
Pumping Visibly Pushdown Languages∗

STEFAN D. BRUDA
Department of Computer Science

Bishop’s University
2600 College St

Sherbrooke, Quebec J1M 1Z7
CANADA

stefan@bruda.ca

Abstract: Visibly pushdown languages are a subclass of context-free languages and are particularly well suited for
specification and verification of application software. We find that, in addition to the pumping theorem inherited
from context-free languages, visibly pushdown languages have some specific pumping properties. These properties
have consequences in the recursive constructs of a process algebra based on visibly pushdown languages.

Key-words: Visibly pushdown languages, Visibly pushdown automata, Visibly pushdown grammars, Pumping
properties, Formal methods, Process algebrae

1 Introduction

The formal verification arena has been enhanced by
the recent introduction of the class of visibly push-
down languages (VPL) [2], a subclass of context-free
languages. VPL are particularly well suited for mod-
elling software analysis, and they are also tractable
and robust like the class of regular languages (and
therefore they have almost all the prerequisites to sup-
port a fully compositional process algebra).

Visibly pushdown languages are accepted by vis-
ibly pushdown automata (vPDA) whose stack be-
haviour is determined by the input symbols. A visi-
bly pushdown automaton operates on a word over an
alphabet that is partitioned into three disjoint sets of
call, return, and local symbols. Any input symbol can
change the control state but call and return symbols
also change the stack content: While reading a call
symbol the automaton must push one symbol on the
stack, and while reading a return symbol it must pop
one symbol (unless the stack is empty).

VPL are closed under intersection, union, com-
plementation, renaming, concatenation and Kleene
star, just like regular languages. A number of decision
problems such as universality, language equivalence
and language inclusion, which are not decidable for
context-free languages, become EXPTIME-complete
for VPL. Visibly pushdown languages seem quite nat-
ural for verification of pre/post conditions or for inter-

∗This research was supported by the Natural Sciences and En-
gineering Research Council of Canada.

procedural flow properties. In particular, requirements
that can be verified in this manner include all regu-
lar properties but also non-regular properties such as
partial correctness, total correctness, local properties,
access control, and stack limits [1].

Our previous (and ongoing) work includes an al-
gebraic approach to program specification and veri-
fication based on VPL [4] or related formalisms [5].
In the process, we developed several results regarding
the structure of words in a VPL. We believe that such
insights are useful to the research community at large,
so we summarize them in this paper.

The contribution of this work is thus a deeper
characterization of the structure of VPL. The most
interesting properties specified using a vPDA-based
process algebra will undoubtedly be recursive in a
non-regular sense (for indeed, regular recursion has
been present in finite-state process algebrae for a long
time). We will call such a recursion “self-embedding”
(see Section 3 for details). Since this is going to
be the most important feature of any application of
VPL, we study the limits of self-embedding recursion.
We find a pumping result for visibly pushdown lan-
guages which illustrates the structure of recursive vis-
ibly pushdown automata-based processes and has also
significant practical consequences.

2 Preliminaries

Let Σ̃ = Σc⊎Σr⊎Σl be a partition over some alphabet
Σ. For convenience, we putΣm = Σc ∪ Σr. Given

Recent Advances in Applied & Biomedical Informatics and Computational Engineering in Systems Applications

ISBN: 978-1-61804-028-2 98

some wordw ∈ A∗ and someA′ ⊆ A, we denote by
wA′ the restriction ofw onA′ (that is,wA′ is obtained
by erasing fromw all the symbols outsideA′). We
denote the empty word, and only the empty word by
ε.

A visibly pushdown automaton (vPDA) [2] is a
tupleM = (Φ,Φin, Σ̃ = Σc ⊎ Σr ⊎ Σl,Γ,Ω,ΦF),
whereΦ is a finite set of states,Φin ⊆ Φ is a set
of initial states,ΦF ⊆ Φ is the set of final states,
Γ is the (finite) stack alphabet that contains a special
bottom-of-stack symbol⊥, andΩ is the transition re-
lationΩ ⊆ (Φ× Γ∗)× Σ̃× (Φ× Γ∗). Σl is the set of
local symbols,Σc is the set of call symbols andΣr is
the set of return symbols.

