
The Use of XSLT for Table Data Tasks Generation

Mikuláš Gangur
Department of Economy and Quantitative Methods

University of West Bohemia
Hradební 22, 350 11, Cheb

CZECH REPUBLIC
gangur@kem.zcu.cz

Abstract: - The paper introduces the principles of automatic generation of table data parameterized questions.
Many problems for the domain of math/science are described and then solved in the form of table data. The
paper describes solution from the proposal of table data XML structure to table transformation in XSL process.
The style sheets for table data transformation to the Moodle XML format or to the LaTeX format are presented
and final result of the question import to questions bank of LMS Moodle is shown. Finally the example of
matrix tasks demonstrates the use of described principle.

Key-Words: - XML, XSL transformation, Automatic generation of tasks, Table data, Matrix, Moodle, E-
learning, Matlab

1 Introduction
Electronic testing is useful for students to be aware
of their learning styles, strengths and weaknesses,
and from the teacher´s side to be provided with a
variety of methods and approaches to choose the
most suitable ones [6]. The practice tests for self-
assessment of students represent an important part
of learning through e-learning courses. In these tests
with no time limit, the number of repetitions is not
limited and the question sets an adaptive mode with
a detailed commentary (feedback) on each problem.
The important part of these problems especially for
math/science domain consists of the table data
problems. These tasks include for example the linear
optimization problems solved with simplex method
that processes with tables, matrixes problems etc.
 There are numerous applications for automated
test generation. These applications as well as the
majority of Learning Management Systems employ
tests generated randomly from the pool of questions
in the question bank. The preparation of questions
and building of such question bank is a difficult and
time consuming job. We use a universal principle of
automatic question generation and utilize particular
parameterized questions for problems with table
data. The principle simplifies and streamlines the
questions bank building. A bank comprising
thousands of unique problems was created using this
generator as an aid courses from different areas of
math/science. This was achieved by randomly
generating unique tests for each student
participating in the course.

The problem of automatic question generation
has been solved in specific domains. In [1] the
questions were generated in the area of electrical
circuit analysis, another work focuses on question
generation in the domain of object-oriented
programming [5]. The problem of math/science
tasks generation is addressed in [7]. Authors
generate multiple choice questions in process of
image modification with help of developed graphic
tool. In this case new values of parameterized
questions are not generated automatically.

In this paper in section 2 there is introduced the
principle of automatic generator of tasks. Section 3
describes representation of table data tasks and the
proposal of XML structure of such representation,
discusses the structure of cloze question with
embedded answers that are suitable for data table
problem representation in generator and explains
final transformation to selected output format.
Section 4 presents the example of generated tasks
including matrix tasks generation. Finally section 5
states the conclusion.

2 Automatic generation of tasks
The core of the whole process involves an
automated generator of tasks (see [3]). The proposed
generator construction follows the basic principles
published in the technical report [2]. The principle
of the generating system is a functional prescription
of the solved problem (solver) together with the
input data generator. The solver is a function with a
variable number of the input parameters depending

Recent Researches in Computer Science

ISBN: 978-1-61804-019-0 503

on a particular problem. The generator allows
automatic generation of a “suitable” input data on
the basis of the designated rules. These rules
describe the relations within the input data. The
generator algorithm is often implemented as
backtrack procedure of the problem solution from
the expected randomly generated problem results
back to input data. The generator output is input
data collection and the output of solver is the
collection of requested output data.

The data, generated by means of the described
procedure, are used as an input to the question
generator together with the template of the question
text and with the structure (template) of the
universal output XML format. The generator allows
processing a question requiring a numeric answer
(NUM), a question with a short answer (SA) and a
question with a multiple choice answer (MC). The
possibility of processing a question with the
embedded answer is very important. This type of
question can consist of all three above mentioned
question types. We use only the cloze question in
the data table tasks generation.

The question generator inserts the generated
input data into the question text and then the
generator inserts this text together with any possible
comments to the template of the requested question
and the output results, calculated by the solver as
answer (problem solution), as well. In the case of
table data the system uses the built-in table template
and generates dynamically the tables with respect to
their sizes. The output of the question generator is a
XML file in the universal format that is possible to
transform to the format of the selected LMS by
means of a particular question template and LaTeX
versions of the test, consisting of both randomly
chosen and randomly generated problems. The part
of the output XML file is the XML description of
generated table. According to the used dictionary
the question can be generated in different languages.
Current version of generator is able to process
questions in both Czech and English language.

