
MATLAB/Simulink TCP/IP Communication

MARTIN SYSEL

Department of Computer and Communication Systems

Faculty of Applied Informatics

Tomas Bata University in Zlín

nám. T. G. Masaryka 5555, 760 01 Zlín

CZECH REPUBLIC

Sysel@fai.utb.cz

Abstract: - This paper describes TCP/IP communication blocks in the program MATLAB/Simulink. The new

developed Simulink blocks and detailed instructions for building them are described here. This server and client

blocks enable Simulink models to communicate with remote applications, devices over TCP/IP

communications. A very similar functionality (more complex) is provided by the TCP/IP block in the
Instrument Control Toolbox offered by MathWorks as closed-source software.

Key-Words: - Simulink, communications, TCP/IP, client, server

1 Introduction

Simulink can communicate with remote applications

using developed Simulink blocks. Client block
enables sending live data from Simulink model to an

application, devices using TCP/IP. It is possible to

send data to the TCP/IP Server block. The server
block accepts data from the network socket; it uses

TCP/IP protocol and blocking mode. The data are

received at fixed intervals based on Simulink
schema loop. The base element of the block is

S-function block, which use C MEX file [3]. To

create S-functions, it is needed to understand how S-

functions work. It requires understanding how the
Simulink engine simulates a model. The first,

Simulink model stages and callback methods are

described, then Windows Socket API
implementation is briefly presented and finally the

procedure how to create both communication blocks

is described.

2 S-Function
S-functions (system-functions) provide a powerful

mechanism for extending the capabilities of the

Simulink environment. An S-function is a computer
language description of a Simulink block written in

MATLAB, C, C++, Ada, or Fortran. S-functions are

compiled as MEX-files using the MEX utility. S-

functions are dynamically linked subroutines that
the MATLAB interpreter can automatically load and

execute. S-functions use a special calling syntax

called the S-function API that enables to interact
with the Simulink engine. This interaction is very

similar to the interaction that takes place between
the engine and built-in Simulink blocks. S-functions

follow a general form and can accommodate

continuous, discrete and hybrid systems. By

following a set of simple rules, it can be
implemented an algorithm in an S-function and used

the S-Function block to add it to a Simulink model.

After writing S-function and place its name in an S-
Function block (available in the User-Defined

Functions block library), it can customize the user

interface using masking [1].

2.1 S-function Simulation Stages
Execution of a Simulink model proceeds in stages.
First comes the initialization phase. In this phase,

the Simulink engine incorporates library blocks into

the model, propagates signal widths, data types, and

sample times, evaluates block parameters,
determines block execution order, and allocates

memory. The engine then enters a simulation loop,

where each pass through the loop is referred to as a
simulation step. During each simulation step, the

engine executes each block in the model in the order

determined during initialization. For each block, the
engine invokes functions that compute the block

states, derivatives, and outputs for the current

sample time. The entire simulation loop then

continues until the simulation is complete.
A MEX S-function consists of a set of callback

methods that the Simulink engine invokes to

perform various block related tasks during a
simulation. Because the engine invokes the

functions directly, MEX S-functions must follow

Recent Researches in Computer Science

ISBN: 978-1-61804-019-0 71

standard naming conventions specified by the

S function API.

MEX S-functions provide many sample time

options, which allow for a high degree of flexibility
in specifying when an S-function executes. If the

behavior of S-function is a function of discrete time

intervals, it can be defined a sample time to control
when the Simulink engine calls the S-function

mdlOutput and mdlUpdate.

The important S-function callback methods are
shown in Fig. 1. The implementations of callback

methods are described below.

Fig. 1. The important S-function callback methods.

3 Windows Sockets
Traditional network programming implemented in

Windows environment uses Windows Sockets API

(Winsock API - WSA). WSA is similar to Linux

Sockets programming with a few exception such as

header files, that provided to suit Windows

environment and enhances the functionalities.

Windows Sockets 2 (Winsock) enables

programmers to create advanced Internet, intranet,

and other network capable applications to transmit

application data across the wire, independent of the

network protocol being used. With Winsock,

programmers are provided access to advanced

Microsoft Windows networking capabilities.

Winsock programming previously centered around

TCP/IP [4].

There are two distinct types of socket network

applications: Server and Client. Servers and Clients

have different behaviors; therefore, the process of

creating them is different. Below is the general

model for creating a streaming TCP/IP Server and

Client.

Server

 Initialize Winsock.

 Create a socket.

 Bind the socket.

 Listen on the socket for a client.

 Accept a connection from a client.

 Receive and send data.

 Disconnect.

Client

 Initialize Winsock.

 Create a socket.

 Connect to the server.

 Send and receive data.

 Disconnect.