Every tuple((P, γ), a, (Q, δ)) ∈ Ω (also writ-
ten (P, γ)

a
−→ (Q, δ) ∈ Ω) must have the follow-

ing form: if a ∈ Σl ∪ {ε} thenγ = δ = ε, else if
a ∈ Σc thenγ = ε andδ = a′ (wherea′ is the stack
symbol pushed fora), else ifa ∈ Σr then if γ = ⊥
thenγ = δ (hence visibly pushdown automata allow
unmatched return symbols) elseγ = a′ and δ = ε

(wherea′ is the stack symbol popped fora).
In other words, a local symbol is not allowed to

modify the stack, while a call always pushes one sym-
bol on the stack. Similarly, a return symbol always
pops one symbol off the stack, except when the stack
is already empty. Note in particular that empty tran-
sitions (that is, transitions that do not consume any
input) are allowed but are not permitted to modify the
stack [2].

Whenever we have a pair of symbolsc and
r such thatc ∈ Σc, r ∈ Σr, and (P, ε)

c
−→

(Q, a), (R, a)
r

−→ (S, ε) ∈ Ω, the two symbols are
calledmatched. A call (or return) that has no matched
return (or call) is calledunmatched. Note that some
call or return can be both matched and unmatched at
the same time in a given visibly pushdown automaton.

The notion of run, acceptance, and language ac-
cepted by a visibly pushdown automaton are defined
as usual: A run of a visibly pushdown automaton
M on some wordw = a1a2 . . . ak is a sequence of
configurations(q0, γ0)(q01, γ0) · · · (q0m0

, γ0)(q1, γ1)
(q11, γ1) · · · (q1m1

, γ1)(q2, γ2) · · · (qk, γk)(qk1, γk) · · ·
(qkmk

, γk) such that γ0 = ⊥, q0 ∈ Φin,
(qij−1, ε)

ε
−→ (qij , ε) ∈ Ω for all 1 ≤ i ≤ k,

1 ≤ j ≤ mi, and(qi−1mi−1
γ′i−1)

ai−→ (qi, γ
′
i) ∈ Ω

for every1 ≤ i ≤ k and for some prefixesγ′i−1 and
γ′i of γi−1 andγi, respectively. Wheneverqkmk

∈ ΦF

the run is accepting;M acceptsw iff there exists
an accepting run ofM on w. The languageL(M)

accepted byM contains exactly all the wordsw
accepted byM .

It is possible for a call or a return which is both
matched and unmatched in a visibly pushdown au-
tomaton to have only one characteristic in a particu-
lar word accepted by the visibly pushdown automaton
(i.e., be either matched, or unmatched, but not both
in that word). A word that is accepted by some vis-
ibly pushdown automaton can bebalanced (meaning
that all the calls and returns are matched). In addi-
tion, we say that a word iscall-balanced if it has no
unmatched calls andreturn-balanced if it has no un-
matched returns. Note in passing thatw is balanced
[call-balanced, return-balanced] iffwΣm

is balanced
[call-balanced, return-balanced].

A context-free grammar [7] is a tupleG =
(Σ, V, S,R). Σ andV are the set of terminals and
nonterminals, respectively.S ∈ V is the axiom, and
R ⊆ V × (Σ∪ V)∗ is the set of rewriting rules; a rule
(A,w) is commonly writtenA → w. The semantics
of a grammar is given by the rewriting operator⇒ de-
fined as follows: for anyu, v ∈ Σ ∪ V , uAv ⇒ uwv

iff A → w ∈ R. The languageL(G) generated by a
grammarG is the set of exactly all the wordsw ∈ Σ∗

such thatS ⇒∗ w, where⇒∗ denotes as usual the
reflexive and transitive closure of⇒.

