On-line improved frequency analysis and its dependence on controller settings

IVO VESELY
DUSAN ZAMECNÍK
Department of Control and Instrumentation
Brno University of Technology
Kolejni 2906/4, 612 00, Brno
Czech Republic
xvesel43@stud.feec.vutbr.cz, xzamec11@stud.feec.vutbr.cz

Abstract: This paper describes method of synchronous motor parameter identification. This is improved frequency analysis (IFA). This method is mainly used for off-line identification parameter and is very resistant to noise. Because it is useful for this identification we use this method for on-line identification parameter. But this method has several disadvantages. One of them is dependence on controller settings. The following article describes on-line method and its changes.

Key-Words: Permanent magnet synchronous motor, stator resistance, parameters identification

1 Introduction
Synchronous motors are widely used in many industrial applications and in home electrical appliances, mainly due to its high efficiency. During the development of motors, the efficient control evolved and higher knowledge of controlled engine parameters was demanded. If parameters are accurate, we can achieve more efficient control with higher performance. There is however, the question how to identify these key parameters. These parameters can be determined analytically or by analysis of the magnetic field during the machine design. We have got two kinds of these methods of identification. These kinds are off-line methods [1][2] and on-line methods [3][4]. The off-line methods are used for initial setting of controller parameters and during the identification the motor is at rest. On the other hand, the on-line methods identify parameters when the motor is in running mode. Then on-line methods are used for setting of controllers or estimation of other variables. The following text describes improved frequency analysis method (IFA)[6], which is mainly used for off-line identification, but in this article it is also used for on-line identification and the dependence of method accuracy at the time if identification and controller settings.

2 Improved frequency analysis method (IFA)
The method uses knowledge of synchronous motor schema in d-q coordinates [5] (Fig. 1.) and it is based on mutual correlation signals. If we want to identify stator resistance \(R_s \) and inductance \(L_d \) or inductance \(L_q \) we have to connect just signals which will not move with rotor.

As we can see from equivalent schema of synchronous motor, it can be divided into two parts. One associated with the d-coordinate and one associated with q-coordinate. In our case, we aim that the q-part does not affect the identification when we identify d-parameters and vice versa. And we want the permanent magnet flux \(\Psi_f \) not to affect the identification, too. We achieve these conditions so that the identification signal is always connected to only one part. As d-part and q-part are nearly identical, the identification of stator resistance \(R_s \) is similar (Fig.1). If conditions is set that value of \(i_d \) is zero and voltage \(U_q \) is identification signal, mutual bond between d-parts and q-part disappears and the first order system is created \(F(j\omega) = \frac{L_s}{R_s(j\omega)^2 + 1} \). We know that the input signal \(U_q \) is \(u(t) = A \sin(\omega t) \) (2.1)

The following signal is the output, after stabilization of the transitional process \(y(t) = B \sin(\omega t + \phi) \) (2.2)

Where B is amplitude of output signal \(B = |A|G(j\omega)| \) (2.3) \(\phi = \arg(G(j\omega)) \) (2.4)
multiplied by \(\omega \) over one or more periods (Fig. 2).

One of them is obtained by the output signal for the signal, which are needed for calculation. During the identification we need to get two values over one or more periods this time (Fig. 2).

The result is integrated over one period or more way. Signal the second value is obtained almost in the same way. Signal \(y(t) \) multiplied by \(\cos(\varphi) \) and also the result is integrated over one period or more periods this time (Fig. 2).

If we use equations (2.3),(2.4) we can write

\[
y_s(T) = \frac{AT}{2} \Re[G(j\omega)] \tag{2.10}
\]

\[
y_c(T) = \frac{AT}{2} \Im[G(j\omega)] \tag{2.11}
\]

Where \(\Re[G(j\omega)] \) and \(\Im[G(j\omega)] \) are real and the imaginary part of the transfer function of our first order system.

It is appropriate to connect harmonic signal to the engine with such a frequency which gives approximately the same amplitude of \(y_s \) and \(y_c \) to achieve good accuracy. It can be done by iterative selection of \(\omega \), which will ensure the same level of amplitude. If we connect such harmonic signal to the engine, that values \(y_s \) and \(y_c \) are at least the same order, then method will have got better accuracy.