The application of such a generator for
math/science tasks generation is implemented in
Matlab. Generated problems constitute the bank of
tasks implemented in the LMS Moodle (see [8]) as
support math/science courses. The MoodleXML is
selected as an output format of transformation for
Moodle bank of tasks.

3 Table data task representation
The used automatic question generation processes
with parameterized questions that are represented
with cloze question i.e. question with embedded

answers (see [3]). The cloze questions allow more
inquiries of different types within one particular
question. This type of question is the most suitable
for table data tasks representation. The particular
cells of tables are represented with mostly numerical
question.
The table is represented in XML structure (see
Listing 1). The root tag is <table> tag that consists
of tag <rows> representing table rows (tags <row>).
The values of table are stored in cells (tag <cell>) as
a simple <cell_text> or as a question that allows to
enter numerical values (answers) into table. These
questions are represented as subquestions and they
are parts of cloze question that represents whole
table. That’s why the table data are surrounded by
tag <subquestions> as a part of cloze type question.
(see [3]).

<table border='2' numcols="3" numrowa="3"
format=”LaTeX”>
 <table_title>Multiplication a*b</table_title>
 <rows>
 <row head='yes'>
 <cell input='no' head='yes' length=’3’>
 <cell_text>a/b</cell_text>
 </cell>
 <cell input='no' head=’no’ length=’1’>
 <cell_text>1</cell_text>
 </cell>
…
</row>
<row>
<cell input='yes' head=’no’ length=’2’><subquestion
type="numerical" score="2">
….
</subquestion></cell>
….
 </row>
</rows>
</table>

Listing 1: XML representation of table (Source:
own)

3.1 The structure of table data question
The above described generator creates the question
consisting of table data in the form of proposed
XML representation (see Listing 1). The discussed
cloze question is employed for representation of
such problems. The example of output XML

Recent Researches in Computer Science

ISBN: 978-1-61804-019-0 504

description of generated question is listed in Listing
2.

<quiz>
<question type="table" score="6">
 <name>
 <text>Table data task ‐ 1</text>
 </name>
 <questiontext format="LaTeX">
 <text>
Fill the next table of two numbers multiplication
</text>
</questiontext>

 
 <penalty>0.5</penalty>
 <hidden>0</hidden>

<subquestions>
<table border='2' numcols="3" numrowa="3"
format=”LaTeX”>
….
</table>
</subquestions>

</question>
</quiz>

Listing 2: XML representation of cloze question with
table data (Source: own)

The basic XML structure of cloze question is
identified in the listing. This structure consists of
tags group <quiz><question><name><questiontext>
<subquestions>. The XML description of table with
particular subquestions is included in this structure
(see Listing 1).

3.2 XSL transformation of task
In the next step the generated task is transformed in
XSL process to Moodle XML format or LaTeX
format (see [4]). XSL templates were created for
tables and matrixes transformation and they were
imported to the basic Moodle (LaTeX) XSL style
sheets that care of the cloze question generation in
selected output format (see [3]). Listing 3.4 and
Listing 7 show some of the templates implemented
in these style sheets.

<xsl:stylesheet xmlns:xsl="http://www.w3.org/
1999/XSL/Transform" version="1.0" xmlns:math=
"http://exslt.org/math">
<xsl:template match="table">
\begin{table}[h]
\begin{tabular}{|<xsl:for‐each select=

"rows/ row[1]/cell">
<xsl:variable name="i" select="position()" />
<xsl:if
test="../../row/cell[$i]/@input='yes'"><xsl:variable
name="colwidth"
select="round(0.65*math:max(../../row/cell[$i]/@len
gth))" />p{<xsl:value‐of select="$colwidth"
/>em}|<xsl:if test="./@head='yes'">|</xsl:if></xsl:if>
<xsl:if test="../../row/cell[$i]/@input='no'">
c|<xsl:if test="./@head='yes'">|</xsl:if>
</xsl:if></xsl:for‐each>}

<xsl:apply‐templates select="rows" />
\end{tabular}\end{table}
\vspace{5mm}
</xsl:template>
….
<xsl:template match="table//row">
<xsl:if test="@head='yes'">
\hline
 <xsl:apply‐templates/> \\
\hline\hline</xsl:if>
 <xsl:if test="@head='no'">\hline
 <xsl:apply‐templates/> \\
 <xsl:if test="position()=last()‐1">\hline </xsl:if>
</xsl:if>
</xsl:template>

