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Abstract: - The paper is devoted to simplifying measurement of the distribution of relaxation and retardation 
times (DRRT) by determining DRRT from the modulus (absolute value) of a complex frequency-domain 
material function. It is demonstrated that the problem may be interpreted as a filtering task on the logarithmic 
frequency scale having a diffuse frequency response bounded by the responses of the filters corresponding to 
the cases with the minimum (zero) and maximum imaginary parts according to the Kronig-Kramers relation. A 
discrete-time deconvolution filter operating with geometrically sampled data is designed for recovering DRRT 
from the modulus and the simulation results are presented. A measurement system is proposed implementing the 
principle of DRRT recovery through the modulus, where a material under test is subjected to multi-harmonic 
excitation at frequencies distributed according to geometric progression with subsequent measuring the 
amplitudes of the multi-harmonic responses and processing them by a discrete-time DRRT recovery filter.  
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1 Introduction 
Measurement systems have been proposed [1], 
where the distribution of relaxation and retardation 
times (DRRT) has been determined through 
measurements of various material functions 
representing the material’s responses to the standard 
excitations, such as the Heaviside step function, the 
Dirac delta function and the steady-state multi-
harmonic excitation. In the instrumentation design 
light, however, it is not always optimal to determine 
DRRT through the responses representing exactly 
defined material functions. 
     The objective of the presented contribution is 
simplification of measurement of DRRT. To achieve 
this objective, we give theoretical background and 
consider practical implementation issues for 
determination of DRRT from the modulus of a 
complex frequency-domain material function. The 
idea behind the proposed solution is based on the 
fact the modulus (absolute value) of a complex 
frequency-domain material function in principle 
contain the same information about DRRT as the real 
or imaginary parts, however, the modulus compared 
with the real or imaginary parts is more easily 
determined by measuring the amplitudes of 
responses of the material to the harmonic excitations 
at various frequencies. 

2 Theoretical Background 
Assume that a material under test (MUT) has 
complex compliance 

)()()(
~ ωωω JjJJ ′′−′= ,  (1) 

where J′(ω) and J″(ω) are the real and imaginary 
part, respectively, ω is angular frequency, and 

1−=j . If the material with compliance (1) is 
subjected to harmonic steady-state excitation of the 
force (voltage, stress, etc.) with amplitude Xm 

tXtx mmm ωsin)( = , 

it responds by a harmonic response of the same 
frequency ωm but with a different amplitude and 
phase 

)sin()( mmmm tYty ϕω −= ,  (2) 

where Ym is amplitude and φm is phase angle of the 
response with respect to the excitation. Amplitude Ym 
is proportional to modulus of the complex 
compliance at frequency ωm 
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     According to the linear relaxation theories [2-4], the 
real and imaginary parts are related to DRRT by the 
following integral transforms: 
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where F(τ) is the function of DRRT named also 
relaxation/retardation spectrum, and J∞ is so-called 
instantaneous component observed for J′(ω) at infinite 
frequency. By inserting terms (4) and (5) in Eq. (3), 
one can obtain an interrelation between modulus 
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| ωJ  and spectrum )(τF . 
     Since the real and imaginary parts of causal 
physical systems, such as materials are not wholly 
independent but are linked by the Kronig-Kramers 
relations [5,6], two limiting cases can be defined for 
modulus (3) when: 
     (i) the imaginary part tends to zero  
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and  
     (ii) the imaginary part takes a maximum value for 
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     Case (6) corresponds to very broad DRRT, 
whereas the distribution is equal to the Dirac delta 
function in case (7). For example, in Fig. 1, modulus 
(7) and real part (4) corresponding to the Cole-Cole 
(CC) relaxation response [7] are shown for different 
values of spectrum parameter α. As it is seen, the 
significant difference between the modulus and real 
part is observed for 1=α  (the distribution of the 
Dirac delta function), and it gradually decreases for 
smaller value of  α  (broader distributions). 
 
 

 
 
Fig. 1. The modulus (solid) and real parts (dashed) of 
a material function corresponding to CC relaxation 
response at different values of parameter α (numbers 
near the curves). 
 
