
One approach to the testing of security of proposed database

application software

SINIŠA S. ILIĆ, LJUBOMIR LAZIĆ, PETAR SPALEVIĆ
Department of computer sciences

University of Priština
Knjaza Miloša 7, 38220 Kosovska Mitrovica

SERBIA
sinisa.ilic@pr.ac.rs, http://www.ftn.pr.ac.rs

Abstract: - This paper presents the concept of database configuration and development considering security
issues especially when connected to internet. Regardless of precautions on security voulnerabilities
implemented on other levels of database environment, such as: network, operating system, client application, it
is important to protect database itself by avoiding well known database security issues. In order to prove that
proposed configuration has a high level of security protection, security testing has to be performed. The overall
goal of security testing is to reduce vulnerabilities within a software system and we have proposed testing
methodology including code review and vulnerability assessment that represent the most widespread of best
practices for software security assurance.

Key-Words: - database configuration, security vulnerabilities, testing of security

1 Introduction
In order to deliver functionally reliable software
systems of higher quality within the time and
budget, potential vulnerabilities in security are
mostly neglected. Software developers try to design
database and application according to the functional
specifications without security considerations,
because the primary goal in software development is
to meet functional requirements. Since security is a
non-functional requirement, it is not the utmost
concern for system developers. In the software
development process there is not a "recipe" how to
treat potential issues related to security. Often it is
very hard even to foresee them. As the
programming of procedures for handling of most
frequent security risks is very time consuming
compared to the time needed for programming the
functional requirements, it becomes clear why lack
of security occur.

Security flaws depend also on architecture of the
software deployment. If the software is reliable in
some environment, the same might be un-reliable in
another environment. That is the reason why a lot of
security threats must be handled in a software
development even if sometimes it looks needless. In
the multi-level environment one can count on high
possibility that attacker will not pass security
barriers of the levels that are between an attacker
and software system. But it also might happen that
security vulnerability of one level leads to
jeopardizing of security of other levels.

Often the validation of input data must be

performed both: in client application (by using
validation scripts or functions) and in database by
using constraints, triggers or stored procedures. By
checking data on both levels, the chance that data
with wrong values will be inserted in database is
minimal.

Designing a database that will achieve all
security requirements is very difficult, since a
database system processes large amount of data in
complex ways. The result is that most conventional
database systems have leaks that attacker can use to
penetrate the database.

Before any software system is going to be
deployed, testing must be performed. Unfortunately,
most cases in test scenarios of database systems
check if functional requirements are met, security
tests are performed poorly. It is almost practice that
testing in general is performed under immense time
pressure. Often tight-schedule testers are restricted
to test software functionality only, and lack other
quality aspects. On the other side, functional testing
certifies whether or not the system behaves as
intended, and security testing aims at uncovering
unspecified behavior within the system. The task of
security testing is very hard considering that
security threats are rapidly growing and it is difficult
to simulate these conditions.

Fortunately, there are plenty of free tools that can
be used in testing of security vulnerabilities. Some

Recent Researches in Computer Science

ISBN: 978-1-61804-019-0 475

of them are part of OS (like ssh, netcat, wireshark,
etc.); others are parts of web browser (Firefox,
Firebug add-on, View Source Chart add-on, Tamper
Data add-on, etc.) and others. There are also some
free (HP Scrawlr, SQLiX) as well as commercial
(HP WebInspect, IBM Rational AppScan) tools that
can automatically test for security flaws.

Testing of security in these applications poses
grave challenges to the engineers.

2 Related Work
Security is a process of maintaining an acceptable
level of risk. So, security is a process, not a final
state, i.e. security is not the final product.

When system of data security is considered, it
requires a systematic approach that must include:
employees, physical and technical security,
confidentiality of business procedures, network
security (LAN and / or WAN), responsibility and
sanctioning [1]. This is a very general approach to
the security, as most people treat security issues
related to configuration of firewalls. But, in order to
protect collected, stored and transferred data from:
physical hazards, hardware failures, operational
errors, software defects, theft of media and other
various manipulations, every decent company has to
obtain data security policy. The job of managers
who are responsible for security at all levels, is to
analyze: the potential risks, their effects, the impacts
if the risk happened, probability of risk appearance,
handling methods to be taken to ensure that risk will
not happen and who is responsible to take
appropriate measures.

