), (30), (32) and (33)
we have:(

∂U0

∂x
+ β0(1− U0)

)
x=0

= 0, y ∈ (b, 1), (41)(
∂U0

∂x
+ βU0

)
x=δ

= 0, y ∈ (b, 1), (42)(
∂U

∂x
+ βU

)
x=δ+l

= 0, y ∈ (0, b) (43)(
∂U

∂y
+ βU

)
y=b

= 0, x ∈ (δ, δ + l), (44)(
∂U1

∂x
+ β0(1− U1)

)
x=−l1

= 0, y ∈ (0, b), (45)(
∂U1

∂y
+ β0(U1 − 1)

)
y=b

= 0, x ∈ (−l1, 0), (46)

Initial conditions are still standing in the form
(35) – (37). The conjugations conditions on the line
between the wall and the left fin are still standing in
the form (27), (28) for the functions U0(x, y, t) and
U1(x, y, t). The linear combination of the equations
(27), (28) together with BC (41) allow us rewrite them
as following BC on the left hand side of the wall:(

∂U0

∂x
− β0U0

)
x=0

= β0F1(0, y, t), (47)

where
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F1(x, y, t) =

{
1
β0

∂U1
∂x − U1, 0 ≤ y ≤ b
−1, b < y ≤ 1.

(48)

In the similar way using the linear combination
of the equations (25), (26) together with BC (42) we
rewrite following BC on the right hand side of the
wall: (

∂U0

∂x
+ βU0

)
x=δ

= βF0(δ, y, t), (49)

where

F0(x, y, t) =

{
1
β0

∂U
∂x + U, 0 ≤ y ≤ b

0, b < y ≤ 1.
(50)

On the assumption that the functions F1(0, y, t),
F0(δ, y, t) are given we can represent solution for the
wall in very well known form by the Green function:

U0(x, y, t) =

∫ δ

0

∫ 1

0
U0
0 (ξ, η)G0(x, y, ξ, η, t)dηdξ

−a2β0
∫ t

0

∫ 1

0
F1(0, η, τ)G0(x, y, 0, η, t− τ)dηdτ

+a2β

∫ t

0

∫ b

0
F0(δ, η, τ)G0(x, y, δ, η, t− τ)dηdτ, (51)

where Green function is:

G0(x, y, ξ, η, t) =
∞∑

m,n=1

Gx0,m(x, ξ, t)Gy0,n(y, η, t),

Gx0,m(x, ξ, t) =
φ0,m(x)φ0,m(ξ)

‖φ0,m‖2
e−a

2µ2mt,

Gy0,n(y, η, t) =

e−a
2(πn)2t(cos[nπ(y + η)] + cos[nπ(y − η)]),

φ0,m(x) = cos(µmx) +
β0
µm

sin(µmx),

‖φ0,m‖2 =
β0

2µ2m
+

β

2µ2m

µ2m + β20
µ2m + β2

+
δ

2
(1 +

β20
µ2m

).

Here µm are the positive roots of the transcenden-
tal equation:

tan (µmδ) =
µm(β + β0)

µ2m − ββ0
.

Unfortunately the representation (51) is unusable
as solution for the wall because of unknown functions
F1(0, y, t), F0(δ, y, t) , i.e. temperature in the fins.
That is why we will pay attention to the solution for

the fins now. In the same way we can rewrite the con-
jugations conditions (25), (26) in the form of BC on
the left side of the right rectangular fin:(

∂U

∂x
− βU

)
x=δ

= βF (δ, y, t), (52)

where

F (x, y, t) =
1

β

∂U0

∂x
− U0, 0 ≤ y ≤ b. (53)

Then, similar as for the wall we can represent so-
lution for the right fin in following form:

U(x, y, t) =

∫ δ+l

δ

∫ 1

0
U0(ξ, η)G(x, y, ξ, η, t)dηdξ

−a2β
∫ t

0

∫ b

0
F (δ, η, τ)G(x, y, δ, η, t− τ)dηdτ, (54)

where Green function is:

G(x, y, ξ, η, t) =
∞∑

m,n=1

Gxm(x, ξ, t)Gyn(y, η, t),

Gxm(x, ξ, t) =
φm(x)φm(ξ)

‖φm‖2
e−a

2µ2mt,

Gyn(y, η, t) = e−a
2λ2mt

ψn(y, η)

2‖ψn‖2
,

φm(x) = cos[µm(x− δ)] +
β

µm
sin[µm(x− δ)],

ψn(y, η) = cos[λn(y + η)] + cos[λn(y − η)],

‖φm‖2 =
β

µ2m
+
l

2

(
1 +

β2

µ2m

)
,

‖ψn‖2 =
1

2

(
b+

β

λ2n + β2

)
.

Here µm, λn are the positive roots of the transcen-
dental equations:

tan (µnl) =
2µnβ

µ2n − β2
,

tan (λnb) =
β

λn
.