 

3 Recovering DRRT from the 
Modulus by Functional Filtering 

 
 
3.1 Underlying Idea 
Computationally efficient algorithms in the form of 
finite impulse response (FIR) filters, named 
functional filters, have been developed recently for 
recovering DRRT from different material functions 
[8-10]. The idea behind the functional filtering 
approach is based on the following two key points: 
     (i) material functions behave monotonically 
(J′(ω)) or locally monotonically (J″(ω)) and so are 
experimentally recorded over many decades of time 
or frequency. For this reason, the widely used 
practice [2-4] is to consider these functions on a 
logarithmic time or frequency scale;  
     (ii) interrelations between material functions and 
DRRT are described by the integral transforms 
having kernels depending on the ratio or product of 
arguments. For example, integral transforms (4) and 
(5) are these with kernels depending on product ωτ.  
     The mentioned transforms can be converted in the 
form of the Mellin convolution type transforms, 
which, in turn, alter into the Fourier convolution type 
transforms describing ideal filters for logarithmically 
transformed arguments. Based on this, we have 
proposed to use discrete-time deconvolution filters 
operating on the logarithmic time or frequency scale as 
algorithms for DRRT recovery [8-10]. A key feature 
of these filters is that they process input data sampled 
according to geometric progression on the linear scale 
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to ensure processing uniformly sampled data on the 
logarithmic scale. 
 
 
3.2 DRRT Recovery from the Modulus  
Due to the operations of raising to the power and 
taking square root in Eq. (3), the interrelation between 

|)(
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| ωJ  and )(τF  cannot be written in the terms of a 
Mellin convolution and, consequently, the problem 
of determination of DRRT from the modulus cannot 
be formally classified as a functional filtering task. 
However, limiting cases (6) and (7) separately can be 
represented as the Mellin convolutions and so they 
can be identified as the limiting ideal functional 
filters. Thus, limiting case (6) leads to the ideal 
deconvolution filter recovering DRRT from the real 
parts having the following frequency response 
[11,12] 
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where parameter µ, named ‘Mellin frequency’, has 
been interpreted [9,11,12] as the angular frequency 
of a signal (function) on the logarithmic scale. 

     In its turn, interrelation between |)(
~

| ωJ  and 
)(τF  in case (7) is represented by the following 

Mellin convolution type transform 
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with kernel 21/1)( uuk += . Inversion of (9), 
which allows one to determine DRRT, leads to an 
ideal deconvolution filter with the frequency 
response equal to the reciprocal of the Mellin 
transform of kernel k(u) [11,12]  

 
[ ]

)2/5.0()2/(

2
1);(

1
)(

0
2

1

µΓµΓ
π

µ
µ

µ

jj

du
u

u

jukM
jH

j

+−

=
+

=
−

= ∫
∞ −−

, (10) 

where M denotes the Mellin transform, and Γ 
represents the Gamma function. 
     In Fig. 2, the magnitude responses are shown for 
(8) and (10). As it is seen, they are similar – 
extremely rapidly increasing functions located 
relatively close one another. It can assume that the 
ideal magnitude responses for all other cases of 
determination of DRRT from the modulus should lie 
in the lane between the both responses (shaded area). 

Therefore, the problem of determination of DRRT 
from the modulus may be interpreted as a functional 
filtering task with a ‘diffuse’ frequency response 
bounded by responses (8) and (10). A practical 
conclusion follows that, despite that the interrelation 

between |)(
~

| ωJ  and )(τF  is no longer a Mellin 
convolution, DRRT likely can be recovered from the 
modulus by the appropriate discrete-time DRRT 
recovery filters. 
 

      
 
Fig. 2. Diffuse magnitude response (shaded area) 
bounded by limiting responses (10) (solid) and (8) 
(dashed). 

