
Student’s diversity problem in programming courses

MICHAL BLAHO, MARTIN FOLTIN, PETER FODREK, JÁN MURGAŠ
Institute of control and industrial informatics

Faculty of Electrical Engineering and Information Technology
Slovak University of Technology
Ilkovičova 3, 812 19 Bratislava

SLOVAK REPUBLIC
michal.blaho@stuba.sk, martin.foltin@stuba.sk

Abstract: Ability to produce computer program is one of the necessary skills of today’s engineers. Several
courses at early stages of study at the Faculty of Electrical Engineering and Information Technology of Slovak
University of Technology in Bratislava teach how to program in some basic programming languages necessary
for engineers praxis. Problem of these courses is student’s diversity in programming skills. Many of students
don’t have programming experience at all and some students know much more than course can offer. Course
setting that can be beneficial to all students is very challenging problem to solve.

Key-Words: - Programming skills, learning, students diversity, students opinion, operating systems,
programming languages

1 Introduction
Demand for high quality engineers is big today. For
example Germany needs more than 30000 engineers
[1,2,3]. Modern engineers must have good
theoretical knowledge and practical experience. One
of many skills that are necessary in praxis for our
students is know how to do computer programming.
Many teachers agree, that many students have
problems dealing with the learning of programming
[4,5]. Teaching style of programming is usually
individual for each student, therefor is almost
impossible to choose right style for the
programming course. Great help in this problem are
many information sources that students can use for
computer programming during learning process [6].
What we can do to improve out teaching of
programming is to incorporate modern learning
strategies like collaborative learning [7,8]. We try
some of them with different success in our teaching
praxis. We present more practical rather than
scientific perspective in this paper.

2 Students diversity
Students from different parts of the country study at
the universities. They have been studying at various
secondary schools with various focuses on topics.
We have more than 250 secondary grammar schools
(focus on general knowledge) with about 90 000
students and more than 500 secondary technological
schools (focus on engineering) with about 180 000
students in Slovak republic.

The one of the common problems in early terms on
faculties is the student’s diversity. Because they
studied at the different schools they have different
basis of mathematics, physics, computer
programming, technology, etc. The teacher’s job is
to reduce gap between students knowledge
necessary for study at the faculty. We focus mainly
on operating system usage and programming skills
in our study.

2.1 Operating systems
Almost every student basically from primary school
starts dealing with a computer. In our praxis
(industrial informatics) variety of operating systems
is used, for example Unix based systems in
embedded systems or real-time control. It was in our
interest to find out what operating systems students
had contact with before study at faculty.
The major operating system on market is Microsoft
Windows. It is also well known between students
and 99.7% answered that they are familiar with this
operating system. Open source Unix based
operating systems are growing in popularity because
they are free and have near same functionality as
Windows. Students know these systems and 46%
are familiar with Unix based operating systems.
Apple operating systems are known for support for
students and study process. In our country they
aren’t much spread because the expenses but 10% of
the students have seen this operating system. Other
operating systems used 3% of the students.

Recent Researches in Educational Technologies

ISBN: 978-1-61804-021-3 127

2.2 Programming experience
Students come to university from different schools
and have different knowledge background as we
mentioned before. We have found this fact in our
courses (mainly in computer programing) when
some students can understand lectures and practices
easily and some have problems. The difference is
often enormous. We were curious how students are
prepared from secondary schools and if they had
programming after all. If they have been learning
computer programming by them self is another
question.

2.2.1 Computer programming at school
Teaching informatics in secondary schools is
certainty. But the question is, if the schools learn
how to design computer programs. On the question,
if students had course of computer programming
90% answered positive. The rest 10% haven’t got
any programming courses yet.
This doesn’t mean, that 90% of the students
understand principle of computer programming well
and are good at algorithm design understanding.
Many of them had various teachers or programming
topics. Some secondary schools prefer different
programming languages then others. We try to find
out in our questionnaire what programming
languages they learned in secondary school.
The most popular language for teaching
programming at secondary schools is Pascal. About
71% students have learned this language. Delphi is
similar to the Pascal, which is introductory to
objective programming and has better graphical user
interface capabilities. Delphi is familiar to 10% of
the students. Modern programming courses (mainly
at universities) starts programming courses with C
or C++. About 25% of students learned those
languages so they have good chance to pass exams.
Technological secondary schools teach low-level
programming language Assembly. More than 30%
of students learned this language that is used for
programming microcontrollers in industrial
informatics. More and more secondary schools start
to learn more and more popular web technologies
like Html, Php or Javascript. Students like this
technologies because they are relatively easy to
learn. About 21% have been learning web
technologies at school. The most popular and used
objective language Java has learned only 1% of
students.

