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Abstract: - In the article we examine a mathematical model for a Norwegian flute. We find the possible 
frequencies of the sound produced by the flute, analyse how the pitches can be altered when changing the 
parameter h in the boundary condition at x = l, and determine the energy distribution in the sound. 
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1 Introduction 
The willow flute (Norwegian: seljefløyte, Finnish: 
pitkähuilu or pajupilli, Swedish: sälgflöjt or 
sälgpipa) is a Scandinavian folk instrument of the 
recorder family existing in two forms: an end-blown 
flute, often called a whistling flute, and a side-blown 
flute. 

 
Fig.1: A willow flute 

This paper focuses on the side-blown flute (see 
Fig.1, from [6]) which is between 40 and 80 
centimetres in length. It consists of a tube with a 
transverse fipple mouthpiece that is constructed by 
putting a wood plug with a groove in one end of the 
tube, and cutting a sound hole (edged opening) a 
short distance away from the plug (see Fig.2, from 
[7]). The air flow is directed through a passageway 
across the edge creating a sound. 

As the flute has no finger holes, different pitches 
are produced by overblowing and by using a finger 
to cover, half-cover or uncover the hole at the far 
end of the tube. The seljefløyte plays tones in the 
harmonic series called the natural scale. When the 
end of the tube is left open, the flute produces one 
fundamental and its overtones, playing it with the 

end of the tube closed produces another harmonic 
scale. 

2 Problem Formulation 
Playing the flute causes periodic oscillations of the 
air pressure inside the instrument. These pressure 
disturbances are governed by the wave equation. 

 
Fig.2: Definition of geometrical parameters for the flute 

Assuming for simplicity that the pressure over the 
cross-section of the tube is constant, the willow flute 
can be modelled by 
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where  denotes the acoustic pressure, 

function  is some external source, 

),( txp
)(xF   density 

of air ( 2041.1 3mkg ). Let’s suppose that there 
is no appreciable conduction of heat, therefore the 
behaviour of sound waves is adiabatic. So, B  is the 
adiabatic bulk modulus of air, which is 
approximately given by apB  . Here   is the 

ratio of the specific heats of air at constant pressure 
and at constant volume ( ), and  is the 

ambient pressure (

4.1
325

ap

,101  Pa). 
Let’s establish boundary and initial conditions. 

At 0x  we have 3rd type boundary condition 
 0),0(),0( 1  tptpx  . (2) 
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The boundary condition at the far end of the tube 
depends upon whether the end is open, closed or 
partially open. For an open end of a tube, the total 
pressure at the end and atmospheric pressure must 
be approximately equal. In other words, the acoustic 
pressure  is zero: p
 . (3) 0),( tlp
At a closed end there is an antinode of pressure, as 
most of the sound is reflected: 
 0),( tlpx . (4) 

In many research papers and works where wind 
instruments have been considered (see, e.g., [1] - 
[3]), only these two types of boundary conditions 
are used. But one should bear in mind that the 
player can also close the end of the tube only 
halfway. In that case the Robin’s condition 
 0),(),( 2  tlptlpx   (5) 

must be applied (see [4]). The value of 2  depends 
on how much the end is closed. 
Conditions (3)-(5) can be written in the following 
form 
 , . (6) 0),(),()1(  tlhptlph x 10  h
But the initial conditions are 

)()0,( xxp  , 

)()0,( xxpt  . 

Nonhomogeneous equation (1) can be solved by 
finding a solution expressed in the form 
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where ,  are the eigenfunctions 

of the associated homogeneous problem, having the 
following expressions: 
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The corresponding eigenvalues n  are roots of 

these transcendental equations: 
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To determine the functions , we represent the 

source function and initial conditions as Fourier 
series. So  will satisfy the simple initial value 

problem 
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Hence, the solution of problem (1) is 
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with Green’s function 
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2.1 Geometrical parameters and functions 
In the paper we use the linear wave equation 
referring to the acoustic pressure. Actually the 
process is much more complex, as there are many 
things that should be taken into account. First of all, 
nonlinear equation could be used when dealing with 
mass-transfer. Secondly, there is a question about 
hydrodynamic behaviour of the jet of air. Both 
experimental and theoretical results suggest (see, 
e.g., [5]) that the airstream tends to form vortices 
when impinging the edged opening. In the case of 
one dimensional plane wave, we use a source 
function to describe this process. Thirdly, the mass 
flow in the passageway can be approximated by 3rd 
type boundary condition (2). 

All results in the next two sections are obtained 
with the following parameter values: 
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and the source function: 
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 where d  is a positive constant, 
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3 Pitch and Frequency 
ties of sound is its 

of the lowest frequency is known as the 
fun

obtain the frequencies of 
the

One of the fundamental proper
pitch. Pitch is a subjective attribute of sound related 
to the frequency of a sound wave. Increasing the 
frequency causes a rise in pitch. But when 
decreasing the frequency, the pitch of the note 
diminishes. 