 
      
3.3 Discrete-Time Filters for DRRT 
Recovery from the Modulus 
DRRT from the modulus is calculated by the same 
algorithms as those used for calculation of DRRT from 
the real part [1,11,12]: 
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where h[n] is impulse response, x(.) is input function, 

i.e. modulus |)(
~

| ωJ  in the case under consideration, 
q is progression ratio specifying the sampling rate in 
the sense that qln  defines the distance between 
samples on the logarithmic scale, i.e. plays formally 
a role of sampling period, whereas its reciprocal 
describes the appropriate sampling frequency, and u0 
is an arbitrary normalization constant. 
    Pure imaginary frequency response (8) enforces an 
odd symmetry on impulse response h[n] resulting 
that linear phase filters of type III and IV [13] must 
be used for recovering DRRT from the real parts. 
Contrary to this, response (10) is a complex function 
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of µ, which does not predict any symmetry for h[n], 
so the filters for DRRT recovery from the modulus 
belong to nonlinear phase systems [13]. 
     Since 0)0( =jH  for responses (8) and (10) (see 
Fig. 2), the filters cut out zero frequency (DC) 
component of an input function. This means that the 
DRRT recovery filters are insensitive to bias of an 
input function, which is very important for practice, 
because no special measure to be taken to separate 
instantaneous component J∞ from the whole response 
functions to obtain the relaxing parts. 
    
 
3.4 Practical Algorithms – Design and 
Regularization 
It is well known that the determination of DRRT is a 
severely ill-posed problem [11,12,14-16], which 
manifests as an instability or high sensitivity of 
algorithms to noise (random error) causing that small 
perturbations in the input data can yield unrealistic 
high perturbations in the recovered distributions. Due 
to this, DRRT recovery algorithms must be stabilized 
or regularized to minimize the sensitivity to noise to 
acceptable for practice levels. 
     A methodology of algorithm design has been 
developed for deconvolution filters [17-19] integrating 
signal acquisition, regularization and discrete-time 
algorithm implementation, where a deconvolution 
filter is regularized by searching a combination of 
progression ratio q (sampling rate) and filter length N, 
which ensures the desired noise amplification. Further, 
the filter is designed for the found combination of q 
and N by the identification method [8] performing a 
learning algorithm.  
     Following the suggestion in [17-19], the 
sensitivity to noise will be characterized here 
quantitatively by noise amplification coefficient 

∑
n

2 nh = S ][   (12) 

multiplying noise variance of input function 2xσ  to 

give noise variance of output function 2
yσ  

22
xy Sσσ = . 

     Relatively similar frequency responses of the 
filters recovering DRRT from the modulus to those 
recovering DRRT from the real parts (see Fig. 2) 
allows to use approximately the same filter 
specification (q and N) to ensure the desired 
performance (accuracy and noise amplification). 
Thus, the specification with 3.3=q  and 6=N  has 

been selected, which, according to [11,12], should 
ensure noise amplification coefficient (12) of the 
order of 10. By introducing substitution mqu0=τ , 
for the mentioned specification, algorithm (11) 
simplifies: 

∑
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     Coefficients h[n] for (13) for recovering DRRT 
from the modulus are given in Table 1 (filter 1). 
They according to Eq. (12) ensure actual 
experimental noise amplification coefficient 

72.4=S . For comparison, the coefficients are also 
presented in Table 1 for a 6-point filter recovering 
DRRT from the real parts [11,12] having 83.10=S  
(filter 2). Fig. 3 illustrates the magnitude responses 
of the both recovery filters. 
 
Table 1. Coefficients h[n] for 6-point filters designed 
for recovering DRRT from the modulus (filter 1) and 
from the real part (filter 1)  

 
n  

Filter 1 Filter 2 

-3  0.002118 -0.0621334 
-2  0.212985  0.577504 
-1 -1.49284 -2.25364 
0  1.53843  2.25364 
1 -0.271549 -0.577504 
2 0.0108601  0.0621334 

 

 
 
Fig. 3. Magnitude responses of filters 1 and 2. Shaded 
area: ideal diffuse frequency response.  
 