2.2.2 Programming in free time
You don’t necessary learn what you want to learn at
secondary school. Many students are curious and

therefor learn some programming languages by
them self. These students often achieve better results
and have deeper understanding of programming
languages rather than students who learn at school.
They wanted to learn, but they don’t need it, which
make the difference.
As a contrast to the school programming free time
programming has different distribution of students
that learned programming language. Near half of the
students (42%) learned web technologies in their
free time. The next favorite programing languages
for the students are C/C++, near 27%. Pascal is also
popular but not as much (11%). Java is the last
known popular language with 10%. Other
mentioned languages in previous part have less than
10%.

2.2.3 Comparison
If we compare what were students learned at the
secondary school and what they learned in their own
free time, we will see what languages and
programming paradigm they know best. Secondary
schools learn procedural programming (Pascal,
C/C++) and web technologies. Student focus mostly
on web technologies but also in procedural and
objective oriented programming (Java).

Fig.1 Comparison of learning styles

3 Programming at faculty
As we mentioned before, students with different
knowledge of programming are coming to the
faculty. The first few terms can be hard for students
that hadn’t programming courses at the secondary
school.

3.1 Problems in courses
We wanted to know how students see difficulty of
the programming courses at the university. We ask
them, how big problems they had in computer
programming courses.

Recent Researches in Educational Technologies

ISBN: 978-1-61804-021-3 128

Answers were divided into five groups by problems
degree. Major problem had almost 10% of the
students. They wasn’t capable understand most of
the lectures or practices. Above average problems
had 21% students. Average problems had almost
35%. These problems are usual on every course.
Problems beyond average had 20%. About 13,5% of
the students hadn’t any problems in programming
courses. These students came to faculty prepared for
programming courses.
The distribution of answers is standard Gaussian
distribution as you can see on figure 2. For this
reason we asked this question universally and it
applies to all programming classes at the faculty.

Fig.2 Degree of problems

3.2 Flipped Gaussian distribution
Dehnadi and Bornat [5] point out that student can be
divided into two general groups of students. On
group of students is extremely difficult to teach
programming. The other group is much easier to
teach. This group was successful in programming
and found it easy. This can be plot on distribution
figure of exams. One peak is in right half where are
students with no problem with programming. Other
peak is on left where are students with serious
problems in programming learning and fail at exam
test.

Fig.3 Unix programming results

Exam results from some courses confirm Dehnadi
and Bornat theory. In Unix programming course
(figure 3, FN or FX means absence at exams or
failure) students result have two peaks. Java
programing course (figure 4) have three peaks of
results. Figures show, that students had in fact
problems with passing course or fail at exams.

Fig.4 Java programming results

4 Our suggestions
It is hard to suggest universal methodology for
teaching computer programming. In our case it look
like following topics may help to improve teaching
and learning processes. Talented students with
practical experience, who are able to pass final
exam before start of the course they may be taken
individual projects corresponding to their
knowledge. It is also possible to use them as
consultants for the lecture to improve teaching
process or as personal consultants for less prepared
students.
This changes practically removes left peak students
from figures 3 and 4. It allows redesigning course to
better-fit less prepared students requirement. Some
of the courses are to be modified to teach team
organization and teamwork. Classification may to
be done offline not online as now. This means that
students upload their programs to server and lectors
may study programs at home. This allows them to
design more concrete questions for students to find
out their knowledge of the program as well as quick
modify of the next lecture study material.

