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Multi-Objective GA Rule extraction in a parallel
framework

Passent M. Elkafrawyo, Amr M. Saubero

Abstract—Genetic algorithm (GA) has been used as a conven-
tional method for classifiers to evolve solutions adaptively for
classification problems. Multiobjective evolutionary algorithms
(MOEAs) that use nondominated sorting and sharing have been
criticized mainly for their: 1) O(MN3) or O(MN2) computa-
tional complexity (where M is the number of objectives and
N is the population size); 2) nonelitism approach [?]; and 3)
the need for specifying a sharing parameter. In this paper, a
new simple yet efficient approach is proposed to improve the
performance of Multi-objective GA-based classifiers; the compu-
tational complexity of the proposed technique is O(MN ), we also
used a class decomposition technique. A classification problem
is fully partitioned into several small problems each of which is
responsible for solving a fraction of the original problem. We
experimentally evaluate our approach on three different datasets
and demonstrate that our algorithm can improve classification
rate compared with normal GA and nonpartioned techniques;
our technique is optimized using OpenMP-like implementation
to take advantage of multi-threads or multi-processors.

Index Terms—Genetic Algorithm, Rule-based classification,
divide and conquer, Multiobjective evolutionary Algorithms,
muli-threading.

I. INTRODUCTION

Data mining is a very active and rapidly growing research
area in the field of computer science. The task of data
mining is to extract useful knowledge for human users from
a database. Evolutionary multiobjective optimization (EMO)
has been applied to data mining in some studies; [8] used
multi-objective association rule mining Pareto based GA for
evaluating rules by defining three objectives; support count,
comprehensibility and interestingness. Support count is the
number of records, which satisfies all the conditions present
in the rule, this objective gives the accuracy of the rules
extracted from the database. Comprehensibility is measured
by the number of attributes involved in the rule and tries
to quantify the understandability of the rule. Interestingness
measures how much interesting the rule is using defined
formula. [14] replaced support count with predictive accuracy
and presented a new Elitist multi-objective genetic algorithm
(EMOGA) with a hybrid crossover operator for optimizing the
objectives. [5] used a real coded MOGA for generating a set
of optimized classification rules, where real-valued attribute
ranges are encoded with real-valued genes and defined new
suitable genetic operators, two objectives are used; confidence
and coverage. Using three objectives confidence, coverage
and attractiveness [6] used a Lexicographical approach to
evaluate these objectives in a student database case study. The
basic idea of Lexicographical approach is to assign different
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priorities to different objectives and then focus on optimizing
the objectives in their order of priority, it treats each of the
criteria separately, recognizing that each criterion measures a
different aspect of quality of a candidate solution.

[15] and [12]both used NSGA-II to implement MOGA and
association rule mining respectively. [13] proposed a genetic
rule selection mechanism consists of two stages. In the first
stage, a pre-specified number of candidate rules are extracted
from numerical data using a data mining technique. In the
second stage, an EMOGA is used for finding non-dominated
rule sets with respect to three objectives: to maximize the
number of correctly classified training patterns, to minimize
the number of rules, and to minimize the total rule length. As
far as we know there is no attempt to use MOGA along with
class decomposition technique, our experiments show that this
mechanism is efficient and scalable.

II. MULTI-OBJECTIVE OPTIMIZATION

Contrary to single-objective optimization problem, multi-
objective optimization problem deals with simultaneous op-
timization of several incommensurable and often competing
objectives such as performance and cost. For example, when
the design of a complex hardware is considered, it is required
for the cost of such systems to be minimized while the
maximum performance is expected. If there is more than one
objective criterion as in the example mentioned above, some
of them can be considered as constraints in the problem.
For example, while trying to optimize a system for large
performance in low cost, the size of the system must not
exceed given dimensions as a separate optimization criterion.
By this way, a multi-objective optimization problem can be
formalized as follows [19]:

Definition 1: A multi-objective optimization problem in-
cludes, in general, a set of a parameters (called decision
variables), a set of b objective functions, and a set of c
constraints; objective functions and constraints are functions
of the decision variables. The optimization goal is expressed
as:
min/max y = F (x) = (f1(x), f2(x), ........, fn(x))
constraint e(x) = (e1(x), e2(x), ........, en(x))
Where x = (x1, x2, ........, xn) ∈ X

y = (y1, y2, ........, yn) ∈ Y
where x is the decision vector, y is the objective vector,

X denotes the decision space, and Y is called the objective
space; the constraints e(x) ≤ 0 determine the set of feasible
solutions.