In order to achieve high-rated secure systems, a
flawless penetration testing must be performed [2].
Penetration testing cannot prove or even
demonstrate that a system is flawless. It can place a
reasonable bound on the knowledge and work factor
required for a penetrator to succeed. It is not
recommended to perform this type of testing on
production systems because of possible system
halts, dumps or crashes. Unfortunately, results of
penetration tests show that most conventional
database systems have leaks that attacker can use to
penetrate the database.

There are several ways proposed in papers to
handle security risks. We can group them into
following classes: Intrusion detection techniques,
database protection techniques and automation of
security testing.

An intrusion can be defined as “any set of
actions that attempts to compromise the integrity,
confidentiality, or availability of a resource. In
intrusion detection process, some activity can be

treated as suspicious according to the predefined
criteria (malicious behavior that deviates from
established normal patterns). The problem with
current state-of-the-art is to reduce false negative
and false positive rate. At the same time, a real-time
intrusion detection system should be considered. It
is difficult to achieve both.

Malicious activities can be detected by Support
Vector Machines (SVM) - one of the most
successful classification algorithms in the data
mining area [3]. The limits of SVM use is its long
training time and authors presented a study for
enhancing the training time of SVM, specifically
when dealing with large data sets, using hierarchical
clustering analysis.

As “malicious activities” need not to come from
an attacker, there must be ensured enough time for
security engineer(s) to investigate if activity is really
dangerous or not. During that time, a potential
attacker must be convinced that his/her transaction
is successful. The method for solving this problem
is to build as many “copies” of database as many
suspicious users are connected to database [4]. If a
“suspicious” user is proven to be an attacker, it is
blocked, and if it is not, there is built Merging
Algorithm that replaces its trustworthy version
(values) with its suspicious version (values), and
then removes the suspicious version.

Many software systems are designed to be Web-
based and available to the public via the Internet. In
this way they become exposed to a variety of Web-
based attacks. Up to 78% of recently reported
vulnerabilities affected Web applications [5]. Two
classes of attacks are particularly common and
damaging. In SQL injection, the attacker executes
malicious database statements by exploiting
inadequate validation of data flowing from the user
to the database. In cross-site scripting, the attacker
executes malicious code on the victim’s machine by
exploiting inadequate validation of data flowing to
statements that output HTML.

In order to protect data integrity and
confidentiality different validation techniques are
proposed. Each data item that user sends from client
machine to server is checked and filtered before it
comes to database. This process is called sanitizing.

The input data can be parsed into segments
according to the key words of SQL syntax and
compared with expected structure [6]. If expected
structure is different than actual one (parsed from
input field), the input data is not transferred to
database.

Another approach is to filter input data by using
regular expression search tool [7]. The regular
expression search tool enables finding of templates

Recent Researches in Computer Science

ISBN: 978-1-61804-019-0 476

within the text string (by: key words, text in
brackets, tags, templates of numbers etc.). The key
words of SQL statements, tautologies, URL
encoding and other encoding characters can be put
at regular expression search strings. These malicious
characters/words can be removed from input fields
and not transferred to database. The similar
approach can be achieved with java function
HashMap that can be used to convert encoded
characters (that attacker can use instead of normal
characters in order to skip some standard validation
techniques) to standard ones in minimal time [8].

As stated in introduction, the security of database
systems often depends of security of other layers
between an attacker and database. The better
security is applied to database itself the less likely to
increase the risk of intrusion into the database.

Data in database might be encrypted and even in
the case of penetration, an attacker could not use
such data [9]. Data can be divided as public,
classified and private. Classified data can be
accessed by authorized users (for example
accountant can see the payroll data for all
employees) and private data can be accessed only by
users who inserted it (each user has own private
data). Data is protected by symmetrical keys
(generated by system) and distributed in certified
envelopes by using public/private key pairs to users.
Many alternative encryption techniques might be
used as well by considering confidentiality and
performance [10].

The protection of database can be also embedded
within the database. One can use embedding
policies into the database itself and enable these
policies to block every attempt to compromise the
state of the database, or to alter its configuration in a
way that contradicts what has been established and
fed into the policy by the system owner [11]. It is
achieved by using user access to database and by
using stored procedures even for changing
parameters of database by database administrators
(not the database owner). When a power user or a
hacker initiates an attempt to change security
configurations (database parameters), the request
goes through a process of verification before it can
be processed. This step is carried out by database
stored procedures that have built-in logic for
checking the request against the policies. If the
request complies with the set policies that govern its
scope of applicability, then the request is applied.
Then, the database system tables/views are updated
to reflect the change and an audit trail is recorded.
Otherwise, the request is rejected and the system
owner is alerted, the user notified, and an audit trail
is recorded.

