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Abstract: - In this paper the complex dynamics of Chua’s canonical circuit with a memristor instead of a 
nonlinear resistor, was studied. The proposed memristor is a flux controlled memristor, where the relation 
between flux and charge is a smooth continuous cubic function. A very important phenomenon concerning 
Chaos theory, such us, the great sensitivity of the circuit on initial conditions, was studied thoroughly by using 
various techniques via computer simulations.   
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1   Introduction 
In the last decade the research activities in the field 
of systems with chaotic behavior have triggered a lot 
of investigation on possible military applications of 
such systems. Especially, the design and 
implementation of chaotic circuits became a very 
interesting subject due to their applications in secure 
communications [1], cryptography [2], random 
number generators [3-4], radars [5] and robots [6]. 
Also, the recent confirmation of the existence of the 
memristor, which is the fourth fundamental 
component in electronic circuit theory, established a 
new approach in nonlinear circuits design. 
     In 1971 Chua claimed that a fourth element 
should have been added to the list of the three 
fundamental elements in electronic circuit theory: 
resistor (R), capacitor (C), and inductor (L) [7]. This 
element was named memristor (short for memory-
resistor). Even though such an element would have 
useful potential applications, nobody had presented 
a physical device of this element. Recently, 
researchers at Hewlett-Packard Laboratories 

published a paper announcing the invention of the 
memristor [8]. 
     In that work, Strukov et al. presented a physical 
device to illustrate their invention. It was a new 
nanometer-size solid-state two-terminal device, 
which “remembers” its state, after its power is 
turned off, that explains several phenomena in 
nanoscale systems, such as in thermistor [9] and 
spintronic devices [10]. Using memristors, the 
researchers at the HP Laboratories succeeded to 
create a simple data storage device with a great 
storage density. Also, the memristor could lead to 
the next generation of computers and to the 
development of cellular neural networks [11]. 
     In more details, Chua noted that there must be six 
mathematical relations connecting pairs of the four 
fundamental circuit variables, current (i), voltage 
(v), charge (q) and magnetic flux (φ), but a link 
between charge and flux was missing. As it is 
known from the electronic circuit theory, the three 
fundamental elements, resistor (R), capacitor (C) 
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and inductor (L), connect pairs of the four circuit 
variables, in such a way, that: 
 

dυ
R =

di
, 

dq
C =

dυ
, 

dφ
L =

di
        (1) 

 
So, Chua came to the conclusion that there should 
be a fourth fundamental element, the memristor, 
which satisfies Eq. (2) between charge and flux. 
M(q) is called memristance and associates voltage 
(υM) and current (iM) of the memristor with the Eq.(3). 

dφ(q)
M(q) =

dq
   (2) 

 

Μ Mυ = Μ(q) i⋅    (3) 

 
     In the case of a linear element, M is a constant, 
and the memristor is identical to resistor. However, 
in the case of M being itself a function of q, 
produced by a nonlinear circuit element, then no 
combination of the fundamental circuit elements 
reproduces the same results as the memristor. Also, 
in the relation 
 

Μ Mi = W(φ) υ⋅    (4) 

 
W(φ), is called memductance and is determined by 
Eq. (5). 
 

dq(φ)
W(φ) =

dφ
   (5) 

 
     In Ref. [12] a memristor-based Chua’s canonical 
circuit has been studied. Various phenomena, which 
are related to Chaos theory, such as the sensitivity 
on initial conditions, the route to chaos through the 
mechanism of period doubling, the phenomenon of 
coexisting attractors and the antimonotonicity, were 
observed.  
     In this work, we have focused our attention to the 
great sensitivity on initial conditions of the above 
mentioned circuit. This phenomenon is probably the 
most important in nonlinear systems and especially 
in memristors, which are nonlinear systems with 
memory. The memory in the case of such systems 
has the meaning of the initial conditions. So, in this 
work, the effect of initial conditions in the circuit’s 
behavior was studied thoroughly, via computer 
simulations. The proposed memristor has a cubic 
nonlinear relation between flux (φ) and charge (q). 
In the next sections, the proposed nonlinear circuit is 
described followed by the simulation analysis. In 
this procedure we have used various techniques, 

based on bifurcation diagrams, for observing the 
great sensitivity of the system on initial conditions. 

Conclusions remarks are included in the last section. 
 
 
2   The Proposed Circuit 
In 2008, Itoh and Chua proposed several nonlinear 
oscillators based on Chua’s circuit, in which the 
Chua diode was replaced by monotone increasing 
piecewise-linear memristors [13].  Muthuswamy and  
Kokate proposed other memristor based chaotic 
circuits [14]. In 2010, Muthuswamy and Chua 
proposed an autonomous circuit that uses only three 
circuit elements in series: a linear passive inductor, a 
linear passive capacitor and a memristor [15]. 
Furthermore, in Refs. [16-19] cubic memristors have 
replaced the nonlinear elements in well known 
family of Chua’s circuits. 
     In this work, our study was based on Chua’s 
canonical circuit [20-23]. This circuit is a nonlinear 
autonomous 3rd-order electric circuit, where Gn is a 
linear negative conductance, while it’s nonlinear 
resistor has been replaced by a memristor (Fig. 1). 
The proposed memristor M is a flux-controlled 
memristor described by the function W(φ(t)), where 
q(φ) in Eq. (6) is a smooth continuous cubic 
function of the form: 

 

( ) 3q φ = α φ + b φ− ⋅ ⋅                 (6) 

 
with a, b > 0. As a result, in this case the 
memductance W(φ) is provided by the following 
expression: 
 

2dq(φ)
W = = α + 3 b φ

dφ
− ⋅ ⋅                 (7) 

 
By applying Kirchhoff’s circuit laws to the 
memristor-based Chua’s canonical circuit, we obtain 
the following state equations (8), 
 

( )

( )

( )

1

1
L 1

1

2
L N 2

2

L
1 2 L

dφ
= υ

dt

dυ 1
= i W(φ)υ

dt C

dυ 1
= i + G υ

dt C

di 1
= υ + υ i R

dt L

−

−

− −


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 (8) 
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where, υ1 and υ2 represent the voltages across the 
capacitors C1 and C2, while iL is the current through 
the inductor L. In the present paper we have chosen 
the following values for the circuit parameters:        
R = 300 Ω, L = 100 mH, Gn = −0.40 mS, while C1 
and C2 are the control parameters. Also, α and b 
have the following values: α = 0.5 · 10−4 C/Wb and  
b = 4 · 104 C/Wb3. In Fig. 2, the φ − q characteristic 
curve of Eq. (6) for the chosen set of parameters α 
and b is plotted. 
 

 
 
Fig. 1. Memristor-based Chua canonical circuit. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. The flux−charge smooth continuous cubic 
function of the memristor. 
 
 

3   The Effect of Initial Conditions in 

Circuit’s Dynamic 
In this section, the study of the dynamic behavior of 
the system’s state equations (8) was investigated 
numerically by employing a fourth order 
Runge−Kutta algorithm.  
     It is known, that systems which exhibit chaotic 
behavior are very sensitive to the changes of the 
initial conditions. Different initial conditions will 
probably create totally different dynamic behavior. 
The main tool of dynamic’s investigation, in this 
work, are the bifurcation diagrams of voltage (υ1) 
versus capacitance (C2), which were plotted by 
giving constant values to capacitance C1.  

     The study of system’s sensitivity on initial 
conditions was based on the use of three 
investigation approaches following different 
production methods of the bifurcation diagrams. In 
the next paragraphs the above mentioned approaches 
with the corresponding remarks are presented. 
 
3.1   First Approach 
In the first approach, the bifurcation diagrams were 
produced by decreasing the value of the capacitor C2 
from C2 = 47 nF with step ∆C2 = 0.01nF, which is 
shown by the left arrow in each bifurcation diagram, 
while the value of C1 remained the same (C1=28 nF). 
Also, the system had different initial conditions in 
each iteration, in such a way that the last set of 
initial conditions in previous iteration became the 
first set in the next iteration. Furthermore, the initial 
value of the parameter (φ) changed for each 
diagram, while the other initial conditions remained 
the same: (υ1)0 = 0.005 V,    (υ2)0 = 0.015 V and (iL)0 
= 0.001 A.  

 
 

              (a) 
 
 
 
 
 
 
 
 
 

 

 
    (b) 
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(continued) 
 

 

                 (d) 
 
 
 
 
 
 
 
 
 

 
                  
                 (e) 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

                 (f) 
 

 
 
Fig. 3. Bifurcation diagrams of υ1 versus C2, for      
C1 = 28 nF, with initial conditions: (υ1)0 = 0.005 V, 
(υ2)0 = 0.015 V, (iL)0 = 0.001 A and (a) (φ)0 = 0 Wb, 
(b) (φ)0 = 0.00015 Wb, (c) (φ)0 = 0.00018 Wb,      
(d) (φ)0 = 0.00010 Wb, (e) (φ)0 = 0.00005 Wb and 
(f) (φ)0 = 0.00012 Wb. 

 
     The comparative study of the six bifurcation 
diagrams of Fig. 3 shows the qualitative change of 
the dynamic behavior of the circuit with memristor, 
as C2 takes different discrete values. As it is shown 
in Fig. 3, a slight change of the initial value of a 
variable, (φ), can cause a dramatically different 
bifurcation diagram. For our circuit, this is the first 
proof of its great sensitivity on initial conditions. 

 
3.2   Second Approach 
According to this approach, a comparison between 
two different bifurcation diagrams was made. The 
first bifurcation diagram (Fig. 4a) of υ1 versus C2, 
for C1 = 28.5 nF, with initial conditions, (υ1)0 = 
0.83987 V, (υ2)0 = 0.95493 V, (iL)0 = 0.00139 A and             
(φ)0 = 0.00013 Wb, was produced by increasing the 
value of the capacitor C2 from C2 = 29 nF to                 
C2 = 47 nF with step ∆C2 = 0.01 nF.  
     The second bifurcation diagram of υ1 versus C2 
(Fig. 4b) is the reverse of the first one, with the same 
value of C1 (C1 = 28.5 nF). This means that this 
diagram was produced by decreasing the value of 
the capacitor C2 from C2 = 47 nF to C2 = 29 nF, with 
the same step ∆C2 = 0.01. In this case, the last set of 
conditions of the first diagram was used as initial 
conditions, ((υ1)0 = 0.66708 V, (υ2)0 = 0.75844 V, 
(iL)0 = 0.00172 A and  (φ)0 = 0.00014 Wb).  
 

      
 

                  

 

 

 

 

 

 

                  (a) 

 

 

 

 

 

 

 

 

 

 

 

 
                  (b) 

 

 
 

Fig. 4. Bifurcation diagrams of υ1 versus C2, for      
C1 = 28.5 nF, which in case (a) the diagram was 
produced by increasing the value of the capacitor C2 
while in (b) the diagram was produced by 
decreasing the value of the capacitor C2. 

 

     This method of study of the dynamic behavior is 
very useful, especially in real systems in which a 
variable resistor or capacitor may play the role of the  
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control parameter, as happens in this case. The 
bifurcation diagrams of Fig. 4 reveal in a most clear 
way the great sensitivity of the system on initial 
conditions. Each one of the two bifurcation 
diagrams is completely different from the other one.    
     As we can observe, in these two bifurcation 
diagrams chaotic regions coexist with windows of 
periodic behavior (i.e. for C2 = 42 nF), while in 
other regions different periodic limit cycles are 
shown (i.e. for C2 = 40 nF, where a period−6 limit 
cycle of the first diagram coexists with a period−1 
limit cycle of the second diagram).    
 

 

3.3   Third Approach 
Finally, in this approach two seemingly same 
bifurcation diagrams were compared again. These 
two bifurcation diagrams (Fig. 5) of υ1 versus C2 for 
C1 = 29 nF were produced by decreasing the value 
of the capacitor C2 from C2 = 47 nF to C2 = 27 nF 
with step ∆C2 = 0.01 nF. Also, the initial conditions 
were: (υ1)0 = 0.005 V, (υ2)0 = 0.015 V,                   
(iL)0 = 0.001 A and (φ)0 = 0.0001 Wb. The only, but 
very important difference between these two 
diagrams was the nonidentical set of initial 
conditions in each iteration. 
 

    
 

   

 

 

 

 

 

 

  (a) 

 

 

 

 

               

                

 

 

 

 

 
 

               (b) 

 
 

Fig. 5. Bifurcation diagrams of υ1 versus C2, for      
C1 = 29 nF, with (a) different set of initial conditions 
and (b) with the same set of initial conditions in 
each iteration. 

     In the first diagram, the system had different 
initial conditions in each iteration, in such a way that 
the last set of initial conditions in previous iteration 
became the first set in next iteration, as it has been 
mentioned in the previous approaches. However, the 
second diagram is produced with the same set of 
initial conditions in each iteration.  
     The two bifurcation diagrams of Fig. 5 have 
almost the same form with a slight difference 
especially in the regions of periodic behavior. This 
difference is more obvious in the regions inside the 
dotted frames of Fig. 5. In each one of these three 
regions, different periodic limit cycles coexist with 
each other. Especially, the triple primary bubble in 
the middle dotted frame of Fig. 5(a) was converted 
to a more complex structure, as it is clearly shown in 
Fig. 6.   

 
Fig. 6. The enlargement of region in the second 
dotted frame of the bifurcation diagram of Fig. 5(b). 
 

 

4   Conclusion 
In this paper, the great sensitivity on initial 
conditions of a memristor based Chua’s canonical 
circuit has been studied. The nonlinear resistor of 
the initial Chua’s circuit, [20], has been replaced by 
a memristor, which had a continuous cubic function 
between flux (φ) and charge (q). Using the 
bifurcation diagram as the basic tool of our study, 
we observed the qualitative changes of the dynamic 
behavior of the circuit using different sets of initial 
conditions. For a more thoroughly examination of 
the influence of initial conditions to the system’s 
behavior we apposed three different approaches, in 
which the bifurcation diagrams were produced with 
different techniques.  
     Generally, this work is the first attempt to 
examine the  phenomenon  of  sensitivity on initial 
conditions  in  a  case  of  a  nonlinear  circuit  which 
contains a memristor. As a result we have to 
mention, that the existence of the memristor 
augments this phenomenon, as we can observe, 
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especially in the first approach. Furthermore, this 
phenomenon is very important, due to the fact that 
initial conditions of a system with memristor play 
the role of the memory, for which such systems are 
characterized. Finally, the next step in the study of 
the influence of initial conditions to the dynamic 
behavior, would be the use of various proposed 
memristors in other well known nonlinear circuits. 
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