The pumping theorem for context-free languages
(specifying that certain portions of words in a context-
free language can be “pumped” as desired) is stated as
follows:

Proposition 1 [7] For any context-free language L

there exists a constant n such that any word w ∈ L,
|w| > n can be written as w = uvtxy with vx 6= ε

and uvktxky ∈ L for every k ≥ 0.

A regular grammar is a context-free grammar
with all the rules taken from the setV×(Σ∗(V ∪{ε})).
Languages generated by regular grammars are called
regular languages [7].

A visibly pushdown grammar (VPG) [2, 6] is a
context-free grammarG = (Σ̃, V = V0 ⊎ V1, S,R =
Rε⊎Rreg⊎Rbal), whereS ∈ V , and the set of rewrit-
ing rulesR is the union of the following sets:

Rε ⊆ {X → ε : X ∈ V }

Rreg ⊆ {X → aY : X,Y ∈ V,X ∈ V0 implies

a ∈ Σl andY ∈ V0}

Rbal ⊆ {X → aY bZ : X,Z ∈ V, a ∈ Σc, b ∈ Σr,

Y ∈ V0,X ∈ V0 impliesZ ∈ V0}

Recent Advances in Applied & Biomedical Informatics and Computational Engineering in Systems Applications

ISBN: 978-1-61804-028-2 99

A language is accepted by a vPDA iff it is generated
by a VPG [2].

3 Some Pumping Properties of VPL

It is well known that any context-free language can
be transformed into a visibly pushdown language by
determining a suitable partition of the underlying al-
phabet [2]. Therefore, finding a pumping theorem for
visibly pushdown languages in the same spirit as for
context-free or regular languages [7] is not necessary.
However, pumping results borrowed from context-
free languages do not say anything about those cases
in which the partition is already in place. In these
cases it turns out that we can establish more pumping
properties.

We first note that an infinite visibly pushdown
language can be accepted only by a recursive visibly
pushdown automaton. The term “recursive” is bor-
rowed here from other areas (such as grammars or
process algebrae) for convenience, but the term should
be intuitive: A recursive visibly pushdown automaton
has one recursive state (or more), that can be encoun-
tered infinitely often during an accepting run. A re-
cursive state generates a family of runs, which in turn
accept an infinite subset of the language. Given the
nature of visibly pushdown automata, recursion can
take two forms.

Suppose that a recursive run can encounter the
same configuration(q, γ) infinitely often. We are then
talking aboutregular recursion, which is similar to the
recursion encountered in finite automata. Such a re-
cursion satisfies all the properties known from regular
languages (including the pumping theorem for regu-
lar languages) and is thus not very interesting. We
will not consider this kind of recursion any further,
for indeed it does not generate new issues over the
ones already studied for regular languages; the stack
is always bounded by a constant for regular recursion.

More generally, regular recursion occurs when-
ever a run encounters an infinite sequence of config-
urations(q, γ1)(q, γ2)(q, γ3) · · · such that|γi| ≥ |γj |
wheneveri > j: Whenever the stack increases but
does not decrease, the stack does not participate in the
acceptance of the language (and can indeed be elim-
inated altogether by simple modifications). Now the
stack grows unboundedly, but for all practical purpose
we end up with the same kind of recursion (regular).

Suppose now that a recursive run can en-
counter an infinite sequence of configurations

(q, γ1)(q, γ2)(q, γ3) · · · that does not describe reg-
ular recursion. We call this kind of recursion
self-embedding. When self-embedding recursion is
present, the stack becomes potentially unbounded, but
now the stack also plays a role in the acceptance of
the input. This kind of recursion can thus create in-
teresting phenomena, some of them explained in what
follows.

The term self-embedding recursion is borrowed
from context-free languages (the name itself coming
from grammars rather than automata).

In grammatical terms, regular recursion is intro-
duced by derivations of the formA ⇒∗ w with
|w|{A} 6= 0 using only rules fromRreg and self-
embedding recursion is introduced by derivations of
the formA ⇒∗ w with |w|{A} 6= 0 using rules from
Rbal.

Regular and self-embedding recursion are usually
mixed in the definition of a VPL. Putting both regular
and self-embedding recursion together, and based on
the definition of VPG, we first establish the following
general result about the form of a word in a VPL.

Theorem 2 Given some VPG G = (Σ̃, V = V0 ⊎
V1, S,R = Rε ⊎ Rreg ⊎ Rbal) and some A ∈
V , the words generated by A have the form w =
u1v1u2v2 . . . unvnun+1 for some n ≥ 0, where ui are
regular words over Σ and vi are balanced words over
Σ̃.

Proof. If A ∈ V0, thenw is balanced by the definition
of a VPG and so the proof is established (sinceε is ob-
viously regular). Indeed, a nonterminal inV0 can only
introduce regular strings of local symbols (using rules
from Rreg) or matched pairs of call and return sym-
bols (via rules fromRbal); any combination of these
yield balanced words.

Suppose then thatA ∈ V1. An inductive argu-
ment establishes thatA yields a wordw as above as
follows:

1. We begin by generating the regular prefixu1 of
w using rules fromRreg. Once we use some rule
from Rbal we end the generation ofu1. We have
A ⇒∗ u1B1 and obviouslyu1 is regular. This
word can contain call and return symbols, but
their matching (if any) is not “remembered” in
the grammar.

2. Once we use one rule fromRbal the generation of
u1 is complete. Indeed, by applying such a rule

Recent Advances in Applied & Biomedical Informatics and Computational Engineering in Systems Applications

ISBN: 978-1-61804-028-2 100

we end up withA ⇒∗ u1aY bA1 ⇒∗ uaybA1.
y is always balanced because it comes fromY ∈
V0 (See the case ofA ∈ V0 above), soayb is
balanced. We putv1 = ayb and so we have
A ⇒∗ u1v1A1.

3. It is however possible that we do not use any rule
from Rbal and use instead a rule fromRε to get
rid of B1 thus obtainingun+1. This ends the
derivation as it erases the sole nonterminal in the
word.

4. Replace now in Items 1 and 2 aboveA with
Ai, A1 with Ai+1, u1 with ui, andv1 with vi.
We obtain thatAi ⇒∗ uiviAi+1 and soA ⇒
u1v1u2v2 . . . uiviAi+1. Ai+1 either continues in
the same manner (Items 1 and 2), or gets replaced
by a string of terminals as per Item 3. At some
point howeverAi+1 needs to follow Item 3 for
the derivation to end.

It s quite obvious that no other derivation is pos-
sible beside the derivations described above. Indeed,
in the rules fromRbal Y is always inV0, and for any
X ∈ V0 there is noY ∈ V1 such thatX ⇒∗ uY w.
That is, a nonterminal inV0 never yields a nonterminal
in V1 (while the converse is obviously not true). It fol-
lows that the only possible derivations are as outlined
above.

Self-embedding recursion creates the more com-
plex pumping theorem for context-free languages
(which is still pertinent for visibly pushdown lan-
guages, as mentioned above). However, more specific
pumping results can be established for visibly push-
down languages. We start by establishing the form of
VPL words that can be pumped.

Theorem 3 Consider some visibly pushdown au-
tomaton M and two words w1 and w2 such that
w1w2 ∈ L(M). Then wn

1w
n
2 ∈ L(M) for any

n > 0 only if w1 is return-balanced, w2 is call-
balanced, neither w1 nor w2 are balanced, and the
unmatched calls in w1 as well as the unmatched re-
turns in w2 are not introduced recursively. Further-
more, wn

1w
n
2 ∈ L(M) for any n > 0 only if wn

1w
n
2 is

balanced for any n > 0.

Proof. After wn
1 is accepted,M needs to remember

n (so that to recognize exactlywn
2 afterward). Given

the nature ofM ’s storage,n can only be remembered
as stack height. Therefore, each and every iteration

of w1 must addχ symbols to the stack for someχ >

0. Conversely, every iteration ofw2 must removeχ
symbols from the stack for someχ > 0, and the stack
must become empty after then-th iteration ofw2—
indeed, there is no other way to know that we reached
n iterations ofw2 than by detecting the emptiness of
the stack.

Adding to the stack at every iteration ofw1 clearly
happens wheneverw1 is return-balanced but not bal-
anced. If on the other handw1 is call-balanced (in-
cluding w1 being balanced) then the stack does not
increase in any iteration ofw1. Suppose now that
w1 is not balanced in any way and that the number
of (unmatched) returns is larger than the number of
(unmatched) calls. Then, since the unmatched returns
must precede the unmatched calls the stack will in-
crease in the first iteration ofw1; however, in the sec-
ond (and subsequent) iterations those unmatched re-
turns will pop off the unmatched calls and the stack
ceases to grow, which is not acceptable.

In all, w1 cannot be balanced. In addition, it must
be either return-balanced, or having a larger number
of (unmatched) calls than (unmatched) returns.

By a similar argument, the stack height ofM
needs to decrease at every iteration ofw2 and thusw2

cannot be balanced and must be either call-balanced
or having a larger number of returns than calls.

Denote the number of unmatched calls [returns]
in w1 by c1 [r1] and the number of unmatched calls
[returns] inw2 by c2 [r2]. We have then that0 ≤
r1 < c1 andr2 > c2 ≥ 0.

Consider first the casen = 1: We havec1 −
r2 + c2 ≤ 0 (at the end of the day the stack must be
empty; ther1 unmatched returns ofw1 happen when
the stack is empty, and thus they will not affect the
stack height). Sincec2 is positive, it must be that
c1 − r2 ≤ 0, or c1 ≤ r2. From the stack’s point of
view, this means thatc1 symbols are pushed, thenc1
symbols are popped, then the remainingr2 − c1 un-
matched returns are processed with an empty stack.
At this point the stack is empty.M then pushesc2
symbols; however, at the end of the day the stack
needs to be empty, so it is necessary thatc2 = 0, that
is,w2 is call-balanced, as desired.

In addition, sincec2 = 0, it is also immediate that
c1 ≤ r2 (otherwise the stack is not empty at the end),
or c1 − r2 ≤ 0.

We now go to larger values ofn. Letd1 = c1−r1
andd2 = r2 − c2 = r2. Suppose now thatd1 > d2;
then aftern iterations ofw1 and furthern iterations

Recent Advances in Applied & Biomedical Informatics and Computational Engineering in Systems Applications

ISBN: 978-1-61804-028-2 101

of w2 there are symbols left on the stack. It is there-
fore impossible to stop at this point (since an empty
stack is the only possible stopping signal), so the au-
tomaton cannot acceptwn

1w
n
2 . Wheneverd1 < d2,

the automaton cannot acceptwd2
1 wd2

2 (and thus can-
not acceptwn

1w
n
2); indeed, the stack becomes empty

after d2 iterations ofw1 followed byd1 iterations of
w2. The emptiness of the stack being the only stop-
ping condition, there is no way to continue to accept
preciselywd1−d2

2 . In all, the only possible variant is
thatd1 = d2, that is,c1 − r1 = r2.

Now, after the firstw1 is accepted we havec1
symbols on the stack. After the secondw1 we have
c1 + c1 − r1 symbols on the stack (the unmatched
returns inw1 will now match r1 symbols on the
stack). Aftern iterations, the stack height will be
c1 + (n − 1)(c1 − r1) = c1 − (n − 1)r2 (since
c1 − r1 = r2). Now comesw2. Since we already
established thatc2 = 0, then copies ofw2 will pop
nr2 = (n − 1)r2 + r2 symbols off the stack. Given
the content pushed onto the stack by the iterations of
w1, it follows that the firstc1 symbols pushed must
be matched by the lastr2 symbols popped. Unless
r1 = 0, some of the lastr2 symbols will be processed
as unmatched in the last iteration and as matched ear-
lier. This however looses control over counting the
number of occurrences ofw2 (so it is immediate that
the automaton cannot accept exactlyn occurrences of
w2). Therefore it must be the case thatr1 = 0.

In all, we found thatw1 andw2 cannot be bal-
anced, thatw1 must be return-balanced, and thatw2

must be call-balanced, as desired.
The relationc1 − r1 = r2 found earlier now be-

comesc1 = r2 (sincer1 = 0). Therefore, the string
wn
1w

n
2 is balanced for alln > 0, again as desired.
That the unmatched calls inw1 and the un-

matched returns inw2 are not introduced recursively
is immediate. Indeed, any recursive construct used to
introduce these symbols eliminates the possibility of
an automaton to comparec1 with r2 on the stack (they
are both introduced recursively and so vary arbitrar-
ily), thus eliminating the possibility of recognizingn
copies ofw1 followed by exactlyn copies ofw2.

Once we have the structure established by The-
orem 3 we can particularize to some degree the
pumping theorem for context-free languages (Propo-
sition 1) to visibly pushdown languages:

Theorem 4 For any visibly pushdown language L

generated by a grammar with no regular recursion

there exists a constant n such that any word w ∈ L,
|w| > n can be written as w = uvtxy, with vx 6= ε, t
balanced, v return-balanced, x call-balanced, neither
v nor x balanced, and uvktxky ∈ L for every k ≥ 0.

Proof. Ignoring the partition into call, return, and
local symbols every wordw as in the theorem can
be pumped as established by Proposition 1 (for in-
deed any VPG is also a context-free grammar). Such
a pumping happens because of self-embedding recur-
sion (since no regular recursion is present), so The-
orem 3 applies, establishing the structure of pumped
strings as specified.

4 Conclusions

We presented new insights in the structure of words in
visibly pushdown languages via a couple of pumping
results.

Our motivation for this paper is one of our active
research interests, namely developing a VPL-based
theory for specification and verification of applica-
tion software, such as a VPL-based process algebra.
Finite-state algebrae have proven useful for the spec-
ification and verification of hardware, communica-
tion protocols, and drivers. More complex applica-
tion software cannot be readily modelled using finite-
state mechanisms, as they contain a huge, impractical
number of distinct finite states. We therefore believe
that an infinite-state process algebra can dramatically
open the domain of application software to specifica-
tion and verification using formal methods (and more
specifically algebraic methods such as model-based
testing [3]).

In this context, our first pumping result (Theo-
rem 3) is particularly worth noting, as it illustrates
the nature of words accepted by self-embedding re-
cursive visibly pushdown automata. Our pumping re-
sult shows the necessary conditions for pumping pairs
of strings in a VPL. Such pairs can be pumped only if
the first string has unmatched calls which are subse-
quently matched by the unmatched returns in the sec-
ond string; these unmatched symbols cannot be intro-
duced recursively. Overall, we can only pump calls
and returns via self-embedding recursion, and the pair
of pumped words must be overall balanced.

That only balanced words can be pumped (and
that they split into two parts with specific properties,
as detailed in Theorem 3) essentially means that in-
teresting verifiable properties have always an end (a

Recent Advances in Applied & Biomedical Informatics and Computational Engineering in Systems Applications

ISBN: 978-1-61804-028-2 102

return symbol), which is consistent with the undecid-
ability of the halting problem [7]. Indeed, halting is
undecidable, so a non-halting program may not be
verifiable; however, a halting program can be readily
verified. In addition, calls and returns introduced via
regular recursion cannot appear in constructs based
on self-embedding recursion, which is consistent with
the intended use of calls and returns (as models for
function calls and returns).