4 Client Block Description

The TCP/IP client block sends out data from model

using the TCP/IP protocol. This data is sent at fixed
intervals during a simulation. The TCP/IP client

block has one input port. The size of the input port

is dynamic, and is inherited from the driving block.
This block has no output ports. The developed

TCP/IP output block is shown in the Fig. 2.

Fig. 2. The TCP/IP Client Block.

The Block Parameters dialog box can be used for

selecting communication parameters (Fig. 3).

Fig. 3. The TCP/IP Client Block Parameters dialog.

Recent Researches in Computer Science

ISBN: 978-1-61804-019-0 72

It is possible to specify a remote server address, port

and sample time period. The sample time period is

the rate at which the block send the data to specified

port on the server during the simulation.This chapter
contains simplified description of the source code of

the developed Simulink block. The base element of

the block is S-function block, which use C MEX
file. Finally, it is necessary compile source code.

Compiling the MEX-Files is similar to compiling

with gcc or any other command line compiler.
Following MATLAB command links the object

code together with the library WS2_32.lib (or it is

possible to use older library wsock32.lib). Win32

architecture is supposed [1], [2].

>> mex -O client.cpp WS2_32.lib -DWIN32

4.1 Defines and Includes
The S-function code starts with the define and

include statements. It is necessary to define

statement which specifies the name of the

S-function.
After defining these two items, the code includes

simstruc.h, which is a header file that gives access

to the SimStruct data structure and the MATLAB
Application Program Interface (API) functions. The

simstruc.h file defines a data structure, called the

SimStruct, which the Simulink engine uses to
maintain information about the S-function. The

simstruc.h file also defines macros that enable

MEX-file to set values in and get values (such as the

input and output signal to the block) from the
SimStruct. The winsock2.h and ws2tcpip.h should

be added to access sockets under Microsoft

Windows. Next parts describe callback method
implementations.

4.2 mdlInitializeSizes
The Simulink engine calls mdlInitializeSizes to

inquire about the number of input and output ports,

sizes of the ports, and any other information (such
as the number of states) needed by the S-function.

The client implementation of mdlInitializeSizes

specifies the following size information:

ssSetNumSFcnParams(S, 3);

It defines three input parameters:
Address – (String input parameter) Name address

of the server (IP address) - An Internet Protocol (IP)

address is a numerical identification that is assigned
to devices participating in a computer network.

Port – (Integer input parameter) - In computer

networking, a port is an application-specific or

process-specific software construct serving as a

communications endpoint used by Transport Layer
protocols of the Internet Protocol Suite such as

Transmission Control Protocol (TCP) or User

Datagram Protocol (UDP). A specific port is
identified by its number associated with the IP and

the protocol used for communication.

Sample time period – Sampling period of the
signal output.

if (!ssSetNumInputPorts(S, 1)) return;

ssSetInputPortWidth(S,0,DYNAMICALLY_SIZED);

It defines one dynamically sized input port, that’s

why TCP output is in the special format which is
easy modifiable.

ssSetOptions(S,
SS_OPTION_WORKS_WITH_CODE_REUSE |

SS_OPTION_EXCEPTION_FREE_CODE |

SS_OPTION_USE_TLC_WITH_ACCELERATOR);

Specifying these options together with exception-

free code speeds up execution of S-function.

4.3 mdlInitializeSampleTimes
The Simulink engine calls

mdlInitializeSampleTimes to set the sample times of
the S-function. A client block executes in specified

period (the third input parameter).

ssSetSampleTime(S,0,

mxGetScalar(ssGetSFcnParam(S, 2)));

4.4 mdlStart
Simulink invokes this optional method at the

beginning of a simulation. It should initialize and
connect the windows socket. Input parameters

Address and Port are used, TCP communication is

used here.

WSAStartup(MAKEWORD(2,2), &wsaData);

ConnectSocket = socket(AF_INET,

SOCK_STREAM, IPPROTO_TCP);
getaddrinfo(myHost, port, &hints, &result);

connect(ConnectSocket, result->ai_addr,

(int)result->ai_addrlen);

Recent Researches in Computer Science

ISBN: 978-1-61804-019-0 73

4.5 mdlOutputs
The engine calls mdlOutputs at each time step to

calculate the block outputs. The client
implementation of mdlOutputs takes the input signal

and writes the data to the created output socket.

send(mySocket, data, strlen(data), 0);

4.6 mdlTerminate
The engine calls mdlTerminate to provide the S

function with an opportunity to perform tasks at the

end of the simulation. This is a mandatory S
function routine. The client S-function terminate

created socket.

shutdown(ConnectSocket, SD_SEND);
closesocket(ConnectSocket);

WSACleanup();

5 Server Block Description

The TCP/IP server block accepts data from the

network socket, it uses TCP/IP protocol. The data
are received at fixed intervals during a simulation.

The TCP/IP server block has one output port with

dynamic size (inherited from the incoming data).
This block has no input ports.

The Block Parameters dialog box can be used for

selecting communication parameters (Fig. 4).

Fig. 4. The TCP/IP Server Block Parameters dialog.

It is possible to specify a port and sample time

period. The sample time period is the rate at which
the block expects the data on the specified port

during the simulation. it uses blocking mode.

This chapter contains simplified description of the
source code of the developed Simulink server block.

Just differences are described here. The base

element of the block is S-function block, which use

C MEX file. Finally, it is necessary compile source
code. Compiling the MEX-Files is similar to

compiling client block.

5.1 mdlInitializeSizes
The Simulink engine calls mdlInitializeSizes to

inquire about the number of input and output ports,
sizes of the ports, and any other information (such

as the number of states) needed by the S-function.

The implementation of mdlInitializeSizes specifies
the following size information:

ssSetNumSFcnParams(S, 2);

It defines two input parameters:

Port – (Integer input parameter) – Defines listening

server port. In computer networking, a port is an
application-specific or process-specific software

construct serving as a communications endpoint

used by Transport Layer protocols of the Internet
Protocol Suite such as Transmission Control

Protocol (TCP) or User Datagram Protocol (UDP).

A specific port is identified by its number associated

with the IP and the protocol used for
communication.

Sample time period – Sampling period of the

signal block output.

ssSetOutputPortWidth

(S,0,DYNAMICALLY_SIZED);

It defines one dynamically sized output port, that’s

why TCP input is in the special format which is easy

modifiable.

5.2 mdlInitializeSampleTimes
The Simulink engine calls
mdlInitializeSampleTimes to set the sample times of

the S-function. A server block is executed in

specified period (the third input parameter) and is
obtained from the GUI (Figure 4).

ssSetSampleTime(S,0,
mxGetScalar(ssGetSFcnParam(S, 1)));

5.3 mdlStart
Simulink invokes this optional method at the

beginning of a simulation. It should initialize and

connect the windows socket. Input parameter Port is
used, TCP communication is used here.

WSAStartup(MAKEWORD(2,2), &wsaData);

getaddrinfo(NULL, DEFAULT_PORT, &hints,
&result);

ListenSocket=socket(result->ai_family, result-

>ai_socktype, result->ai_protocol);

Recent Researches in Computer Science

ISBN: 978-1-61804-019-0 74

bind(ListenSocket, result->ai_addr, (int)result-

>ai_addrlen);

5.4 mdlOutputs
The engine calls mdlOutputs at each time step to

calculate the block outputs. The server
implementation of mdlOutputs takes the socket

input signal and writes the data to the Simulink

output signal. This example considers just only one

listening socket and size of the signal is one. Server
works in blocking mode, it means that Server block

wait for the data and program execution is blocked.

Next part of the program should be executed just
only once in the beginning.

listen(ListenSocket, SOMAXCONN);
ClientSocket = accept(ListenSocket, NULL, NULL);

// No longer need listening server socket

closesocket(ListenSocket);

Following code wait for the data from the socket.

recv(ClientSocket, recvbuf, recvbuflen, 0);

output = strtod(recvbuf,NULL);
real_T *y = ssGetOutputPortRealSignal(S,0);

y[0] = output;

5.5 mdlTerminate
The engine calls mdlTerminate to provide the

S function with an opportunity to perform tasks at
the end of the simulation. This is a mandatory

S function routine. The server S-function terminate

created socket.

shutdown(ClientSocket, SD_SEND);

closesocket(ClientSocket);

WSACleanup();

6 Conclusions
The TCP/IP client and server blocks for

MATLAB/Simulink have been developed. The
client block enables Simulink models to

communicate with remote applications and devices

over TCP/IP network. The server block enables
Simulink models to accept network communication

from remote applications and devices over TCP/IP

network. The Communications capabilities
significantly extend the functionality of

MATLAB/Simulink. This paper describes these

blocks and simplified instructions for building these

blocks. Created final source code is open source.
The code and behavior of the client and server are

more complicated and offer many possibilities to

modify end extend blocks in the future (e.g.

implement any communication protocol).

Acknowledgments

This work was supported by the Ministry of
Education of the Czech Republic under grant No.

MSM 7088352101.

References:

[1] The Mathworks Inc., Writing S-Functions. The

Mathworks Inc., Natick, USA, 2008.
[2] The Mathworks Inc., MATLAB C and Fortran

API reference. The Mathworks Inc., Natick,

USA, 2008.
[3] The Mathworks Inc., Instrument Control

Toolbox 2.7. The Mathworks Inc., Natick,

USA, 2008.
[4] Microsoft, Windows Sockets 2. Available from:

 http://msdn.microsoft.com/en-us/library/ms74

0673(VS.85).aspx. Accessed: 2009-03-15.

Recent Researches in Computer Science

ISBN: 978-1-61804-019-0 75

