
Solutions for a Secure Java Servlet Development

MARIA VLAD, CATALINA NUTA, MADALIN STEFAN VLAD,
VALENTIN SGARCIU

Faculty of Automatic Control and Computers,
“Politehnica” University of Bucharest,

313, Spaiul Independentei, Sector 6, Bucharest,
ROMANIA

E-mail: maria@ac.pub.ro, nuta_catalina@yahoo.com, madalinv@ac.pub.ro, vsgarciu@aii.pub.ro

Abstract: A web application contains resources that can be accessed by many users. These resources often
traverse unprotected, open networks such as the Internet. In such an environment, a substantial number of web
applications will have security requirements. Although the quality assurances and implementation details may
vary, servlet containers have mechanisms and infrastructure for meeting these requirements that share some of
the following characteristics: authentication, access control for resources, data integrity, confidentiality or data
privacy.

Key words: servlets, security, java, jdk

1. Introduction
Early in the World Wide Web's history, the
Common Gateway Interface (CGI) was defined to
allow Web servers to process user input and serve
dynamic content.

The Servlet API was developed to leverage the
advantages of the Java platform to solve the issues
of CGI and proprietary APIs. It's a simple API
supported by virtually all Web servers and even
load-balancing, fault-tolerant Application Servers. It
solves the performance problem by executing all
requests as threads in one process, or in a load-
balanced system, in one process per server in the
cluster. Servlets can easily share resources as you
will see in this article.

1.1. Defining the concept of Servlet
A servlet is a JavaTM technology-based Web
component, managed by a container that generates
dynamic content. Like other Java technology-based
components, servlets are platform-independent Java
classes that are compiled to platform-neutral byte
code that can be loaded dynamically into and run by
a Java technology-enabled Web server.

Servlets are server side components. These
components can be run on any platform or any
server due to the core java technology which is used
to implement them. Servlets augment the
functionality of a web application. They are
dynamically loaded by the server's Java runtime
environment when needed. On receiving an
incoming request from the client, the web

server/container initiates the required servlet. The
servlet processes the client request and sends the
response back to the server/container, which is
routed to the client.

Containers, sometimes called servlet engines, are
Web server extensions that provide servlet
functionality. Servlets interact with Web clients via
a request/response paradigm implemented by the
servlet container.

1.2. Defining the concept of Servlet
Container
The servlet container is a part of a Web server or
application server that provides the network services
over which requests and responses are sent, decodes
MIME-based requests, and formats MIME-based
responses. A servlet container also contains and
manages servlets through their lifecycle.

A servlet container can be built into a host Web
server, or installed as an add-on component to a
Web Server via that server’s native extension API.
Servlet containers can also be built into or possibly
installed into Web-enabled application servers.

All servlet containers must support HTTP as a
protocol for requests and responses, but additional
request/response-based protocols such as HTTPS
(HTTP over SSL) may be supported. The required
versions of the HTTP specification that a container
must implement are HTTP/1.0 and HTTP/1.1.
Because the container may have a caching
mechanism described in RFC2616 (HTTP/1.1), it
may modify requests from the clients before

Models and Methods in Applied Sciences

ISBN: 978-1-61804-044-2 169

delivering them to the servlet, may modify
responses produced by servlets before sending them
to the clients, or may respond to requests without
delivering them to the servlet under the compliance
with RFC2616.

A servlet container may place security
restrictions on the environment in which a servlet
executes. In a Java 2 Platform, Standard Edition
(J2SETM, v.6.0) or Java 2 Platform, Enterprise
Edition (J2EETM, v.6.0) environment, these
restrictions should be placed using the permission
architecture defined by the Java 2 platform. For
example, high-end application servers may limit the
creation of a Thread object to insure that other
components of the container are not negatively
impacted.

1.3. Servlet Lifecycle
A servlet is managed through a well defined life
cycle that defines how it is loaded and instantiated,
is initialized, handles requests from clients, and is
taken out of service. This life cycle is expressed in
the API by the init, service, and destroy methods of
the javax.servlet.Servlet interface that all servlets
must implement directly or indirectly through the
GenericServlet or HttpServlet abstract classes.