Practical consequences of such a result however
cannot be fully determined until a visibly pushdown
automata-based process algebra is developed and de-
ployed in practice; as we said before, this is currently
our main research interest.

We are also able to give a pumping theorem for
VPL (Theorem 4) that is almost identical to the pump-
ing theorem for context-free languages, but is more
restricted in that it excludes regular recursion. Nor-
mally regular and self-embedding recursion coexist in
a VPG, so the applicability of this result is somehow
limited. This result however illustrates once more the
structure of self-embedding recursion and also the fact
that regular recursion should practically be responsi-
ble only for introducing local symbols (which would
model the loops is a program). We note that regular re-
cursion for local symbols can probably be introduced
in Theorem 4 without affecting the result.

Knowing the word structure of VPL (Theorem 2)
has proven very useful for us in determining the possi-
bilities of such languages. We have actively used this
property in our previous research, and we believe that
it will be useful to the research community at large.

We note that the regular wordsui from Theo-
rem 2 can contain technically any combination of calls
and returns. Practically (and in conjunction with the
pumping result from Theorem 4) they will only con-
tain local symbols. Finding a tighter formalism that
restricts the constructions to only practically meaning-
ful situations and is still closed under prefix and the
such (the real reason unmatched calls and returns are
needed) is an interesting open problem (which might
however be unsolvable; we do not have any idea how
such a construct, which is also closed under prefix, is
realizable).

Overall, we note that such purely theoretical re-
sults such as the ones described in this paper have sur-
prisingly practical consequences.

True, the whole VPL-based algebraic approach to
program specification and verification has been shown
to be impossible due to some missing closure proper-
ties for these languages [5]. The proposed approach

based on multi-stack VPL [5] is however similar in
structure with VPL, so the results from this paper can
be easily extended in such a context, and are espe-
cially pertinent to the “single-stack processes” (that
is, “single-thread processes”) that are modelled using
single stacks and then put together via disjoint oper-
ations [5]. In particular, we believe that our pumping
result can be easily extended to multi-stack VPL.

References:

[1] R. ALUR, K. ETESSAMI, AND P. MADHUSU-
DAN, A temporal logic of nested calls and re-
turns, in Proceedings of the 10th International
Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS 04),
vol. 2988 of Lecture Notes in Computer Science,
Springer, 2004, pp. 467–481.

[2] R. ALUR AND P. MADHUSUDAN, Visibly push-
down languages, in Proceedings of the 36th An-
nual ACM Symposium on Theory of Computing
(STOC 04), ACM Press, 2004, pp. 202–211.

[3] M. B ROY, B. JONSSON, J.-P. KATOEN,
M. L EUCKER, AND A. PRETSCHNER, eds.,
Model-Based Testing of Reactive Systems: Ad-
vanced Lectures, vol. 3472 of Lecture Notes in
Computer Science, Springer, 2005.

[4] S. D. BRUDA AND M. T. BIN WAEZ, Commu-
nicating Visibly pushdown Processes, in The 17th
International Conference on Control Systems and
Computer Science, vol. 1, Bucharest, Romania,
May 2009, pp. 507–514.

[5] , Unrestricted and disjoint operations over
multi-stack visibly pushdown languages, in Pro-
ceedings of the 6th International Conference on
Software and Data Technologies (ICSOFT 2011),
vol. 2, Seville, Spain, July 2011, pp. 156–161.

[6] S. LA TORRE, M. NAPOLI, AND M. PAR-
ENTE, The word problem for visibly pushdown
languages described by grammars, Formal Meth-
ods in System Design, 31 (2007), pp. 265–279.

[7] H. R. LEWIS AND C. H. PAPADIMITRIOU , El-
ements of the Theory of Computation, Prentice-
Hall, 2nd ed., 1998.

Recent Advances in Applied & Biomedical Informatics and Computational Engineering in Systems Applications

ISBN: 978-1-61804-028-2 103

