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Abstract: - In this paper we state initial-boundary value problems (IBVPs) for both parabolic, and hyperbolic 
heat conduction equations describing intensive quenching (IQ) process for a thin L-shape sample. We construct 
analytical solutions of inverse and direct problems in the form of 2nd kind integral equation, and compare the 
rate of change of the temperatures in a small neighbourhood of the initial time t=0 after determining solutions 
for these problems. 
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1 Introduction 
As it is well known, heat conduction in a solid body 
can be described by the well-known Fourier 
equation 
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where T  denotes the temperature of the body with 
thermal conductivity k , and  is the density of 

heat sources, t  is time, 

f

cka ~2  , c~  specific 

heat capacity,   density of the body. 
In a number of physical situations Eq. (1) implies 

arbitrarily high thermal propagation speed. One of 
such cases is IQ. When immersing the heated part 
into a quenchant, the initial speed of propagation for 
the heat tends to infinity but actually is finite (see 
[8]). So it’s better to use a hyperbolic heat 
conduction equation, which admits a finite speed of 
propagation for T 
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with   as a relaxation time. (More about hyperbolic 
heat equation can be found, e.g., in the book [10], 
and bibliography [6], [7].) 
 , , k c~ ,   are generally dependant on T  and on 
the material, but throughout the paper we assume 
that these are constants and that there are no sources 
of heat, so . 0f

Let’s image that we have an element with 
rectangular fins (see Fig., from [4]) that is heated 

and then cooled rapidly (IQ process) in a suitable 
fluid, e.g., water or brine. Since the figure can be 
divided into several symmetrical parts, we can use 
Eqs. (1), (2) to describe IQ process for one L-shaped 
part only and get the same results as if we had 
quenched the entire figure. In order to simplify the 
problem, we use non-dimensionalization (see [4]). 

 
Fig.: Element with fins 

2 Using Hyperbolic Heat Conduction 
Equation to Describe IQ Process 
2.1 Mathematical Formulation of 3D 
Problem 
In this section we are going to consider Eq. (2) for 
describing IQ process and solve IBVP using 
Green’s function method (it’s been discussed in [2], 
[3] as well). To modify the method to obtain a 
closed-form Green’s function for so called regular 
non-canonical domain, we are going to represent the 
original domain as a finite union of canonical sub-
domains with appropriate boundary conditions 
along the planes (or lines in 2D) connecting two 
neighbour domains. We may therefore suppose that 
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the given L-shaped sample is made up from two 
rectangular cuboids (rectangles in 2D), the base 

       ,0,1,0,,0  zyx
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 and the foot 

  ,0,,0,,  zbylx  joined along the 

surface x . By means of that we’ll be able to 
define IQ process for each part separately. 

Let’s assume that /  
denotes the dimensionless temperature distribution 
in the base/foot. Thus, in terms of the dimensionless 
variables the hyperbolic equations of heat 
conduction have the following form 
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To state the IBVP for determining the 
temperature of the sample, we need to formulate 
both boundary and initial conditions. Along the 
planes ,  symmetry conditions must be 
applied 
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where  denotes the exterior normal to the 
boundary  of the domain 

n
   on which the given 

equations are to be solved. But at the other sides 
( ) of the sample a heat exchange takes 
place with the surrounding medium, whose 
temperature is given by , 
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h  heat transfer coefficient. (It is also possible to 
consider nonlinear boundary conditions, see [1]. In 
that case solutions of hyperbolic and parabolic 
equations differ essentially.) 
As the base is in ideal thermal contact with the foot, 
continuity of temperature and heat flux are imposed 
at the interface x  between the adjacent parts of 
the sample 
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Let us also establish the initial conditions 
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In IQ conditions (6) are not really known. But 
the initial time-rate of the temperature change 
should be calculated to compare it with critical 
cooling rate to predict heat transfer modes, as the 
initial cooling rate can be in different ranges (see 
[8]). Therefore, we can assume that the temperature 
distribution and the speed of temperature change are 
given at the end of the process 
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2.2 Formulation of Direct Problem in 2D 
Let’s suppose that the sample we have is thin in the 
z–direction ( 1 , b ,   ).Hence, to 
reduce the 3D problems (3), (4) considered before to 
2D ones, we will introduce average values of all the 
functions used before over the interval  ,0 , for 
example, 
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and use the well-known expressions for functions 
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By substituting these two into 2D equations and 
setting dimensionless environmental temperature 