Let us consider the above definition and assume that the
two objectives performance (f1) and cheapness (f2), the
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inverse of cost, are to be maximized under size constraints
(e1). Then, an optimal design might be an architecture which
achieves maximum performance at minimal cost and does
not violate the size limitations. If such a solution exists, we
actually only have to solve a single-objective optimization
problem. The optimal solution for either objective is also
the optimal for the other objective. However, what makes
multi-objective optimization problems difficult is the common
situation when individual optima corresponding to the distinct
objective functions are sufficiently different.

We used a simple yet efficient Weighted sum approach:
Transforming a multi-objective problem into a single objective
function F (x) by far the most commonly used approach
in data mining literature. Normally, this can be done by a
weighted sum of objective functions. That is F (x) is the
fitness function used by the GA of a given candidate rule
is typically measured by the formula:F (x) = w1f1(x) +
w2f2(x) + .........+wnfn(x) where fi(x) is an objective and
wi is a weight represents the significance of the objective
(to be let to the human expert to decide). The strength of
this method is its simplicity and less computation complexity.
Fortunately this simplicity did not affected the performance as
our experiments emphasize.

III. METHODOLOGY

A classification problem is fully partitioned into C class
modules; where each module is used for building a classifier
for only one class. These modules are trained independently
in parallel to find solutions for the C sub-problems. There are
two general approaches for GA-based rule optimization and
learning [2]. The Michigan approach uses GAs to evolve indi-
vidual rules, a collection of which comprises the solution for
the classification system[11]. Another approach is called the
Pitt approach, where each chromosome represents a classifier
(rule set), rule sets compete against each other with respect to
performance on the domain task[4].

In this work, the Michigan approach is chosen, as it is
straightforward for rule evaluation. Because each chromosome
in the Michigan approach represents a candidate rule to that is
used with other rules to construct a solution for target problem,
efficient Rules are to compete freely without being influenced
by other inefficient ones as in the Pitt approach. The number
of rules in a classifier is given as a threshold.

After Selecting efficient rules for each class the final classi-
fier is constructed by combining the C classifiers. Each classi-
fier is represented in the final solution using the participating
percentage of the corresponding class in the learning data. An
integration algorithm is used to solve the conflicts between
rules from the C different classifiers if exist.

We used a different Technique to implement our proposed
method; instead of loading the data into memory as an
array or a list we used a Relational database to manipulate
data instances, and instead of using multiple if conditions to
evaluate rules we used a T-SQL statement in order to enable
scalability and implement a generic technique. Out technique
also does not require data pre-processing as will be discussed
in details in the following sub-sections

A. Individuals representation

An individual in our method is a classification rule where
each gene represents the minimum and maximum values
of intervals of each attribute that belongs to such rule. In
our approach, we use fuzzy IF-THEN rules with continuous
attributes. A rule set (classifier) consists of a - user determined
- number of rules as a solution candidate for a classification
problem. We encode rule Ri according to Figure 1.

Gene1(A1) Genen(An)
W1 V1min V1max ... Wn Vnmin Vnmax Ci

Figure 1. An individual representation

where wj is a real-valued variable taking values in the
range [0,1] instead of either 0 or 1 as the related work [9],
[16], [17], [18] . This variable indicates the fuzzy membership
rate for the potential attribute presence in the corresponding
classification rule. More precisely, when wj is smaller than
a user-defined threshold (called Limit) the attribute will be
neglected in the related rule. Therefore, the greater the value
of the threshold Limit, the smaller the probability that the
corresponding attribute will be included in the rule. Vjmin

and Vjmax are the limits of the intervals corresponding to the
attribute Ai. Note that the above encoding is quite flexible
with respect to the length of the rules. A traditional GA
is very limited in this aspect, since it can only cope with
fixed-length rule. In our approach, although each individual
has a fixed length, the genes are interpreted (based on the
value of the weight wi ) in such a way that the individual
phenotype (the rule) has a variable length. The start of the first
population consists of generating, arbitrarily, a fixed number
of individuals during the evolution.