Fig. 1. Servlet lifecycle

1.3.1. Loading and Instantiation
The servlet container is responsible for loading and
instantiating servlets. The loading and instantiation
can occur when the container is started, or delayed

until the container determines the servlet is needed
to service a request.

When the servlet engine is started, needed servlet
classes must be located by the servlet container. The
servlet container loads the servlet class using normal
Java class loading facilities. The loading may be
from a local file system, a remote file system, or
other network services. After loading the Servlet
class, the container instantiates it for use.

1.3.2. Initialization
After the servlet object is instantiated, the container
must initialize the servlet before it can handle
requests from clients. Initialization is provided so
that a servlet can read persistent configuration data,
initialize costly resources (such as JDBC™ API
based connections), and perform other one-time
activities. The container initializes the servlet
instance by calling the init method of the Servlet
interface with a unique (per servlet declaration)
object implementing the ServletConfig interface.

This configuration object allows the servlet to
access name-value initialization parameters from the
Web application’s configuration information. The
configuration object also gives the servlet access to
an object (implementing the ServletContext
interface) that describes the servlet’s runtime
environment. See Chapter SRV.3, “Servlet Context”
for more information about the ServletContext
interface.

1.3.3. Request Handling
After a servlet is properly initialized, the servlet
container may use it to handle client requests.
Requests are represented by request objects of type
ServletRequest. The servlet fills out response to
requests by calling methods of a provided object of
type ServletResponse. These objects are passed as
parameters to the service method of the Servlet
interface.

In the case of an HTTP request, the objects
provided by the container are of types
HttpServletRequest and HttpServletResponse. Note
that a servlet instance placed into service by a
servlet container may handle no requests during its
lifetime.

1.3.4. End of Service
The servlet container is not required to keep a
servlet loaded for any particular period of time. A
servlet instance may be kept active in a servlet
container for a period of milliseconds, for the
lifetime of the servlet container (which could be a

Models and Methods in Applied Sciences

ISBN: 978-1-61804-044-2 170

number of days, months, or years), or any amount of
time in between.

When the servlet container determines that a
servlet should be removed from service, it calls the
destroy method of the Servlet interface to allow the
servlet to release any resources it is using and save
any persistent state. For example, the container may
do this when it wants to conserve memory
resources, or when it is being shut down.

Before the servlet container calls the destroy
method, it must allow any threads that are currently
running in the service method of the servlet to
complete execution, or exceed a server-defined time
limit.

Once the destroy method is called on a servlet
instance, the container may not route other requests
to that instance of the servlet. If the container needs
to enable the servlet again, it must do so with a new
instance of the servlet’s class.

After the destroy method completes, the servlet
container must release the servlet instance so that it
is eligible for garbage collection.

1.4. Usages of Servlets
Heterogeneous parallel computing. CGI
programming can be done in almost any language,
including C and C++. None of these languages are
truly portable on different platforms (e.g., Windows
and Unix). Only the Java language is ‘write once,
run everywhere’. As the servlet is a pure Java
solution, the actual server in our system can be any
combination of hardware and operating system. The
only requirement of the server computer is that it
supports the execution of servlets. Indeed, we have
tested our system in a heterogeneous environment
consisting different Pentium computers and Sun
Sparc workstations. In terms of operating systems,
these included Windows 95, 98, NT, 2000, XP,
Unix and Linux. We did not need to change a single
line of our programs.

Persistency. A servlet stays in the memory of the
computer as an object after it completes its
operation. It can thus respond and execute faster
than a CGI.

Security means different things to different
people, but most will agree that securing an
Information Technology system means controlling
access to the underlying data so that only authorized
users can read and modify the data.

There are several components of security that are
needed to achieve this simple aim:
• Authentication is a means whereby users can

identify themselves and be validated by the
system. The most common form of IT

authentication involves providing a username
and password, but other techniques—such as
digital certificates, smart cards and pin numbers,
and biometrics (fingerprints, etc.)—are
alternatives that can be used in some systems.

• Authorization is the process by which an
authenticated user is granted access to various
items of data. Authorization allows some users
to read data; whereas others can read, modify, or
update the data.

• Confidentiality means that only authorized
users can view the data, and typically requires
encryption of the data as it is transferred around
the network.