5 Students opinions
After questions about secondary school programing
and programing at the faculty we asked student what
other comments they have to computer
programming learning at the faculty.
The first group of students haven’t got any
programming courses because their specialization
didn’t offer any, but they still wanted to learn how

Recent Researches in Educational Technologies

ISBN: 978-1-61804-021-3 129

to program. Some students wanted to have better
basis of algorithm designs. Another answers leaded
to courses of economy. Students suggested that they
have to teach too many of them. They would be
replaced by more useful programming courses for
their praxis.
The next group of student wanted to modernize the
programming courses. Better students can really
good see what is used in praxis especially if they
begin part-time work meanwhile study. Students
want more practical examples rather than theoretical
lectures. Another demand was to connect lectures to
their courses in their specialization or some visits to
real-world companies.
Some students wanted to work in teams on few
programming courses. In praxis there people work
this way. Another useful technique is programming
management and job scheduling. Also modern
developing environments would be used during
teaching process.
Very surprising were statements that we would take
more of originality check of student programs made
for classification. Some students demanded harder
tasks. Other group wanted to learn more electronics
than programming.

6 Conclusion
We wrote about problems in compute programing
teaching in this paper. Student’s diversity in
programming knowledge and computer usage is
huge factor. They come from several secondary
schools where they learned different kinds of
programming languages.
This is one of few factors why some students can’t
pass some programming courses in first or two years
of study. Some exams results show that there are
two types of student. One can learn programming
easily and other usually fails.
We proposed some ideas how to moderate this fact.
Integrate better students into teaching process can
shift negative trends in programming teaching.
Helping with modernizing lectures or collaboration
with no so well prepared students can be beneficial.
Individual projects can improve knowledge for
better students. Shifting difficulty of courses
towards no so well prepared students can increase
what they could learn.
Many students at the faculty had interest in
improving quality of computer programming
learning. In a first day of our questionnaire through
Facebook and university information system we had
over 500 submissions (almost 20% of students). We
can’t underestimate student’s opinions and their will
of improving courses and in end effect us teachers.

Acknowledgement
This work was supported by VEGA agency under
contract number 1/0592/10, and KEGA agency
under contract number 032STU-4/2011.

References:
[1] J. Kinast, Ch. Reiermann, M. Sauga, Labor

Paradox in Germany: Where Have the Skilled
Workers Gone? [online], Spiegel online,
SPIEGELnet GmbH 2007 cit: 11.05.2011
available at
<http://www.spiegel.de/international/business/0
,1518,490031,00.html>

[2] C. Barry, Germany Needs 34,000 Engineers,
Product Design & Developlemnt [online]
Advantage Business Media, 2010, cit:
11.05.2011, available at
<http://www.pddnet.com/news-germany-needs-
34000-engineer-112410/>

[3] AFP, Westerwelle: Germany needs foreign
workers, The Local [online], The Local Europe
GmbH, 2010, cit: 11.05.2011, available at
<http://www.thelocal.de/national/20100804-
28957.html>

[4] S. Garner, The Cloze Procedure and the
Learning of Programming, 8th WSEAS
International Conference on COMPUTERS,
Athens, Greece, 2004

[5] S. Dehnadi, R. Bornat, The camel has two
humps (working title) [online], Middlesex
University, UK, 2006 cit:11.05.2011 available
at
<http://www.eis.mdx.ac.uk/research/PhDArea/s
aeed/paper1.pdf>

[6] C. J. Costa, M. Aparicio, R. Pierce, Evaluating
Information Sources for Computer
Programming Learning and Problem Solving,
Proceedings of the 9th WSEAS International
Conference on APPLIED COMPUTER
SCIENCE, 2009, pp. 218-223

[7] D. T. D. Phuong, F. Harada, H. Takada, H.
Shimakawa, 5th WSEAS / IASME
International Conference on ENGINEERING
EDUCATION (EE'08), Heraklion, Greece, July
22-24, 2008

[8] J.A. Marin-Garcia, J. L. MAURI, Teamwork
with University Engineering Students. Group
Process Assessment Tool, Proceedings of the
3rd WSEAS/IASME International Conference
on Educational Technologies, Arcachon,
France, October 13-15, 2007, pp. 391 - 396

Recent Researches in Educational Technologies

ISBN: 978-1-61804-021-3 130