B. Pre-Processing

We implemented the individual representation ’as-is’ such
that no pre-processing is required to run our technique against
any problem. Most of the related work encode Vjmin, Vjmax

each as character by dividing the range of possible values
to predefined intervals thus they encode the chromosomes
as strings. Although this do simplify the implementation, it
assumes that the data range is homogeneous or at least could
be easily distributed. We used the given real numbers in
order to accomplish two factors; 1) To implement a generic
technique that is as independent as possible from the problem,
2) To minimize the overhead of pre-processing. Applying
this representation along with using relational database as a
back end for manipulating data, enabled us to implement a
generic technique that takes a database name and a number of
attributes as parameters. this technique can be implemented
on any problem.

C. Genetic Operators

For the developed method, the usual one-point crossover
operator is stochastically applied with a predefined probability,
using two individuals of the selected pool. The crossover point
is a percentage of the length of the individual that defines the
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starting point from where the crossover breaks the string. We
use arithmetic crossover method [7]. The employed method
works as follows:

Consider two chromosomes
H1 = (g11, ......, g1n) and H2 = (g21 , ......, g

2
n).

Applying the crossover operator on H1 and H2 generates two
off-springs
H ′1 = (g11 , .., g

1
i , g

2
i+1, .., g

2
n) and H ′2 = (g21 , .., g

2
i , g

1
i+1, .., g

1
n).

where gjl = (Wl, Vlmin, Vlmin)
The mutation operator is used to foster more exploration of

the search space and to avoid unrecoverable loss of genetic
material that leads to premature convergence to some local
minima. In general, mutation is implemented by changing
the value of a specific position of an individual with a given
probability (0.8), denominated mutation probability. We gave
a high mutation probability than given in common GAs to
advance the internal change of the rule features. To allow
all different possibilities that could be generated within the
attribute representation. We developed two mutation operators
tailored for our genome representation:

1) Shift the starting location towards the right or the left.
This operator changes the value in the starting location
of a randomly selected gene is increased or decreased
by 0.1 bounded by the minimum value for this attribute
and the starting location.

2) Shift the ending location towards the right or the left.
This operator changes the value in the ending location
of a randomly selected gene is increased or decreased
by 0.1 bounded by the maximum value for this attribute
and the ending location.

Using the lower and upper bounds of the attribute domain as
bounds for shifts ensures that they are never exceeded.

D. Fitness Function

As each chromosome in our approach comprises one rule,
the fitness function actually measures the collective behavior
of the rule. The fitness function is a compound of two
objectives: accuracy and score.

Definition 2: Accuracy of a certain rule is the ratio of
correctly classified instances by this rule to the whole number
of instance to which this rule satisfied

f1 =
C

n
=
Number of correctly classified instances by this rule

Total number of instances satisfying this rule

Definition 3: Score of a certain rule is the percentage of the
instances satisfying the rule to the whole number of instance
to represent the significance of this rule

f2 =
S

N
=
Total number of instances satisfy this rule

Total number of instances

Definition 4: Fitness Function F = w1f1 + w2f2where
w1, w2 are weights assigned by the human expert.

E. Class Decomposition

Let us assume a classification problem has C classes in the
n-dimensional attribute space. The task of classification is to
assign instances to one out of the pre-defined C classes, by

Figure 2. Class Decomposition

discovering certain relationship between the attributes. Then,
the discovered rules can be evaluated by classification accuracy
or error rate either on the training data or test data.

A traditional GA maps attributes to classes directly in a
batch manner, which means all the attributes, classes, and
training data are used together to train a group of GA chromo-
somes. Our evolutionary class decomposition-based approach
is significantly different. As shown in Figure 2, it generally
consists of three steps. First, the original problem is divided
into C different sub-problems in terms of classes. Then, C GA
modules are constructed for these sub-problems, where each
module will be responsible for evolving a sub-solution. As
input data can be inconsistent Finally, these sub-solutions are
integrated to form the final solution of the original problem.

We used multi-threading to implement a portable machine-
independent Parallelism using OpenMP like implementation.
Two level Parallelism is used in the our technique; 1) the
rule generation in each GA module is implemented using
parallelism, 2) each GA module is trained in a different
thread. It is to the operating system to map each thread to
a working processors according to run-time implementation
implementation.

F. Distributed Class Decomposition

Consider having c classes in the classification problem on
hand, with n-dimensional pattern space, and p vectors where
Xi = (xi1, xi2, . . . , xin), i = 1, 2, . . . , p, p � c are input
instances. Accordingly, the given classification problem can
be denoted as follows:

f : X → T

where X ∈ Rn is the set of instances with n attributes, and
T ∈ Rc is the set of output classes. Required a mapping f
that maximizes accuracy. Assume that the c-class problem is
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Figure 3. Server/Client setting

Figure 4. Server sends classification criteria to clients

divided into c sub-problems, each contains the vectors Xi that
present T j . Hence the class set can be denoted as

T = T 1
⋃
T 2

⋃
. . .