Finally, we rewrite the conjugations conditions in
the form of BC on the right side of the left rectangular
fin: (

∂U1

∂x
+ β0U1

)
x=0

= β0F2(0, y, t), (55)

where

F2(x, y, t) =
1

β0

∂U0

∂x
+ U0, 0 ≤ y ≤ b (56)

Recent Advances in Fluid Mechanics and Heat & Mass Transfer

ISBN: 978-1-61804-026-8 399



So, solution for the left fin we can represent in
following form:

U1(x, y, t) =

∫ 0

−l1

∫ b

0
U0
1 (ξ, η)G1(x, y, ξ, η, t)dηdξ

+a2β0

∫ t

0

∫ b

0
G1(x, y,−l1, η, t− τ)dηdτ

+a2β0

∫ t

0

∫ b

0
F2(0, η, τ)G1(x, y, 0, η, t− τ)dηdτ

+a2β0

∫ t

0

∫ 0

−l1
G1(x, y, ξ, b, t− τ)dξdτ, (57)

where Green function is:

G1(x, y, ξ, η, t) =
∞∑

m,n=1

Gx1,m(x, ξ, t)Gy1,n(y, η, t),

Gx1,m(x, ξ, t) =
φ1,m(x)φ1,m(ξ)

‖φ1,m‖2
e−a

2µ2mt,

Gy1,n(y, η, t) = e−a
2λ2mt

ψ1,n(y, η)

2‖ψ1,n‖2
,

φ1,m(x) = cos[µm(x+ l1)] +
β

µm
sin[µm(x+ l1)],

ψ1,n(y, η) = cos[λn(y + η)] + cos[λn(y − η)],

‖φ1,m‖2 =
β0
µ2m

+
l1
2

(
1 +

β20
µ2m

)
,

‖ψ1,n‖2 =
1

2

(
b+

β0
λ2n + β20

)
.

Here µm ,λn are the positive roots of the transcenden-
tal equations:

tan (µnl1) =
2µnβ0
µ2n − β20

,

tan (λnb) =
β0
λn
.

Using notation (54) and representation (50) we
can easy obtain the following equation:
F0(δ, y, t) =

−a2
∫ t

0

∫ b

0
F (δ, η, τ)Γ(δ, y, δ, η, t− τ)dηdτ

+C0(y, t), (58)

where

Γ(x, y, ξ, η, t) =

(
∂

∂x
+ β

)
G(x, y, ξ, η, t),

C0(y, t) =
1

β

∫ δ+l

δ

∫ 1

0
U0(ξ, η)Γ(δ, y, ξ, η, t)dηdξ.

In the similar way we find equation forF1(0, y, t),
using (48) and (57):
F1(0, y, t) =

= a2
∫ t

0

∫ b

0
F2(0, η, τ)Γ1(0, y, 0, η, t− τ)dηdτ

+C1(y, t), (59)

where

Γ1(x, y, ξ, η, t) =

(
∂

∂x
− β0

)
G1(x, y, ξ, η, t),

C1(y, t) =

=
1

β0

∫ 0

−l1

∫ b

0
U0
1 (ξ, η)Γ1(0, y, ξ, η, t)dηdξ

+a2
∫ t

0

∫ b

0
Γ1(0, y,−l1, η, t− τ)dηdτ

+a2
∫ t

0

∫ 0

−l1
Γ1(0, y, ξ, b, t− τ)dξdτ.

Next,we find equation for F (δ, y, t) using (53)
and (51):
F (δ, y, t) =

−a2β0
β

∫ t

0

∫ l

0
F1(0, η, τ)Γ0(δ, y, 0, η, t− τ)dηdτ

+a2
∫ t

0

∫ b

0
F0(δ, η, τ)Γ0(δ, y, δ, η, t− τ)dηdτ

+C(y, t), (60)

where

Γ0(x, y, ξ, η, t) =

(
∂

∂x
− β

)
G0(x, y, ξ, η, t),

C(y, t) =
1

β

∫ δ

0

∫ l

0
U0
0 (ξ, η)Γ0(δ, y, ξ, η, t)dηdξ.

Finally, using (56) and (51) we get equation for
F2(0, y, t) :
F2(0, y, t) =

= −a2
∫ t

0

∫ l

0
F1(0, η, τ)Γ2(0, y, 0, η, t− τ)dηdτ

+a2
β

β0

∫ t

0

∫ b

0
F0(δ, η, τ)Γ2(0, y, δ, η, t− τ)dηdτ

+C2(y, t), (61)

where

Γ2(x, y, ξ, η, t) =

(
∂

∂x
+ β0

)
G0(x, y, ξ, η, t),

C2(y, t) =
1

β0

∫ δ

0

∫ l

0
U0
0 (ξ, η)Γ2(0, y, ξ, η, t)dηdξ.

When solved system of integral equations (58) –
(61) we can obtain the temperatures fields in the wall
(51), left fin (57) and right fin (54).
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5 Conclusion
We have constructed exact solution of a system of heat
transfer equations for 2D T-shape domain. This so-
lution is obtained in the form of the 2nd kind Fred-
holm integral equations. If wall’s and fin’s mate-
rials differ, coefficients a2 in differential equations
(1) – (3) also differ. In case of non-homogeneous
environment (surrounding temperatures Θ̃, Θ̃0 6=
0, 1), known integrals (Green function multiplication
by non-homogeneous term) in solutions (51),(54),
(57) appear. This means that in (58) – (61) non-
homogeneous term changes, but described algorithm
still is applicable.
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