• Integrity means that the data the user views is
the same as the data stored in the system. In
other words, the data has not been corrupted or
changed when transferred from the server to the
client. Data integrity is usually achieved by
using data encryption. Integrity also means that
when a user changes an item of data, that
change is permanently made and cannot
subsequently be lost. An audit log is used to
support this aspect of integrity.

• Non repudiation means that if a user changes a
piece of data, the system can prove who made
the change and when, even if the user
subsequently denies making the change. Audit
trails and logging are used to support non
repudiation.

2. SECURITY IN SERVLETS

2.1. Declarative Security
Declarative security refers to the means of
expressing an application’s security structure
including roles, access control and authentication
requirements in a form external to the application.
The deployment descriptor is the primary vehicle
for declarative security in web applications.

The Deployer maps the application’s logical
security requirements to a representation of the
security policy that is specific to the runtime
environment. At runtime, the servlet container uses
the security policy representation to enforce
authentication and authorization.

The security model applies to the static content
part of the web application and to servlets and filters
within the application that is requested by the client.
The security model does not apply when a servlet
uses the RequestDispatcher to invoke a static
resource or servlet using a forward or an include.

Models and Methods in Applied Sciences

ISBN: 978-1-61804-044-2 171

A security role is a logical grouping of users
defined by the Application Developer or Assembler.
When the application is deployed, roles are mapped
by a Deployer to principals or groups in the runtime
environment.

A servlet container enforces declarative or
programmatic security for the principal associated
with an incoming request based on the security
attributes of the principal. This may happen in either
of the following ways:
1. A deployer has mapped a security role to a user

group in the operational environment. The user
group to which the calling principal belongs is
retrieved from its security attributes. The
principal is in the security role only if the
principal’s user group matches the user group to
which the security role has been mapped by the
deployer.

2. A deployer has mapped a security role to a
principal name in a security policy domain. In
this case, the principal name of the calling
principal is retrieved from its security attributes.
The principal is in the security role only if the
principal name is the same as a principal name to
which the security role was mapped.

2.2. Programmatic Security
Programmatic security is used by security aware
applications when declarative security alone is not
sufficient to express the security model of the
application. The word programmatic here means
implemented from scratch, which is a good choice
for authentication if users must have portability or if
they want total control. Because it's more work than
relying on their servlet container, programmatic
authentication can be a bad choice if they are not
interested in those benefits.

Another drawback to programmatic
authentication is that
HttpServletRequest.getUserPrincipal,
HttpServletRequest.getRemoteUser and
HttpServletRequest.isUserInRole are rendered
useless for applications with programmatic
authentication. Programmatic authentication
requires you to implement, and use, your own API
because setting principals and roles is strictly for
servlet containers.

To prevent unauthorized access, each servlet or
JSP page must either authenticate the user or verify
that the user has been authenticated previously. To
safeguard network data, each servlet or JSP page has
to check the network protocol used to access it. If
users try to use a regular HTTP connection to access
one of these URLs, the servlet or JSP page must

manually redirect them to the HTTPS (SSL)
equivalent.
2.3. Authentication
A servlet-based web application can choose from
the following types of authentication, from least
secure to most:
• Basic authentication
• Form-based authentication
• Digest authentication
• SSL and client certificate authentication
Servlet authentication looks simple:

1. A user tries to access a protected resource, such
as a JSP page.

2. If the user has been authenticated, the servlet
container makes the resource available;
otherwise, the user is asked for a username and
password.

3. If the name and password cannot be
authenticated, an error is displayed and the user
is given the opportunity to enter a new
username and password.

The steps outlined above are simple, but vague.
It's not apparent who asks for a username and
password, which does the authentication, how it's
performed, or even how the user is asked for a
username and password. Those steps are unspecified
because the servlet specification leaves them up to
applications and servlet containers. The servlet
specification leaves enough security details
unspecified that servlet containers must fill in the
gaps with non-portable functionality. For example,
the servlet specification does not specify a default
authentication mechanism, so servlet containers
implement their own; for example, Tomcat uses an
XML file to specify usernames and passwords,
whereas Resin requires implementing an
authenticator.

Because of non-portable security aspects of
servlet containers and depending upon user’s choice
for authentication, users may need to write some
non-portable code, such as a Resin authenticator or a
Tomcat realm. On the other hand, users can use
declarative authentication to minimize any code
they have to write.

Basic authentication is very weak. It provides no
confidentiality, no integrity, and only the most basic
authentication. The problem is that passwords are
transmitted over the network, thinly disguised by a
well-known and easily reversed Base64 encoding.
Anyone monitoring the TCP/IP data stream has full
and immediate access to all the information being
exchanged, including the username and password.
Plus, passwords are often stored on the server in
clear text, making them vulnerable to anyone
cracking into the server's file system. While it's

Models and Methods in Applied Sciences

ISBN: 978-1-61804-044-2 172

certainly better than nothing, sites that rely
exclusively on basic authentication cannot be
considered really secure.

Form-based authentication allows you to control
the look and feel of the login page. Form-based
authentication works like basic authentication,
except that you specify a login page that is
displayed instead of a dialog and an error page that's
displayed if login fails.

Like basic authentication, form-based
authentication is not secure because passwords are
transmitted as clear text. Unlike basic and digest
authentication, form-based authentication is defined
in the servlet specification, not the HTTP
specification.

2.4. Custom Authorization
There are two aspects to authentication: challenging
principals for usernames and passwords and
authenticating usernames and passwords. The
servlet specification requires servlet containers to
allow customization of the former with form-based
authentication. The servlet specification does not
require servlet containers to allow customization of
the latter, but most servlet containers let you do so.
Because the servlet specification does not provide a
standard mechanism for customizing authentication
of usernames and passwords, that kind of
customization is inherently non-portable.

Normally, client authentication is handled by the
web server. The server administrator tells the server
which resources are to be restricted to which users,
and information about those users (such as their
passwords) is somehow made available to the
server.

This is often good enough, but sometimes the
desired security policy cannot be implemented by
the server. Maybe the user list needs to be stored in
a format that is not readable by the server. Or maybe
you want any username to be allowed, as long as it
is given with the appropriate "skeleton key"
password. To handle these situations, we can use
servlets. A servlet can be implemented so that it
learns about users from a specially formatted file or
a relational database; it can also be written to
enforce any security policy you like. Such a servlet
can even add, remove, or manipulate user entries--
something that isn't supported directly in the Servlet
API, except through proprietary server extensions.

A servlet uses status codes and HTTP headers to
manage its own security policy. The servlet receives
encoded authorization credentials in the
Authorization header. If it chooses to deny those
credentials, it does so by sending the

SC_UNAUTHORIZED status code and a WWW-
Authenticate header that describes the desired
credentials. A web server normally handles these
details without involving its servlets, but for a
servlet to do its own authorization, it must handle
these details itself, while the server is told not to
restrict access to the servlet.

The Authorization header, if sent by the client,
contains the client's username and password. With
the basic authorization scheme, the Authorization
header contains the string of "username:password"
encoded in Base64. For example, the username of
"webmaster" with the password "try2gueSS" is sent
in an Authorization header with the value:

BASIC

d2VibWFzdGVyOnRyeTJndWVTUw

If a servlet needs to, it can send an WWW-
Authenticate header to tell the client the
authorization scheme and the realm against which
users will be verified. A realm is simply a collection
of user accounts and protected resources. For
example, to tell the client to use basic authorization
for the realm "Admin", the WWW-Authenticate
header is:

BASIC realm="Admin"

Custom authorization can be used for more than
restricting access to a single servlet. Were we to add
this logic to our ViewFile servlet, we could
implement a custom access policy for an entire set
of files. Were we to create a special subclass of
HttpServlet and add this logic to that, we could
easily restrict access to every servlet derived from
that subclass. Our point is this: with custom
authorization, the security policy limitations of the
server do not limit the possible security policy
implementations of its servlets.

3. Running Servlets Securely

3.1. The Servlet Sandbox
Servlets built using JDK 5.0 generally operate with
a security model called the "servlet sandbox." Under
this model, servlets are either trusted – and given
open access to the server machine – or they're
untrusted and have their access limited by a
restrictive security manager. The model is very
similar to the "applet sandbox", where untrusted
applet code has limited access to the client machine.