⋃
T c

each sub-problem can be formulated as required fj with an
optimal classification accuracy and score on T j

fj : X → T j

.
Having c sub-problems, c GA sub-modules are constructed

and executed in parallel. As shown in figure 3, the server
will send to each client the criteria that defines the subset of
instances of each T j as a SQL condition figure 4. The SQL
condition is executed against a database of the classification
problem. Then each client is busy working on its GA figure
5. After finishing, each module sends the result rule set to the
server to be integrated with other sub-solutions to construct
the final solution6.

G. Integration

Although each GA module has evolved a portion of the
solution, we cannot just simply aggregate their sub-solutions
as the final one, because each GA module only classifies
only one class. Therefore, when the sub-solutions are com-
bined together, there may still exist conflicts among the sub-
solutions. For example, rules from different modules may

Figure 5. Clients busy executing its portion of GA module

Figure 6. Rule Sets are sent to server

Algorithm 1 Conflects Resolving
• If an instance is classified into more than one class

categories by the rule set, it will be classified into the
one whose corresponding module achieves the highest
classification rate in the training phase.

• If an instance is not classified into any class category
by the rule set, it will be classified into the class whose
corresponding module achieves the lowest classification
rate in the training phase, if available.

classify an instance into several classes. In order to resolve
these conflicts and further improve the classification rate, the
classifier employs some intelligent decision rules. The detailed
integration process is explained as follows.

The classifier constructs an overall rule set by aggregating
all rules from C modules. Some decision rules are added
to help solving the above-mentioned conflicts. The ending
classification rate obtained from each module would be useful
for this purpose. Currently, Algorithm 1 shows decision rules
have been employed:

To sum up, the process employed can be summarized by
algorithm 2

First, an initial Global Population GP is initialized and for
each class Ci, an initial population Pi is generated in Step
2.a. Crossover and mutation operations are applied to each
pair in Pi to generate the offspring population P I

i in Step
2.b.i. The next population is constructed by choosing good
solutions from the merged population Pi ∪ P I

i . We used
elitist selection to select the best rules from the old generation
to act as basis for the next generation, steps 2.b.i and 2.b.ii

Algorithm 2 Integration Algorithm
Input: Population size N; Maximum number of generations G;
Crossover probability pc; Mutation rate pm.
Output: Classifier

1) GP = φ
2) for each Class Ci do

a) Pi:=Initialize(P,Ci)
b) while the termination criterion is not satisfied do

i) P I
i := Genetic Operators(Pi)

ii) Pi:= Rank and select fittest(Pi ∪ P I
i )

c) end while
d) GP = GP ∪ Pi

3) end for each
4) return (GP)
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are repeated to obtain the set of rules (classifier) of the current
class, in step 2.d the rule set Pi is added to the GP. Step 2
is to be repeated for each class, finally GP should contain all
rules needed to identify all classes.

IV. EXPERIMENTAL RESULTS

We have implemented several classifiers running on three
benchmark data sets to evaluate our approach. The data sets
chosen are the wine data, iris data and breast cancer data. They
are all available in the UCI machine learning repository [3].
They all are real-world problems. We partition each data set
into two parts with an equal number of instances. One half
is for training, and the other half is for testing. We use the
training data to train the rule set, and test the generalization
power of resulting rule set with the test data. we used a
robust and scalable implementation as we stored the training
and testing data in MySQL database, and used SQL queries
to evaluate the rules enabling further and more sophisticated
application. we compared our technique with Normal GA
[10] and[15], Class Decomposition single objective [1]. All
experiments are completed on Intel 1.8GHz Dual Core, 1GB
RAM PC running windows XP SP2 32bit. The results reported
are averaged over five independent runs. The parameters, such
as mutation rate, crossover rate, generation limits, are given
under the results. We also noticed that the hybrid ending
criteria made the execution very fast for certain databases some
breast cancer tests took only 2 minutes with total accuracy of
0.90.

