
Scaling in Cloud Environments

DOMINIQUE BELLENGER, JENS BERTRAM, ANDY BUDINA, ARNE KOSCHEL, BENJAMIN

PFÄNDER, CARSTEN SEROWY

Faculty IV, Department of Computer Science

University of Applied Sciences and Arts Hannover

Ricklinger Stadtweg 120, 30459 Hannover

GERMANY

{dominique.bellenger, jens.bertram1, andy.budina, benjamin.pfaender, carsten.serowyg}@stud.fh-

hannover.de, arne.koschel@fh-hannover.de

IRINA ASTROVA

InVision Software OÜ

Lõõtsa 2A, 11415 Tallinn

ESTONIA

irinaastrova@yahoo.com

STELLA GATZIU GRIVAS, MARC SCHAAF

Institute for Information Systems

University of Applied Sciences Northwestern Switzerland

Riggenbachstrasse 16, 4600 Olten

SWITZERLAND

{stella.gatziugrivas, marc.schaaf}@fhnw.ch

Abstract: - This paper describes two approaches to scaling in cloud environments – semi-automatic (also called

by request) and automatic (also called on demand) – and explains why the latter is to prefer. Semi-automatic

scaling is illustrated with an example of Amazon Elastic Compute Cloud, whereas automatic scaling is

illustrated with an example of Amazon Web Services Elastic Beanstalk.

Key-Words: - Scaling, Cloud computing, Amazon Elastic Compute Cloud (Amazon EC2), Amazon Web

Services Elastic Beanstalk (AWS Elastic Beanstalk), Experiments

1 Introduction
Cloud computing [1] can be defined as an abstraction

of services from infrastructures (i.e. hardware),

platforms and applications (i.e. software) by

virtualization of resources. To designate these

different forms of cloud computing services, three

terms have been used: IaaS, PaaS, and SaaS, which

stand for Infrastructure-as-a-Service, Platform-as-a-

Service, and Software-as-a-Service, respectively (see

Fig. 1).

Fig. 1. Cloud computing services [2].

 Whereas most IaaS and PaaS providers reveal

more or less detailed information on how scaling is

done in their products, there are almost no details

available from SaaS providers. On the one hand, we

can argue that SaaS providers do not disclose how

scaling is done in their products because this

information is not important for users. What is

important for users is that their applications do scale

automatically. On the other hand, an automatic

scaling mechanism can be viewed as a trade secret

and therefore, not revealed by SaaS providers in

detail. That is why in this paper we consider scaling

on IaaS and PaaS levels only. Scaling on IaaS level is

illustrated with an example of Amazon Elastic

Compute Cloud (Amazon EC2) [6], whereas scaling

on PaaS level is illustrated with an example of

Amazon Web Services Elastic Beanstalk (AWS

Elastic Beanstalk) [7].

 The main contribution of this paper is to present

the results of our experiments on an automatic scaling

mechanism of AWS Elastic Beanstalk.

Recent Researches in Computer Science

ISBN: 978-1-61804-019-0 145

2 Motivation
Cloud computing shifts the location of resources to

the cloud (a metaphor for the Internet) to reduce the

costs associated with over-provisioning (i.e. having

too many resources), under-utilization (i.e. not using

resources adequately) and under-provisioning (i.e.

having too little resources). It also reduces the time

required to provision resources to minutes, allowing

applications to quickly scale both up and down, as the

workload changes. Therefore, cloud computing is

particularly well suited for applications with a

variable workload that experience hourly, daily,

weekly or monthly variability in utilization of

resources. One example of such applications is online

shops, which have to handle their peak loads at

Christmas time. Another example is airline booking

websites, which have to handle their peak loads

during campaigns.

 In traditional (i.e. non-cloud) environments, over-

provisioning and under-utilization can hardly be

avoided [1]. There is an observation that in many

companies the average utilization of application

servers ranges from 5 to 20 percent, meaning that

many resources like CPU and RAM are idle at no-

peak times [3].