Models and Methods in Applied Sciences

ISBN: 978-1-61804-044-2 173

What's a security manager? It's a class sub
classed from java.lang.SecurityManager that is
loaded by the Java environment to monitor all
security-related operations: opening network
connections, reading and writing files, exiting the
program, and so on. Whenever an application,
applet, or servlet performs an action that could cause
a potential security breach, the environment queries
the security manager to check its permissions. For a
normal Java application, there is no security
manager. When a web browser loads an untrusted
applet over the network, however, it loads a very
restrictive security manager before allowing the
applet to execute.

Servlets can use the same technology, if the web
server implements it. Local servlets can be trusted to
run without a security manager, or with a fairly
lenient one. For the Java Web Server 7.0, this is
what happens when servlets are placed in the default
servlet directory or another local source. Servlets
loaded from a remote source, on the other hand, are
by nature suspect and untrusted, so the Java Web
Server forces them to run in a very restrictive
environment where they can't access the local file
system, establish network connections, and so on.
All this logic is contained within the server and is
invisible to the servlet, except that the servlet may
see a SecurityException thrown when it tries to
access a restricted resource. The servlet sandbox is a
simple model, but it is already more potent than any
other server extension technology to date.

Using digital signatures, it is possible for
remotely loaded servlets to be trusted just like local
servlets. Third-party servlets are often packaged
using the Java Archive (JAR) file format. A JAR
file collects a group of class files and other
resources into a single archive for easy maintenance
and fast download. Another nice feature of JAR
files that is useful to servlets is that they can be
digitally signed. This means that anyone with the
public key for "Crazy Al's Servlet Shack" can verify
that her copy of Al's Guestbook Servlet actually
came from Al. On some servers, including the Java
Web Server, these authenticated servlets can then be
trusted and given extended access to the system.
Users can create their owned signed servlets using a
certificate generated by the JDK's key management
tools. Alternately, they can obtain signed certificates
from VeriSign or another certificate authority.

4. Conclusion
Security is an important aspect of applications that
transport sensitive data over the Internet. Because of
this requirement, the servlet specification requires

servlet containers to provide implementations of
basic and digest authentication, as defined in the
HTTP/1.1 specification. Additionally, servlet
containers must provide form-based security that
allows developers to control the look and feel of
login screens. Finally, servlet containers may
provide SSL and client certificate authentication,
although containers that are not J2EE compliant are
not required to do so.

Unlike other aspects of web applications
implemented with JSP and the Java programming
language, security typically requires some non-
portable code. If portability is a high priority, you
can implement security can be implemented from
scratch by using JSP and servlets, as illustrated in
"Programmatic Authentication"

References:

[1] Allamaraju, S. et al. (2000). Professional Java

Server Programming J2EE Edition. Wrox
Press, Inc., 978-1861004659, U.K.

[2] Basham, B. et. al (2008). Head First Servlets
and JSP: Passing the Sun Certified Web
Component Developer Exam, O'Reilly Media,
978-0596516680

[3] Callaway, D. (1999). Inside Servlets: Server-
Side Programming for the Java Platform,
Addison-Wesley Pub (Sd), 978-0201379631,
U.S.A.

[4] Crawford, W & Hunter, J. (1998). Java Servlet
Programming, O'Reilly Media, Inc., 1-56592-
391-XE, U.S.A.

[5] Geary, D. (2001). Java Servlet Authentication,
Prentice Hall, 978-0-13-030704-0, U.S.A

[6] Hall, M. & Brown, L. (2003). Core Servlets
and JavaServer Pages:Core Technologies, vol.
1, Prentice Hall PTR, 978-0130092298, U.S.A.

[7] Hassan, D.; El-Kassas, S. & Ziedan, I. (2009).
Developing a Security Typed Java Servlet,
Journal of Information Assurance and Security,
nr. 4.

[8] Murach, J. & Steelman, A. (2008). Murach's
Java Servlets and JSP, 2nd Edition, Mike
Murach & Associates, 1890774448, U.S.A

[9] Volkheimer, J. (2003). Introduction to Servlets,
JSP, and Servlet Engines, Available from
http://devcentral.iftech.com/articles/Java/intro_
Servlet_JSP_Engine/default.php Accessed:
2009-11-02

[10] Wai-Sing Loo, A. (2007). Peer-to-Peer
Computing. Building Supercomputers with Web
Technologies, Springer London, 978-1-84628-
381-9, U.K.

Models and Methods in Applied Sciences

ISBN: 978-1-61804-044-2 174