The tone 
damental or first harmonic. All other possible 

pitches whose frequencies are integer multiples of 
the fundamental frequency are called the upper 
harmonics or overtones. 

Using relation (7), we 
 vibration mode of the willow pipe: 




2n
na

f  , ,3,2,1n  

If the parameter 1  is sufficiently large, the possible 
frequencies for the flute are close to harmonics: 

 
l

an
f  , ,3,2,1n  (end open) n 2

 
l

an
f n 4

 , ,5,3,1n  (end closed) 

As n  is dependent on 

pit

l , we can change the 

ch by anging the length of the tube. If the pipe 
has finger holes, one can also change the effective 
length of the instrument by opening different holes. 
By altering the pressure of the air blown into the 
instrument, we change the value of n , that is, we 
jump between solutions np , resulting in discrete 

differences in pitch. The pitch can also be changed 
by modifying h  in the boundary condition at lx

 ch

 . 

3.1 Open-end scale 
ters (see Section 2) the For the given parame

fundamental for the open flute is Middle C or C4. 
The second harmonic is then an octave above the 
fundamental; the third harmonic is G5, and so on. 

 
Fig.3: Notes of open-end C scale 

One can n  of these 

Note Piano 

otice (see Table 1) that some
frequencies differ from the frequencies of the notes 
on a piano in twelve-tone equal temperament (12-
TET) with the 49th key, the fifth A (called A4), 

defined as 440 Hz. Many people should be capable 
of detecting the difference if it is as little as 2 Hz. 

Willow 
flute 

C4 261.63 261.63 
C5 523.25 523.27 
G5 783.99 784.90 
C6 1 1046.50 046.53 
E6 1318.51 1308.16 
G6  1567.98 1569.80 
B♭6 1864.66 1831.43 
C7 2093.00 2093.06 

Table 1: Freq ies l open-end C 

The be 

uenc (Hz) of wi low flute’s 
scale compared with frequencies of 12-TET scale 

 frequency of the mth key in 12-TET can 
found from the equation 

12

49

2440



m

mf . 

3.2 Closed-end scale 
e fundamental an octave Closing the end drops th

below the pitch of the pipe open at the end. The next 
possible note G4 has approximately three times the 
frequency of the fundamental C3, the next one, E5, 
five times, and so on. This means that only the odd 
harmonics are present. 

 
 Fig.4: Notes of closed-end C scale 

Table 2 sh es do not 

Note Piano 

ows that the willow flute’s pitch
quite conform to those produced by the piano. 

Willow 
flute 

C3 130.81  130.82
G4 392.00 392.45 
E5 659.26 654.08 
B♭5 932.33 915.72 
D6 1 1174.66 177.35 
F♯6 1479.98 1438.98 
G♯6 1661.22 1700.61 
B6 1975.53 1962.25 

Table 2: Freq ies ( lo losed-end C 

3.3 Intermediate scale 
 when covering the end 

uenc Hz) of wil w flute’s c
scale compared with frequencies of 12-TET scale 

We can get further effects,
hole only halfway (this implies that we should 
change the parameter h in the boundary condition 
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(6)). In this case the flute produces an intermediate 
set of pitches that fall in between those produced 
with the end closed and those when the end is open. 

 
Fig.5: Approximate location of the willow flute’s pitches 

on a piano. C scale 

 Pitches produced with end closed 
 Pitches produced with end open 
 Pitches produced with end partially open 

In r h affects Fig.6 you can see how the paramete
location of pitches played by willow flute when 
leaving the end partially open. 

 

 

 
Fig.6: Approximate location of pitches 

4 Energy of Tones 
 flute playing is relatively 

when 5.0h ; 7.0h ; 9.0h  

As the sound of the willow
harmonic, the energy of the sound is concentrated at 
certain frequencies of vibration. The more dominant 
the certain pitch, the greater the concentration of 
energy at that frequency. A person playing this 
particular instrument can get different pitches 
through manipulation of the supplied air, which is, 
changing initial conditions. If the initial conditions 
are defined as in Section 2, you can modify the 
distribution of energy between the fundamental and 
its overtones by changing  . 

You must blow as softly as possible to produce 
the

tribution is 

 fundamental, as it is hard to get. Blow a little 
harder and you get the first overtone and so on. The 
harder you blow the higher harmonics you get to be 
dominant (see Fig.7 for open-end flute). 

Formula for calculating the energy dis

  
t ll

dxxpxdxtxpt 22 ),(),(),(
1

)  . 

 

 

 
Fig.7: Energy distribution (J) across the frequencies 

when l ; 3l ; 6l  

5 Conclusion 
We have examined how different boundary 
conditions affect the frequencies of pitches 
produced by the willow flute. And we have also 
determined the distribution of energy of tones. txt BpdE

0 002
( 

Although linear differential equation (1) 
could be considered as an adequate 
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approximation when describing acoustic 
properties of the willow pipe, it is necessary to take 
into account many other things, e.g., nonlinear 
effects. But that is a subject for future research. 
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