<xsl:template match="table//cell">
<xsl:apply‐templates />
<xsl:if test="position()!=last()"> &</xsl:if>
</xsl:template>

<xsl:template match="table//cell_text">
 <xsl:apply‐templates/>
</xsl:template>
</xsl:stylesheet>

Listing 3: XSL style sheet with templates for
transformation tables to LaTeX format (Source:

own)

<xsl:stylesheet xmlns:xsl="http://www.w3.org/
1999/XSL/Transform" version="1.0" xmlns:math=
"http://exslt.org/math">
<xsl:template match="table">

 <xsl:apply‐templates select="table_title" />

Recent Researches in Computer Science

ISBN: 978-1-61804-019-0 505

 <table border = "1" >
 <xsl:apply‐templates select="rows" />
 </table>
</xsl:template>
….
<xsl:template match="table//row">
<tr height="5"> <xsl:apply‐templates/>
</tr>
</xsl:template>

<xsl:template match="table//cell">
<td width="<xsl:value‐of
select="math:max(ancestor::rows/row/cell/@length)
" />"><xsl:apply‐templates /></td>
</xsl:template>

<xsl:template match="table//cell_text">
 <xsl:apply‐templates/>
</xsl:template>
</xsl:stylesheet>

Listing 4: XSL style sheet with templates for
transformation tables to Moodle XML format

(Source: own)

The main rule for table (matrix) LaTeX
transformation is divided to instructions for columns
with input cell(s) and without input cells with
respect to column width definition in the table head
(see Listing 3). The used predicates test="../../row/
cell[$i]/@input='yes/no'" indicate for every column
$i whether the column contains input cell(s) or not.
The outer loop processes over all cells in first row
and evaluates $i, as a cell position in the row i.e.
column index. The indicator c is the output in the
case of no input column and the p{<width>em} is
the result in the case of input column. The column
width is determined in variable colwidth definition
<xsl:variable name="colwidth" select="round(
0.65*math:max(../../row/cell[$i]/@length))" /> as
maximum width of all cells in the column. The
function math:max from namespace math is
employed for columns width determination as well
as in the case of table in Moodle XML (see Listing
4). The final output defines the main structure of
LaTeX table with no input cells for example

\left(\begin{array}{|c|c|c|c|c|}
…. table (matrix) body ….
\end{array}\right)

and the structure of table with any input cells
for example

\left(\begin{array}{|p{3em}|c|c|p|{4em}|c|}
…. table (matrix) body ….
\end{array}\right)

The matrix type definition follows the concept of
table data task. The matrix question is special case
of table data question (see Listing 5). On the
opposite of table data that are transformed to the
Moodle XML as a HTML tags (see Listing 4) the
matrix data are part of mathematic expression
inserted to HTML page in LaTeX format (see
Listing 6). These expressions are filtered by
appropriate filters during HTML page loading.

<math>
<matrix numcols="3" numrows="3"
format=”Moodle”>
<rows>
 <row>
…
 <cell input='no' head='yes' length=’1’>
<cell_text>‐3</cell_text></cell>
….
</row>
…..
 </rows>
</matrix>
</math>

Listing 5: XML representation of matrix (Source:
own)

Listing 6 shows transformation rules for matrix to
LaTeX. In the case of matrix with non-input data
this rule is also used for transformation to Moodle
XML format as mathematic expression. The
matrixes with input data (see predicate
test="../../row/cell[$i]/ @input='yes/no'" in Listing
3) are transformed as a table with templates for
transformation to Moodle XML format (see Listing
4).

<xsl:stylesheet xmlns:xsl="http://www.w3.org/
1999/XSL/Transform" version="1.0" xmlns:math=
"http://exslt.org/math">

<xsl:template match="matrix">\left(
\begin{array}{<xsl:for‐each select="rows/row[1]/
cell">
<xsl:variable name="i" select="position()" />
<xsl:if
test="../../row/cell[$i]/@input='yes'"><xsl:variable
name="colwidth"

Recent Researches in Computer Science

ISBN: 978-1-61804-019-0 506

select="round(0.65*math:max(../../row/cell[$i]/@len
gth))" />p{<xsl:value‐of select="$colwidth" />em}
</xsl:if>
<xsl:if test="../../row/cell[$i]/@input='no'">
c</xsl:if></xsl:for‐each>}
<xsl:apply‐templates select="rows" />
\end{array}\right)
\vspace{5mm}
</xsl:template>