By using modified MAC (Mandatory Access
Control), RBAC (Role-Based Access Control) and
DAC (Discretionary Access Control) models it is
possible to design a database security system that
can individually control user access to data groups
of various sizes and is suitable for the situation
where the user’s access privilege to arbitrary data is
changed frequently [12]. In these models user can
access any data that has lower or equal security
levels, and that is accessible by the roles to which
the user is assigned.

It is not enough to build modules for detection of
intrusions and protection of database. The built
models should be tested on security risks. Often it is
very time consuming to build test scenarios and to
perform them.

There are two approaches in testing on security
vulnerabilities: by analyzing source code statically
and dynamically and by treating the system to be
tested as black box.

Source code of an application can be analyzed in
a way to find a data set with which a program
execution can reach a specific node, referred to as
the target node in the Control Flow Graph (CFG),
which represents the objective of the test analysis.
This is the chaining approach [13]. The security
chaining approach would result in the generation of
only those event sequences that are needed to be
executed for security vulnerabilities to be detected.
If the approach cannot find a solution to traverse a
tree, then this tree is considered impossible, and
hence no vulnerability is detected or reported,
eliminating all false positives. By knowing the
source code, the tree is built and a set of data is
automatically generated in order to find vulnerable
nodes.

The automatic testing tool for checking the SQL
injection vulnerability – Ardilla [14] tracks the flow
of generated tainted data through the database.
When tainted data is stored in the database, the taint
information is stored with it. When the data is later
retrieved from the database, it is marked with the
stored taint. This precision makes Ardilla able to
accurately detect second order Cross-Site Scripting
attacks. Ardilla uses also SQL Injection attack
patterns developed by security professionals and
detects attacks by looking for differences in the way
the program behaves when run on two inputs: one
innocuous and the other potentially malicious.

3 Problem formulation
According to the listed papers, there are a lot of
security vulnerabilities that can harm running
database systems. An attacker will try to get

Recent Researches in Computer Science

ISBN: 978-1-61804-019-0 477

administrative rights on database. Our goal is to try
to protect database as much as we can by self-
protecting at database level.

If presume that an attacker will try to execute
malicious code from client application logging as
guest, he/she will probably try to perform the
following attacks.

3.1 SQL Injection attacks
SQL Injection vulnerability results from the
application’s use of user input in constructing
database statements. If user input will be assigned to
variables input1 and input2 and if the contents of
that variable will be used to dynamically create SQL
statement query like:

query = “SELECT UserId FROM Users WHERE
uname =’” +input1+”’ and passw= ’”+input2+”’”

it is obvious that if input1=admin, and input2=trust,
query will be:

query = “SELECT UserId FROM Users WHERE
uname=’admin’ and passw=’trust’”

and query will be sent to database to be executed. If
user is allowed to put anything to appropriate web
form field (our variable input), he/she might try to
put the following [15]:

1) input1=anyuser, input2=pass’ or ‘1’=’1
2) input1= anyuser' or 1=1 LIMIT 1;#,

input2=pass
3) input1=anyuser, input2=pass’ AND 1=0

UNION SELECT
(case+when+(USER()='root@localhost')+th
en+ 2+else+1+end) AND ‘1’=’1

In the first case the query will consists of SQL
command that will return UserId of all users to an
attacker (because of tautology ‘1’=’1’). In the
second case SQL command will return first user
(that is almost always admin) because the key word
LIMIT will filter the first of all users, and # (hash
sign) will comment all remaining characters in
query string. In the third case SQL command will
consist of two sub-commands, the first will return
nothing (because of 1=0 that is false) and the second
one (after the key words UNION ALL) will return 2
if the database user is root@localhost and 1 if the
database user is not root@localhost (the particular
case is taken for MySQL Server, but it is very
similar for other DBMS).

One can conclude by himself about similar SQL
commands creation by using of different values for
input variable, especially by knowing that many

DBMS offer to user functionalities of reading data
from files in OS and writing data to files.

3.2 Cross-Site Scripting (XSS) attacks
It is a type of security vulnerability found in web
applications that enables attackers to inject client-
side script into web pages viewed by other users.
Let assume that users can submit to the database
some inputs in text form. If the text submitted is
saved in database, it can be viewed by other users
that have permission to look at it.

An attacker might use the chance to put
malicious web code into that field and submit it to
database. When other user opens web page with that
content, the script will be executed at the user’s
browser and potentially harm user’s computer or
compromise some user’s private data.

3.3 Eavesdropping and password theft
Sometimes an attacker will try to listen to the
network traffic between the server and client that
tries to log to the system by using system credentials
(username, password). If the credentials are not
encrypted, an attacker will try to log to the web
application by using stolen credentials. But if
credentials are encrypted, an attacker will try to log
by repeating stolen network packets – the same that
authorized user sent to the database for
authentication.

4 Proposal for Problem Solution
As it was mentioned, the security of database cannot
rely on security of other levels of software system.
Database must be as much self-protected as
possible. We have created the database with the
following specifications:
1) users that have permissions and privileges to

access to database application are not
controlled through User table, but they are
registered as regular database users without any
administrative roles,

2) there is no one regular user (except the db
owner) that can have any (select, insert, update,
delete) permission on any table,

3) the only way of viewing, inserting, modifying
or deleting data is through the stored
procedures, where all users have permission of
executing procedures,

4) in stored procedures there is no dynamically
created queries that can be executed through
execute_sql(string) commands; queries are
built with stored procedures parameters (see
Figure 1)

Recent Researches in Computer Science

ISBN: 978-1-61804-019-0 478

5) stored procedures have built-in logic for
checking the user rights and permissions on
different business functionalities (through the
tables with encrypted attributes),

6) stored procedures have built-in logic for
checking the properties of parameters sent to
them (width, black list words, black list
encoded characters, etc.),

7) calls to stored procedures with suspicious
parameters’ values are logged to special tables,

8) local database administrators may change user
rights and permissions only through stored
procedures that identify if request comes from
LAN.

In addition to the database specifications, for the
web-based application it is very important that
credentials should be transferred from user to
server by using Secure Sockets Layer (SSL)
certified by trusted party.

Let’s explain proposed database specifications
which are not difficult to implement.

Usually application is connected to database
through the super power database user, and
application users are then controlled through table
“Users” indirectly, which can be easily accessed
from application. By implementing specification
number 1) connection between application and
database is established for the particular database
user. Through the built in DBMS security any
regular database user will have only explicit rights
to execute stored procedure (specification 3) and
will have no access directly to database tables
(specification 2). It means that no one user can
create any kind of query – neither static neither
dynamic. The business logic is implemented
through SQL commands stored in procedures and
the only communication between application and
database is in calling of stored procedures and
submitting the values of stored procedure’s
parameters (specification number 4).

In special tables that can be accessed only
through stored procedures, user rights are defined
in encrypted format. Before execution of the
procedure’s business functionality, the database
user’s permission is checked against the defined
business role. If user does not have permission of
some business functionality, the error message will
be generated (specification number 5). Procedures
are designed to check (validate) values of
parameters, and if an attacker tries to insert
suspicious code in these parameters, the user, user
ip address, computer name, procedure’s name and
parameters values are recorded in log table and
alarm is raised (specifications 6 and 7). The design
of stored procedure is presented at Figure 1.

Figure 1 – The design of Database stored procedure

Administrators have the right to change
permissions of users on business logic – not to the
database tables. It would be dangerous if an attacker
could identify somehow as administrator. That is the
reason why administrators can identify themselves
only from LAN (specification 8).

When user connects to the database application
through Secure Sockets Layer (SSL), the credentials
are encrypted, so an attacker cannot see the clear
text of username and password. If an attacker tries
to save the data transferred through network from
user to server in moment of user logging and
retransmit it (identifying himself as user who has
successfully logged), SSL protocol defeats this
attack by using a nonce, a one-time unique number -
connection id that cannot be repeated (server will
recognize that it is repeated network block and will
ignore it).

Testing of security vulnerabilities of such
database can be performed in the following way:
- analyze stored procedure’s source code and

consider eventual Fault propagation analysis by
using White Box technique,

- install tools for security testing, as mentioned
in introduction, for automated vulnerability
scanning following Black Box technique,

- in both mentioned techniques test majority
patterns of SQL injection and XSS [16],

- test for vulnerabilities by identifying as regular
database user and try to get administrative
permissions,

- test if regular user can take control on OS by
generating some exclusive SQL queries that
can access (configuration) files in OS.