 On the other hand, if the companies shrink their

infrastructures to reduce over-provisioning and

under-utilization, the risk of under-provisioning will

increase. While the costs of over-provisioning and

under-utilization can easily be calculated, the costs of

under-provisioning are more difficult to calculate

because under-provisioning can lead to a loss of users

and zero revenues [3].

3 Scaling
Scalability [22] can be defined as the ability of an

application to make optimum utilization of resources

at different workload levels (i.e. avoiding over-

provisioning, under-utilization and under-

provisioning).

3.1 Manual Scaling in Traditional

Environments
In traditional environments, scalability is achieved by

predicting peak loads, then purchasing, setting up and

configuring the infrastructure that can handle these

peak loads. Since resources are provisioned statically

(i.e. at deployment time) and manually (e.g. by

adding an application server to the infrastructure), the

biggest problem with scaling in traditional

environments is high latency. Due to this problem,

the mean time until resources are provisioned can be

long, which is often the main reason for the

unavailability of an application at peak loads [4].

Another big problem is manual monitoring of

resources.

 Fig. 2 shows manual scaling in traditional

environments.

Fig. 2. Manual scaling in traditional environments [4].

3.2 Semi-automatic Scaling in Cloud

Environments
In cloud environments, resources are virtualized. This

virtualization enables elasticity of the cloud, meaning

that the cloud can easily and quickly be resized to

adjust to a variable workload. In particular, in cloud

environments, resources are provisioned dynamically

(i.e. at runtime), automatically (i.e. without user

intervention), infinitely and almost immediately (i.e.

within minutes and not hours, days, weeks or months

like in traditional environments).

 Fig. 3 shows semi-automatic scaling in cloud

environments. The mean time until resources are

provisioned is short, so peak loads can be intercepted

in many cases. However, manual monitoring of

resources is still necessary. In particular, users are

forced to make a tradeoff between requesting more

resources to avoid under-provisioning and requesting

fewer resources to avoid over-provisioning and

under-utilization. Since resources are provisioned by

request, the problem of the unavailability of an

application at peak loads is not completely

eliminated.

Fig. 3. Semi-automatic scaling in cloud environments [4].

Recent Researches in Computer Science

ISBN: 978-1-61804-019-0 146

3.3 Automatic Scaling in Cloud

Environments
Automatic scaling enables users to closely follow the

workload curve of their applications, by provisioning

resources on demand. With automatic scaling, users

can ensure that the number of resources their

applications are utilizing automatically increases

during demand spikes to handle peak loads and

automatically decreases during demand lulls to

minimize costs so that users are not forced to pay for

the resources they do not need.

 But what can be done if the peak loads are so

enormous that an application is still unavailable

despite automatic scaling? It would be nice if an

automatic scaling mechanism could predict these

peak loads and provision the needed resources in

advance, making the impression of elasticity of the

cloud. One technique to achieve this is to identify

repeating workload patterns [4]. Another is to use a

Markov chain [5].

 Fig. 4 shows automatic scaling in cloud

environments. It is similar to semi-automatic scaling.

The key difference is that manual monitoring of

resources is needed no longer.

Fig. 4. Automatic scaling in cloud environments [4].

4 Amazon
Amazon is one of the major players in providing

cloud computing services like IaaS and PaaS. It offers

many products, including Amazon EC2 and AWS

Elastic Beanstalk.

4.1 Amazon EC2
Amazon EC2 allows users to rent virtual machines

from Amazon and thus, to avoid the costs of

purchasing and setting up their own infrastructures.

4.1.1 Instances
The basis of Amazon EC2 is so-called instances. An

instance is a virtual machine equipped with the

specified amount of computing power (including

CPU and RAM). Users can monitor for CPU and

RAM utilization, and launch or terminate instances

when needed. In addition, users can install their

applications on instances and bundle these instances

to machine images, and then store the machine

images in Amazon Simple Storage Service (S3) [8]

so later they can easily and quickly launch instances

from the machine images, without having to

configure the virtual machines again [9].

 Fig. 5 shows the life cycle of instance. An instance

can be in one of the following states: running,

terminated and stopped. Initially, the instance is not

running. When a launch command is issued, a new

virtual machine is provided. Users can specify how

powerful the virtual machine will be with regards to

computing power. After the virtual machine is ready

for the use, the machine image is deployed to the

instance. The instance is now in the running state.

From this state, the instance can be brought to the

stopped state, by issuing a stop command. The

instance in the stopped state can be brought to the

running state again, by issuing a start command. This

is much more quickly than launching a new instance.

But it requires data to be stored on Amazon Elastic

Block Store (EBS) [10]. Finally, the instance can be

terminated, by issuing a terminate command. The

termination will release the resources held by the

instance. All the information previously stored in the

instance gets lost [11]. If there are data, which should

be available after the termination, they should be

stored on EBS.

Fig. 5. Life cycle of Amazon EC2 instance [11].

4.1.2 Auto-scaling groups
Users can group instances offering an identical

service (i.e. running the same application) into an

auto-scaling group.

4.2 AWS Elastic Beanstalk
A downside of Amazon EC2 is that it requires users

to make many efforts in order to deploy their

applications into the cloud. AWS Elastic Beanstalk

goes a step further, by providing users with a

platform for easy and quick deployment of their

applications into the cloud.

 For automatic scaling, AWS Elastic Beanstalk

uses the following web services: Elastic Load

Balancing [12], Auto Scaling [14] and Amazon

CloudWatch [13], which works in conjunction with

Amazon Web Services Management Console (AWS

Recent Researches in Computer Science

ISBN: 978-1-61804-019-0 147

Management Console) [19], a web-based user

interface.

4.2.1 AWS Management Console
AWS Management Console allows users to configure

an automatic scaling mechanism of AWS Elastic

Beanstalk. For example, users can specify how many

instances can and must run (i.e. the maximum and

minimum number of running instances) (see Fig. 6).

Such configuration will define what to scale, how to

scale and when to scale.

Fig. 6. Configuring AWS Elastic Beanstalk via AWS

Management Console [20].

4.2.2 Amazon CloudWatch
Amazon CloudWatch tracks and stores per-instance

metrics, including request count and latency, CPU

and RAM utilization. Once stored, the metrics can be

visualized using AWS Management Console (see Fig.

7). With AWS Management Console, users can get

real-time visibility into the utilization of each of the

instances in an auto-scaling group, and can easily and

quickly detect over-provisioning, under-utilization or

under-provisioning.

 However, Amazon CloudWatch was primarily

developed for the use with Elastic Load Balancing

and Auto Scaling.

Fig. 7. Visualizing Amazon CloudWatch metrics via AWS

Management Console [21].

4.2.3 Elastic Load Balancing
Elastic Load Balancing enables a load balancer,

which automatically spreads load across all running

instances in an auto-scaling group based on metrics

like request count and latency tracked by Amazon

CloudWatch. If an instance is terminated, the load

balancer will not route requests to this instance

anymore. Rather, it will distribute the requests across

the remaining instances.

 Elastic Load Balancing also monitors the

availability of an application, by checking its “health”

periodically (e.g. every five minutes). If this check

fails, AWS Elastic Beanstalk will execute further

tests to detect the cause of the failure. In particular, it

checks if the load balancer and the auto-scaling group

are existing. In addition, it checks if at least one

instance is running in the auto-scaling group.

Depending on the test results, AWS Elastic Beanstalk

changes the health status of the application.

 The possible values for the health status are:

 Green: The application has responded within

the last minute.

 Yellow: The application has not responded

within the last five minutes.

 Red: The application has not responded for

more than five minutes or another problem

was detected by AWS Elastic Beanstalk (e.g.

the load balancer is not available anymore).

 Gray: The status of the application is

unknown (e.g. the application is not ready for

the use yet).

4.2.4 Auto Scaling
Auto Scaling automatically launches and terminates

instances based on metrics like CPU and RAM

utilization tracked by Amazon CloudWatch and

thresholds called triggers. Whenever a metric crosses

a threshold, a trigger is fired to initiate automatic

scaling. For example, a new instance will be launched

and registered at the load balancer if the average CPU

utilization of all running instances exceeds an upper

threshold.

 Auto Scaling also provides fault tolerance. If an

instance reaches an unhealthy status or terminates

unexpectedly, Auto Scaling will compensate this and

launch a new instance instead, thus assuring that the

specified minimum number of instances are running

constantly.

5 Experiments
Using Amazon Eclipse plug-in [15], we created a

sample project called MyTravelLog. This project was

a ready-to-deploy application (i.e. WAR archive); it

consisted of servlets, property files, Java libraries like

J2EE and the application specific libraries like

Recent Researches in Computer Science

ISBN: 978-1-61804-019-0 148

Spring. We used the project to experiment with the

automatic scaling mechanism of AWS Elastic

Beanstalk. The goal of our experiments was to know

how quickly the application can automatically scale

both up and down in response to load.

 In our experiments, we largely assumed the

default values for the Elastic Load Balancing settings.

This means that we deployed the application to an

Amazon micro-EC2 instance with one virtual CPU

and approximately 600 MB RAM.

 To measure the mean time until an instance

launches or terminates when a trigger is fired, we set

all monitoring time intervals of Amazon CloudWatch

to the minimum possible values (viz. one minute).

Furthermore, we configured Auto Scaling as follows:

if the CPU utilization value is above the average of

80 percent, one instance should launch. Next if the

CPU utilization value is below the average of 60

percent, one instance should terminate. Also, we

specified that there should be at least one and at most

four running instances at any point in time. (Elastic

Load Balancing was configured automatically.)

 Also, we developed a servlet, which just ran

through a while-loop for several seconds. This servlet

was called in many parallel requests to create a

variable workload.

 Fig. 8 shows the automatic scaling of the created

workload as well as the mean time until instances are

launched or terminated. At first, there was only one

running instance, which contained the deployed

application; the CPU utilization was between 5 and 9

percent. After five minutes, we started five parallel

requests every five seconds, which caused the CPU

utilization to rise from 5 percent to almost 100

percent on the only running instance. In about three

minutes, the automatic scaling mechanism detected

that the CPU utilization was above 80 percent, fired a

trigger and launched a new instance. After several

additional minutes, the health monitoring of Elastic

Load Balancing detected an unhealthy status of the

application, changed the health status from green

through yellow to red and launched yet a new

instance. The first additional instance was ready in

about six minutes after the trigger had been fired. The

CPU utilization went down to about 65 percent. The

launching process of the second instance completed

in three minutes later and the CPU utilization went

down to about 45 percent. After five additional

minutes, the automatic scaling mechanism detected

that the CPU utilization was below 60 percent and

there were three instances running; so one of those

instances was terminated.

 Thus, our experiments showed that the application

can automatically scale up when the load increases

and automatically scale down when the load

decreases. The mean time until an instance is ready

for the use is between three and six minutes (which is

a very good result).

Fig. 8. Results of experiments on AWS Elastic Beanstalk.

6 Conclusion
We described the automatic scaling mechanism of

AWS Elastic Beanstalk and experimented with it.

Our experiments showed that provisioning resources

took a few minutes.

 However, the automatic scaling mechanism of

AWS Elastic Beanstalk is somehow hidden behind

the platform. As a downside, users might have to

adapt their applications to the platform characteristics

and the requirements for scalability.

 Amazon provides a best-practices guide [16] on

how users should develop their applications for the

best fit for cloud environments. The most important

guidelines are: an application should be divided into

loosely coupled components that can be distributed

across different application servers and executed in

parallel. Furthermore, the application should be as

stateless as possible [17]. If a component fails or is

temporarily not available, the application should

continue to run. This can be achieved by developing

the component as self-rebooting and using a message

queue. If the component is temporarily not available,

messages will be stored in the message queue and

delivered later when the component is available

again.

 Other platforms like Google App Engine [18] also

let users have their applications to automatically scale

both up and down according to demand but with even

more restrictions on how users should develop their

applications. That is why we selected AWS Elastic

Beanstalk for our experiments.