<xsl:template match="matrix/rows">
 <xsl:apply‐templates/>
</xsl:template>

<xsl:template match="matrix//row">
<xsl:apply‐templates/> \\
</xsl:template>

<xsl:template match="matrix//cell">
<xsl:apply‐templates />
<xsl:if test="position()<last()‐1">
 &</xsl:if>
</xsl:template>
…
</xsl:stylesheet>

 Listing 6: XSL templates for transformation of
matrixes to LaTeX (Source: own)

4 The example of generated task
The described principles were employed for
generation of inverse matrix task. The Listing 7
illustrates the input text of such parameterized
problem. The parameter ##matrix## is replaced with
randomly generated input matrix and the
subquestion tag represents the object for inverse
matrix elements inserting. This object is replaced
with output inverse matrix.

Find inverse matrix to matrix A = ##matrix##

<subquestion type="table" id="1"><text></text>
</subquestion>
Listing 7: The problem of inverse matrix (Source:

own)

Figure 1 shows Moodle assignment looking for
inverse matrix. The inverse matrix elements are

inserted in HTML <input> tags of <form> tag. All
these <input> tags are located in the HTML table
cells. Figure 2 shows the result of an XSL
transformation of the same task as a part of the test
generated in the LaTeX (PDF) format.

Figure 1: The inverse matrix task as a part of quiz

in PDF format (Source: own)

Figure 2: The inverse matrix task as a Moodle
assignment from questions bank (Source: own)

5 Conclusion
This paper demonstrates the possibility of
implementation of table data tasks such as questions
with embedded answers (cloze question) in the LMS
Moodle or as the part of quiz in LaTeX (PDF)
format. This solution allows one to specify a task
with several answers i.e. to fill the values of
particular table cells. The principle of table structure
generation is applied to process with matrixes. Two
output formats are presented – Moodle TeX and
LaTeX. The described procedure allows creating a
lot of math/science tasks easily and readily. It is
useful for effective practice of tasks for students in
LMS (every student has got unique problem to
solve) and for random generation of quizzes.

It is possible to implement table (matrix) style
sheets for other output formats in the future work.
We plan to develop the templates for XSL-FO
transformation and transform the generated objects
directly to PDF.

Recent Researches in Computer Science

ISBN: 978-1-61804-019-0 507

Acknowledgment
This work is supported by Czech Ministry of
Education, Youth and Sports under grant FRVŠ No.
1150/2011.

References:
[1] P.D. Cristea, R. Tuduce, Automatic Generation

of Exercises for Self-Testing in Adaptive E-
Learning Environments: Exercises on AC
Circuits, Inter. Workshop on Authoring of
Adaptive and Adaptable Educational
Hypermedia (Part of WBE), 2005

[2] M. Fikar, On Automatic Generation of Quizzes
using MATLAB and XML in Control
Engineering Education. Technical Report
fik07xml, OIRP UIAM FCHPT STU, 2007 [on-
line][cit. 2010-10-10] Available at: http://www.
kirp.chtf.stuba.sk/publication_info.php?id_pub=
348

[3] M. Gangur, Automatic generation of cloze
questions. Proceedings of 3rd International
Conference on Computer Supported Education,
2011, CSEDU’11

[4] S. Holzner, Inside XSLT, New Rider's
Publishing, 2002

[5] I. Hsiao, P. Brusilovsky, S. Sosnovsky, Web-
based Parameterized Questions for Object-
Oriented Programming, World Conf. on
ELearning in Corporate, Government,
Healthcare, and Higher Education (ELEARN),
2008

[6] I. Šimonová, P. Poulová, M. Bílek, Learning
styles within eLearning: Didactic strategies,
10th WSEAS International Conference on
Applied Computer and Applied Computational
Science, ACACOS'11, pp. 160-164

[7] H.F. Ugurdag, E. Argali, O.E. Eker, A. Basaran,
S. Gören, H. Özcan, Smart question (sQ): Tool
for generating multiple-choice test questions,
Proceedings of the 8th WSEAS International
Conference on Education and Educational
Technology, EDU '09 , pp. 173-177

[8] Moodle, 2007 - A Free, Open Source Course
Management System for Online Learning, [on-
line][cit. 2011-01-11] Available at: http://
moodle.org

Recent Researches in Computer Science

ISBN: 978-1-61804-019-0 508