Create procedure sp_UpdateEmpAge(par1 int, par2 int)
BEGIN
 if not fnCheckPermission(user, UpdateEmpAge)
 begin
 error_message('User is not allowed to perform this action’)
 return
 end

 if not fnValidateParam(par1, int, UpdateEmpAge)
 return

 if not fnValidateParam(par2, int, UpdateEmpAge)
 return

 UPDATE employees
 SET age = par2
 WHERE employeeid = par1

END

Recent Researches in Computer Science

ISBN: 978-1-61804-019-0 479

Generally, it is a good practice to create test plans
with precise description of each test scenario and to
associate mitigation methods if some test scenario
failed. In this case we cannot offer test templates but
attack scenarios mentioned. Unfortunately, security
testing is motivated by probing assumptions and
areas of particular complexity to determine how a
program can be broken

5 Conclusion
To protect software with database from an attacker,
it is needed to continuously monitor and investigate
all published cases of software vulnerabilities. One
of the ways to improve security of database is to
embed a shield on input data that might cause the
potential security flaws, by using stored procedures
with built-in validations on input data and to protect
transfer of credentials for user authentication
through standard web encryption techniques. As the
full security cannot be guaranteed, the systematic
approach to the testing of such database must be
performed by using attack scenarios. We have
prepared described database model in three
architectures: Java-Oracle, VB .NET – MS SQL
Server and PHP-MySQL in order to test proposed
model.

Acknowledgement

This work has been done within the project
‘Optimal Software Quality Management
Framework’, supported in part by the Ministry of
Science and Technological Development of the
Republic of Serbia under Project No.TR-35026.

References:

[1] S. Obradović, S.S.Ilić, V. Marković, Responsi-
bility of management related to data security,
Proceedings of international conference
UNITECH, Gabrovo, Bulgaria 2009.

[2] C. Weissman, Penetration Testing, Essay 11,
Department of Defense, “Trusted Computer
System Evaluation Criteria,” DoD 5200.28-
STD, December 1985 (The Orange Book).
www.acsac.org/secshelf/book001/11.pdf

[3] L. Khan, M. Awad, B. Thuraisingham, A new
intrusion detection system using support vector

machines and hierarchical clustering, The
VLDB Journal, Volume 16, 2007. pp 507-521.

[4] Peng Liu, DAIS: A Real-time Data Attack
Isolation System for Commercial Database

Applications, Proceedings of 17th Annual
Computer Security Applications Conference -
ACSAC 2001. pp. 219-229

[5] Cenzic. Application security trends report Q1
2009. http://www.cenzic.com/downloads/
Cenzic_AppSecTrends_Q1-Q2-2009.pdf

[6] G. T. Buehrer, B. W. Weide, P. A. G. Sivilotti,
Using Parse Tree Validation to Prevent SQL

Injection Attacks, Fifth International Workshop
on Software Engineering and Middleware -
SEM 2005 September 2005 Lisbon, Portugal

[7] K.V.N.Sunitha and M.Sridevi, Automated

Detection System for SQL Injection Attack,
International Journal of Computer Science and
Security (IJCSS), Volume (4): Issue (4), pp.
426-435

[8] E. Adi, I. Salomo, Detect and Sanitise Encoded
Cross-Site Scripting and SQL Injection Attack

Strings Using a Hash Map, Australian
Information Security Management Conference,
2010.

[9] Z. Yang, S. Sesay, J. Chen and Du Xu, A
Secure Database Encryption Scheme,
American Journal of Applied Sciences 1 (4):
327-331, 2004

[10] S. Burnett, S. Paine, RSA Security's Official
Guide to Cryptography, Osborne/McGraw-
Hill, 2001

[11] G. Jabbour, D. A. Menasce, Policy-Based
Enforcement of Database Security

Configuration through Autonomic Capabilities,
Proceedings of the Fourth International
Conference on Autonomic and Autonomous
Systems ICAS'08

[12] Min A Jeong, Jung-Ja Kim, Y. Won, A Flexible
Database Security System Using multiple

Access Control Policies, International
Conference on Database and Expert Systems
Applications - DEXA 2003, LNCS 2736, pp.
876–885, 2003.

[13] A. Hanna, H. Z. Ling, J. Furlong, M. Debbabi,
Towards Automation of Testing High-Level

Security Properties, The Eighth IAPR
International Workshop on Document Analysis
Systems DAS 2008, Nara, Japan

[14] A. Kieyzun, P. J. Guo, K. Jayaraman, M. D.
Ernst, "Automatic Creation of SQL Injection
and Cross-Site Scripting Attacks", Proceedings
of the 31st International Conference on
Software Engineering ICSE '09

[15] Justin Clarke, SQL Injection attacks and

defence, Syngress Publishing, Inc. Elsevier,
Inc., 2009

[16] P. Hope, B. Walther, Web Security Testing
Cookbook, 1st Edition, O'Reilly Media, Inc.,
2008.

Recent Researches in Computer Science

ISBN: 978-1-61804-019-0 480