 
3.5 Simulation results 
The simulations performed have demonstrated that, 
for narrow distributions, the better results give the 
filters designed for recovering DRRT from the 
modulus, i.e. these be constructed for inverting Eq. 
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(9). However, for broader distributions, the filters 
designed for the real parts also can be used.   
     As an example, in Fig. 4 and 5, the distributions 
of retardation times corresponding to CC relaxation 
model [7] with 2=∞J , and 9.0=α  and 8.0=α  are 
shown recovered from noiseless input data by filters 
1 and 2. If filter 2 designed for recovering DRRT 
from the real part gives an oscillating distribution at 

9.0=α , then already at 8.0=α , the recovery 
results are very similar for the both filters. 
 

 
 

Fig. 4. Distributions of retardation times for CC 
model at 9.0=α  recovered from the modulus by 
filters 1 (dotted) and 2 (dashed). Solid line: exact 
distribution.   
 

 
 
Fig. 5. Distributions of retardation times for CC 
model at 8.0=α  recovered from the modulus by 
filters 1 (dotted) and 2 (dashed). Solid line: exact 
distribution. 
 
 

4 DRRT measurement system 
The above theoretical justification of DRRT 
recovery from the modulus gives basis for 
simplifying DRRT measurement systems by 
abandoning: (i) measurement of phase difference, 

and (ii) calculation of the real or imaginary part, 
which are the compulsory operations for techniques 
recovering DRRT through the real or imaginary parts 
[1]. In addition, determination of DRRT through the 
modulus may, likely, improve the performance 
because the higher accuracy can be achieved for 
measurements of the amplitudes compared to the 
measurements of the real and imaginary parts.  
    

 
 
Fig. 6. Block diagram of a system measuring DRRT 
through the amplitudes to multi-harmonic 
excitations. 
 
     In Fig. 6, a block diagram is shown for a system 
implementing recovery of DRRT through the 
modulus by measuring the amplitudes to multi-
harmonic excitations. The system consists of the 
following main parts:  
(i) multi-harmonic excitation generator;  
(ii)  sensory system producing the appropriate 

physical (electrical, mechanical, magnetic, 
etc.) excitation to MUT and converting the 
material’s responses into electrical signals;  

(iii)  measuring subsystem measuring the 
amplitudes of the multi-harmonic responses 
and converting them in discrete-time form; 

(iv) logarithmic clock providing geometric 
sampling;  

(v) DRRT recovery filter calculating of DRRT 
from the amplitudes. 

A measuring subsystem shown in Fig. 6 performs 
rectification of the response signals to produce  the 
absolute values of their waveforms by a active full-
wave rectifier, reduction of remaining AC ripple by 
active low-pas filter and conversion of analog DC by 
ADC with digital-to-analog converter-based design.  
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5 Conclusions 
A problem of determination of the distribution of 
relaxation and retardation times (DRRT) is 
considered from the modulus (absolute value) of a 
complex frequency-domain material function. While 
the problem cannot be represented in the terms of a 
Mellin convolution, it formally cannot be classified 
as a functional filtering task on the logarithmic 
frequency scale. However, two limiting cases – with 
the minimum (zero) and maximum imaginary parts, 
which can be represented as Mellin deconvolutions, 
define the two ideal limiting DRRT recovery filters. 
Based on this, the problem of determination of 
DRRT from the modulus is interpreted as a filtering 
task with a diffuse frequency response bounded by 
the frequency responses of the two limiting filters. 
     Practical algorithms are given and simulation 
results are presented. It is shown that the filters 
designed for DRRT determination from the real parts 
may be also used for recovering DRRT from the 
modulus, particularly, for the broader distributions. 
For narrow distributions, however, it is better to use 
filters specially designed for recovering DRRT from 
the modulus. 
     A measurement system is proposed implementing 
the principle of recovery of DRRT through the 
modulus, where a material under test is subjected to 
multi-harmonic exciting at frequencies distributed 
according to geometric progression with subsequent 
measuring the amplitudes of the multi-harmonic 
responses and processing them by a discrete-time 
DRRT recovery filter. 
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