0),,( tyx  for Syx  ),( , with the exception 

of 0x  where 1),,0( ty , we arrive at (see [3]) 
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It is assumed here that we have one and the same 
relaxation time r  ( rr  0, ) for both parts of the 

sample, so continuity conditions for the temperature 
and the heat flux at the intersection of the base and 
the foot can be automatically assured. 

Putting together the partial differential equations, 
the boundary, and the initial conditions, we have a 
direct problem, or an inverse problem when using 
final conditions. 

2.3 Formulation of Inverse Problem in 2D 
As it was mentioned before, the initial rate of 
temperature change is not known but must be 
determined. So we now address the inverse problem 
of determining that rate given the final data: the 
temperature distribution and the rate of change of 
the temperature at t = T. This corresponds to solving 
the given equations backwards. We can transform 
this problem into a direct problem by introducing a 
new time variable 
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so that 
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The function transformation (10) satisfies the 
boundary condition 
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But other required boundary conditions have the 
same form as those in subsection 2.1 with zero 
environmental temperature. Combining the 
continuity conditions at the right hand side border of 
the base yields 
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At the left-hand side border of the foot we get 3rd 
type boundary condition as well 
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2.3.1 Solution for the Base 

Under the assumption that the function  is 
given, the solution of Eq. (11), satisfying 
appropriate boundary conditions and the initial 
conditions (15), (16) admits the following integral 
representation 
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with the Green’s function given by (see [9]) 
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2.3.2 Solution for the Foot 
The solution to the second problem (12) is 
conveniently sought in the form 
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roots of these transcendental equations 
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2.3.3 Junction of Both Solutions 
Upon coupling Eq. (18) with the formula (14), we 
have a representation for the combination of the 
solution for the base and its derivative at the border 
between both parts. In order to determine a similar 

representation for )~,(
~

tyF , we substitute expression 
(20) into (13). Plugging the latter into the former, 
we obtain non-homogeneous Volterra-Fredholm 
integral equation of the 2nd kind at the interface 
between both parts of the L-shape sample 

0 0( , ) ( , )F y t y t      
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After finding solution to this integral equation, we 
can calculate the temperature distribution in the 
sample and find the rate of the temperature change. 

3 Using Parabolic Heat Conduction 
Equation to Describe IQ Process 
3.1 General Statement of 2D Problem 
In this section we’ll outline how to find the rate of 
change of the temperature when using parabolic 
heat conduction equation to describe the 
temperature in the sample (see [4], [5] for more). By 
using average value of the functions over the 
interval ],0[   and applying appropriate boundary 
conditions, 3D equations in two spatial variables are 
transformed into 
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and substituting these expressions in Eqs. (21), (22) 
and all the conditions, we get the following problem 

for the functions  and  ),,(0 tyxu ),,( tyxu
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All the conditions are like as in the preceding 
section with the exception of 
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3.1.1 Exact Solution of 2D Problem 
It is straightforward to apply the technique of 
Section 2 (see subsection 2.3) to derive the solutions 
to IBVPs (23) and (24). Thus, the solution for the 
base has a form 
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We use the eigenfunctions in Section 2 to expand 
the Green’s function 
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But the function satisfying the stated problem for 
(24) assumes the following form 
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Here the Green’s function is defined by 
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Using the same method as in the preceding 
section we obtain Volterra-Fredholm integral 
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equ

4 Comparing the Rate of the 

ation and get the initial time-rate of the 
temperature change. 

Temperature 
When 0

pv , 0
hv , the solutions of parabolic and 

hyperbolic heat conduction equations are found, we 
can diff nt  these expressions with respect to t  
and compare the rates of change of the temperatures 
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The same expressions can be derived for the 
functions

5 Conclusion 
t solution for time inverse 

lic heat equation for 2D L-shape 
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