A. Parallel EMOGAR

1) The Wine Data: The wine data contains the chemical
analysis of 178 wines from three different cultivars in the same
region in Italy. The analysis determines the quantities of 13
constituents found in each of the three types of wines. In other
words, it has 13 continuous attributes, 3 classes, 178 instances,
and no missing values. The experimental results are shown in
tableI

Normal GA Kaya’s Class Decomposition. EMOGAR
1 0.27 0.82 0.84 0.85
2 0.25 0.88 0.86 0.86
3 0.29 0.73 0.90 0.88
4 0.41 0.83 0.85 0.88
5 0.25 0.79 0.83 0.92

Average 0.29 0.81 0.86 0.88

Table I
COMPARISON OF THE CLASSIFIERS PERFORMANCE ON WINE TEST DATA

2) The Iris data: The glass data set contains data of
different flowers, the data set consists of samples from each of
three species of Iris flowers (Iris setosa, Iris virginica and Iris
versicolor). Four features were measured from each sample,
they are the length and the width of sepal and petal. Based on
the combination of the four features, Fisher developed a linear
discriminant model to determine which species from these four
measurements. This data set consists of 150 instances with 4
continuous attributes from 3 classes, and no missing values.
The experimental results are shown in tableII

Normal GA Kaya’s Class Decomposition. EMOGAR
1 0.92 0.96 0.95 0.97
2 0.90 0.95 0.96 0.96
3 0.84 0.92 0.92 0.96
4 0.92 0.90 0.96 0.97
5 0.88 0.92 0.95 0.96

Average 0.89 0.93 0.95 .97

Table II
COMPARISON OF THE CLASSIFIERS PERFORMANCE ON IRIS TEST DATA

3) The Cancer data: The Breast Cancer Wisconsin contains
features computed from digitized images of a fine needle
aspirate (FNA) of a breast mass. They describe characteristics
of the cell nuclei present in the image, these features are to be
used in breast cancer diagnosis. This data set consists of 569
instances with 30 continuous attributes from 2 classes, and no
missing values. The experimental results is shown in table III

Normal GA Kaya’s Class Decomposition. D. EMOGAR
1 0.33 0.56 0.62 0.90
2 0.33 0.48 0.50 0.88
3 0.33 0.47 0.59 0.92
4 0.33 0.35 0.50 0.84
5 0.33 0.49 0.66 0.82

Average 0.33 0.47 0.58 .87

Table III
COMPARISON OF THE CLASSIFIERS PERFORMANCE ON CANCER TEST

DATA

B. Distributed EMOGAR

Normal GA Kaya’s Class Decomposition. D. EMOGAR
1 0.27 0.82 0.84 0.85
2 0.25 0.88 0.86 0.86
3 0.29 0.73 0.90 0.88
4 0.41 0.83 0.85 0.88
5 0.25 0.79 0.83 0.92

Average 0.29 0.81 0.86 0.88

Table IV
COMPARISON OF THE CLASSIFIERS PERFORMANCE ON WINE TEST DATA

1) The Wine Data:

Normal GA Kaya’s Class Decomposition. EMOGAR
1 0.92 0.96 0.95 0.97
2 0.90 0.95 0.96 0.96
3 0.84 0.92 0.92 0.96
4 0.92 0.90 0.96 0.97
5 0.88 0.92 0.95 0.96

Average 0.89 0.93 0.95 .97

Table V
COMPARISON OF THE CLASSIFIERS PERFORMANCE ON IRIS TEST DATA

2) The Iris data:
3) The Cancer data:

V. CONCLUSION

This chapter proposed a new multi-objective approach based
on class decomposition for GA-based classifiers. A simple
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Normal GA Kaya’s Class Decomposition. D. EMOGAR
1 0.33 0.56 0.61 0.91
2 0.33 0.48 0.50 0.87
3 0.33 0.47 0.59 0.92
4 0.33 0.35 0.50 0.84
5 0.33 0.49 0.66 0.83

Average 0.33 0.47 0.57 .86

Table VI
COMPARISON OF THE CLASSIFIERS PERFORMANCE ON CANCER TEST

DATA

representation of two objective functions accuracy and score
is used. A classification problem is decomposed into several
modules and each module is responsible for solving a fraction
of the original problem. We have two implementation; 1)
Modules are trained in parallel (two level Parallelism inter-
module Parallelism and Intra-module Parallelism), 2) Modules
as trained in a distributed environment (parallelism within
each module also implemented) . The sub-solutions obtained
is either of the implementation are integrated to further obtain
a final solution. To evaluate our method, we have conducted
some experiments. The results have shown that our algorithm
is efficient and robust . Our Experiments Also showed that
there is a performance enhancement of about 30% for the
distributed implementation without sacrificing the accuracy.
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