 A downside of AWS Elastic Beanstalk is that

currently it does not provide any web service to

predict demand for the near future. Theoretically, the

statistical usage data of the last few months or years

could be used to predict time intervals during which

more or fewer resources are needed.

References:

[1] C. Braun, M. Kunze, J. Nimis, and S. Tai. Cloud

Computing, Web-based Dynamic IT-Services.

Springer Verlag, Berlin, Heidelberg, 2010.

[2] Demystifying SaaS, PaaS and IaaS,

http://e2enetworks.com/2010/05/03/demystifying-

saas-paas-and-iaas/

Recent Researches in Computer Science

ISBN: 978-1-61804-019-0 149

[3] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R.

Katz, A. Konwinski, G. Lee, D. Patterson, A.

Rabkin, I. Stoica, and M. Zaharia. A view of

cloud computing. Communications of the ACM,

53(4):50–58, April 2010

[4] J. Yang, J. Qiu, and Y. Li. A profile-based

approach to just-in-time scalability for cloud

applications. Proceedings of the IEEE

International Conference on Cloud Computing

(CLOUD 2009), Washington, DC, USA, pages 9–

16, 2009. IEEE Computer Society

[5] Z. Gong, X. Gu, and J. Wilkes. Press: Predictive

elastic resource scaling for cloud systems. CNSM,

pages 9–16, 2010

[6] Amazon.com. Amazon Elastic Compute Cloud

(Amazon EC2), http://aws.amazon.com/ec2/

[7] Amazon.com. AWS Elastic Beanstalk,

http://aws.amazon.com/elasticbeanstalk/

[8] Amazon.com. Amazon Simple Storage Service

(Amazon S3), http://aws.amazon.com/s3/

[9] T. Chieu, A. Mohindra, A. Karve, and A. Segal.

Dynamic scaling of web applications in a

virtualized cloud computing environment,

Proceedings of the IEEE International

Conference on E-Business Engineering, pages

281–286, 2009

[10] Amazon.com. Amazon Elastic Block Store

(Amazon EBS), http://aws.amazon.com/ebs/

[11] U. Koch, and O. Hunte. Konzepte & Beispiele

zu Cloud Computing. Bachelorarbeit,

Fachhochschule Hannovee, Fakultat IV,

Abteilung Informatik, 2010

[12] Amazon.com. Elastic Load Balancing,

http://aws.amazon.com/elasticloadbalancing/

[13] Amazon.com. Amazon CloudWatch,

http://aws.amazon.com/cloudwatch/

[14] Amazon.com. Auto Scaling,

http://aws.amazon.com/autoscaling/

[15] Amazon.com. AWS Toolkit for Eclipse,

http://aws.amazon.com/eclipse/

[16] J. Varia. Architecting for the cloud: best

practices.

http://media.amazonwebservices.com/AWS_Clou

d_Best_Practices.pdf

[17] P. Marshall, K. Keahey, and T. Freeman. Elastic

site: Using clouds to elastically extend site

resources, Proceedings of the IEEE International

Symposium on Cluster Computing and the Grid,

pages 43–52, 2010

[18] Google. Google App Engine,

http://code.google.com/appengine/

[19] Amazon.com. AWS Management Console,

http://aws.amazon.com/console/

[20] T. Anderson. Amazon’s Elastic Beanstalk auto-

scales your cloud application,

http://www.itwriting.com/blog/3691-amazons-

elastic-beanstalk-auto-scales-your-cloud-

application.html

[21] Amazon.com. Get a Single Metric for a Specific

EC2 Instance,

http://docs.amazonwebservices.com/AmazonClou

dWatch/2010-08-

01/DeveloperGuide/index.html?CHAP_Terminol

ogyandKeyConcepts.html

[22] J. Cáceres, L. Vaquero, L. Rodero-Merino, Á.

Polo, and J Hierro. Service Scalability over the

Cloud, Handbook of Cloud Computing, eds. B.

Furht and A. Escalante, Springer Verlag, Berlin,

Heidelberg, 2010

Recent Researches in Computer Science

ISBN: 978-1-61804-019-0 150