2.1 Identification of \(R_s \)

We need transfer function of our first order system for identification. Transfer function for identification of \(R_s \) is \(F(p) = \frac{1}{R_s^{p+1}} \). First we need to get real and imaginary parts of transfer function.

\[
F(j\omega) = \frac{1}{R_s} \frac{1}{1+\omega^2 \left(\frac{L_s}{R_s} \right)^2} \tag{2.12}
\]

\[
\Re[G(j\omega)] = \frac{1}{R_s} \frac{1}{1+\omega^2 \left(\frac{L_s}{R_s} \right)^2} \tag{2.13}
\]

\[
\Im[G(j\omega)] = \frac{-\omega L_s}{R_s^2} \frac{1}{1+\omega^2 \left(\frac{L_s}{R_s} \right)^2} \tag{2.14}
\]

Then the real and imaginary parts are substituted into equations (2.10) and (2.11).

\[
y_s = \frac{AT}{2} \frac{1}{1+\omega^2 \left(\frac{L_s}{R_s} \right)^2} \tag{2.15}
\]

\[
y_c = \frac{AT}{2} \frac{-\omega L_s}{1+\omega^2 \left(\frac{L_s}{R_s} \right)^2} \tag{2.16}
\]

Now we know all variables and we can calculate stator resistance \(R_s \) from equation (2.15),(2.16).

\[
R_s = \frac{AY_s}{2(y_s+y_c^2)} \tag{2.17}
\]

3 Identification during the control of motor

The on-line methods are very important for control of motor with the changing parameters. The motor parameters can vary in tens of percent and then control doesn’t work correctly. The parameters have to be identified for correct controller setting or the estimation of other variables. These parameters are mainly stator resistance, direct inductance and quadrature inductance.

In the identification, we connect harmonic signal to input (voltage) and measure output signal...
But the on-line method differs from the off-line method by control. In the on-line method the harmonic signal is added to control signal. This method is the best for use when the direct current is controlled to origin. Then the cross coupling contains only permanent magnet flux Ψ_f multiplied by the speed of rotor and therefore error of identification is smaller.

The simulation of on-line identification VFA was realized in the Matlab Simulink. There was the field oriented control with decoupling used for control of motor. And direct current I_d is controlled to origin. VFA generates harmonic signal, which is added to control signal (Fig.3) and its frequency is $f = 400Hz$ and amplitude is $A = 1V$. And identification was done in q-part of motor. Therefore, the identify harmonic signal was added to quadrature voltage U_q. The input signal of on-line VFA (VFA input) is current I_q. Because VFA method uses correlation, the input signal does not have to be filtered and the stator resistance R_s is calculated by the speed of rotor and therefore error of identification is smaller.

![Fig. 3: Control of synchronous motor with identification](image)

The biggest problem of the on-line VFA identification is altered harmonic signal in the feedback of control. Its filtration off is very complicated because the filters don’t filtrate off whole harmonic signal or it has got long delays. In our case the harmonic signal is not filtrated off. It is only subtracted from ideal sin wave of identification and the difference is added to signal from controller (Fig.4). This operation ensures that the harmonic signal in the circuit has got the ideal amplitude and frequency (Fig.5).

4 The dependence of method accuracy on controller settings

This method is designed to identify of stator resistance at steady speed. In this case the current, which is used for control of permanent magnet synchronous motor, is also stable and method works perfectly

But in some case, we need identify the parameters when the speed is changed. The value of identified parameter has less error when the speed is increased or decreased and the change of speed value is not too fast(Fig. 6).

![Fig. 6: Estimated value R_s when the change of speed value is not too fast](image)

But the value of identified parameter has larger error when the change of speed value is fast or the trend of speed is changed. The errors are dependent on the controller settings. PI controllers are used for control of speed and current. These settings are time constant of PI controller and gain of PI controller. The value of identified parameter has largest error when these both setting value are set incorrectly (Fig. 7). Then this method is useless.

![Fig. 7: Estimated value R_s when both setting value are set incorrectly](image)

When the only one parameter is set incorrectly, the method has greater accuracy but it is still useless for
the accurate identification of parameters (Fig.8).

Fig. 8: Estimated value R_s when the gain is set incorrectly

But the method hasn’t good accuracy of the identification although the controller has the correct settings when the trend of speed is changed (Fig.9).

Fig. 9: Estimated value R_s with the correct settings of controller when the trend of speed is changed

5 Conclusion

The article describes improved frequency analysis (VFA). From previous tests we know that this method is very effective for identification of stator resistance. Its advantage is an immunity to noise [7]. But this method was used mainly for off-line identification. In previous text is described the application of this method in on-line identification. The calculation of stator resistance is the same as with off-line method but harmonic signal of identification is added in different way. In the feedback of control is altered harmonic signal which must be modified to the ideal identification signal. The amended feedback signal is filtered. It is modified by math operations and the result is added back to the control signal. The method identifies the stator resistance without serious problems at steady speed, because the ideal harmonic signal is still in the circle. But when the speed is changed the method is not very suitable for identification. The value of identified parameter has less error when the speed is increased or decreased and the change of speed value is not too fast. And we can use it for verification measurements. But it is useless for the identification when the change of speed value is fast or the trend of speed is changed.

Acknowledgement

The research has been supported by Czech Science Foundation under the project 102/09/H081 “SYNERGY - Mobile Sensoric Systems and Network”,”Supporting Research of Modern Methods and Approaches in Automation” from the Internal Grant Agency of Brno University of Technology (grant No. FEKT-S-11-6). and European Regional Development Fund under project No. CZ.1.05/2.1.00/01.0014.

References:

