
 

 

  
Abstract—The paper shows advantages of the computer 

technology for the simulation of the technological system’s 
behaviour and control. The technological process here is 
represented by the Continuous Stirred Tank Reactor (CSTR) 
as a typical member of a nonlinear lumped-parameters system 
widely used in the industry. The computer simulation has great 
importance nowadays with the decreasing value of the 
computer components together with the growing computer 
speed. The adaptive control used here fulfils all basic control 
requirements and it can be used for the systems with nonlinear 
behaviour. The benefit of this paper can be found in the 
simulation program made in mathematical software MATLAB 
with the use of Graphical User Interface (GUI) that provides 
user possibilities to examine simulations without changing of 
the program code. 
 

Keywords—Matlab, modeling, simulation, adaptive control, 
recursive identification.  

I. INTRODUCTION 

HE most of processes in the real world, not only in the 
industry has nonlinear behaviour. On the other hand, 

chemical reactors belong to the most often equipments in the 
chemical and biochemical industry and that is why this paper 
is focused on one particular member of this family – the 
Continuous Stirred Tank Reactor (CSTR) with exothermic 
reaction inside.  
Specific design of the controller is usually precede by few very 
important steps. Not every property of the controlled system is 
known before we start and that is why we perform simulation 
experiments on the system. There are two main types of the 
investigating of the system’s behaviour – (1) experiment on the 
real model and (2) computer simulation. Computer simulation 
is very often used at present as it has many advantages over an 
experiment on a real system, which is not feasible and can be 
dangerous, or time and money demanding. 
Simulation and modelling possibilities rise with the increasing 
impact of the digital technology and especially with the 

 
Manuscript received May 12, 2011.  
J. Vojtesek is with Department of Process Controll, Faculty of Applied 

Informatics, Tomas Bata University in Zlin, Czech Republic (phone: 
+420576035199; fax: +420576032716; e-mail: vojtesek@ fai.utb.cz).  

P. Dostal is with Department of Process Controll, Faculty of Applied 
Informatics, Tomas Bata University in Zlin, Czech Republic (e-mail: 
dostalp@ fai.utb.cz). 

computer technology which grows exponentially every 
moment.  
The mathematical model of this particular CSTR is described 
by the set of two nonlinear Ordinary Differential Equations 
(ODEs) which are constructed with the use of material and 
heat balances inside. Examples for deriving such mathematical 
models can be found in [1]. The steady-state analysis 
investigates behaviour of the system in the steady-state which 
from the mathematical point of view means numerical solving 
of the set of nonlinear algebraic methods. The simple iteration 
method [2] was used in this case because the system fulfills the 
convergence condition. The next step is the dynamic analysis 
which practically means numerical solving of the nonlinear set 
of ODEs. A lot of numerical solution methods have been 
developed, especially for the ODE, such as Euler’s method or 
Taylor’s method [3]. Runge-Kutta’s methods are very popular 
because of their simplicity and easy programmability [4].  
The basic idea of adaptive control is that parameters or the 
structure of the controller are adapted to parameters of the 
controlled plant according to the selected criterion [5]. The 
adaptive approach in this work is based on choosing an 
external linear model (ELM) of the original nonlinear system 
whose parameters are recursively identified during the control. 
Parameters of the resulted continuous controller are 
recomputed in every step from the estimated parameters of the 
ELM.  
The polynomial method introduced by Kucera [6] used for 
designing of the controller here together with the pole-
placement method ensures basic control requirements such as 
stability, reference signal tracking and disturbance attenuation. 
The basic control system configurations with one degree-of-
freedom (1DOF) and two degrees-of-freedom have been used. 
The proposed controller is hybrid because polynomial 
synthesis is made for continuous-time but recursive 
identification runs on the δ-model, which belongs to the class 
of discrete-time models. 
The MATLAB (MATrix LABoratory) is mathematical 
software often used for computation and simulation [7]. 
Although this software has it own programming language, it 
also provides the tool for creating window-like programs 
which can be used for testing and simulation without changing 
of the program and knowledge about this programming 
language. This tool called GUIDE was used here for creating 
of the simulation program as a practical output of this 
contribution. 
This program is available for free. If you are interested, please 
contact author on his email address – vojtesek@fai.utb.cz. 
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II. MODEL OF THE PLANT 

The proposed control strategy was tested on the mathematical 
model of Continuous Stirred Tank Reactor (CSTR). This 
model has simple exothermic reaction inside the tank which is 
cooled via cooling coil – see Fig. 1. 
Mathematically speaking, this plant is represented by the 
mathematical model which describes all quantities is of course 
very complex and we need to introduce some simplifications. 
First, we expect that reactant is perfectly mixed. Then, we also 
assume that volume, heat capacities and densities do not 
change rapidly during the control.  

 

Fig. 1 The schematic representation of CSTR 

These assumptions results in the mathematical model 
represented by the set of two Ordinary Differential Equations 
(ODE) [8] which are derived from the material and heat 
balances of the reactant and cooling, i. e. 
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where a1-4 are constants computed as 

1 2 3 4; ; ;
c pc a

p p c pc

c hq H
a a a a

V c c V c

ρ
ρ ρ ρ

⋅ −−∆= = = =
⋅ ⋅ ⋅ ⋅

 (2)  

The fixed values of the system are shown in Table 1. 
TABLE 1.  

FIXED PARAMETERS OF THE REACTOR 

Quantity Symbol and value 
Reactor’s volume 
Reaction rate constant 
Activation energy to R 
Reactant’s feed temperature 
Inlet coolant temperature 
Reaction heat 
Specific heat of the reactant 
Specific heat of the cooling 
Density of the reactant 
Density of the cooling 
Feed concentration 
Heat transfer coefficient 

V = 100 l 
k0 = 7.2·1010 min-1 
E/R = 1·104 K 
T0 = 350 K 
Tc0 = 350 K 
∆H = -2·105 cal.mol-1 
cp = 1 cal.g-1.K-1 
cpc = 1 cal.g-1.K-1 
ρ = 1·103 g.l-1 
ρc = 1·103 g.l-1 
cA0 = 1 mol.l-1 
ha = 7·105 cal.min-1.K-1 

The nonlinearity of the model is hidden mainly in the 
computation of the reaction rate, k1, which is nonlinear 
function of the temperature, T, and it is computed from 
Arrhenius law: 

1 0 e
E

R Tk k
−

⋅= ⋅  (3) 

III.  STEADY-STATE AND DYNAMIC ANALYSES 

The pre-control simulation often includes steady state and 
dynamic analyses which help us with the understanding, how 
system works in different states and behaves after various 
changes on the input. 

A. Steady-state Analysis 

The steady-state analysis shows behaviour of the system in the 
steady-state, i.e. in t � ∞ and results in optimal working point 
in the sense of maximal effectiveness and concentration yield. 
Mathematical meaning of the steady-state is that derivatives 
with respect to time variable are equal to zero, d(·)/dt = 0.  
The previous studies [9] have shown interesting steady-state 
feature of this reactor. It is clear, that the reactant and cooling 
heat must be equal in the steady-state, i.e. Qr = Qc, which 
means that the equation (1) in steady-state is rewritten to:  
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and results in relations for these heats Qr and Qc: 
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If we compute Qr and Qc for various values of the temperature 
T = <300, 500> K for working point q = 100 l.min-1 and  
qc = 80 l.min-1, we obtain three steady-states – see Fig. 2. 
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Fig. 2 Heat balance inside the reactor 

As you can clearly see, this system has two stable steady-states 
(S1 and S2) and one unstable steady state (N1). The steady-state 
values of the state variables in these points are: 
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It is clear, that the second operating point S2 has better 
efficiency (95.6 % reacts) for the same input settings than on 
the point S1 (3.8 % reacts).  
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So the steady-state model is finally described by the set of 
nonlinear functions 
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which are easily solved numerically by the simple iteration 
method. 

B. Dynamic Analysis  

This analysis means that we observe course of the state 
variables in time after the step change of some input variable. 
The step changes of volumetric flow rates q and qc are input 
variables in our case and the steady-state values in Equation 
(6) are initial conditions for the set of ODE (1). The Runge-
Kutta’s fourth order method was used for numerical solving of 
the set of ODE. 

IV. ADAPTIVE CONTROL 

There could be used several so called “modern” techniques to 
control of this process such as robust control, predictive 
control, fuzzy control etc. In our case, the adaptive control was 
used mainly because of its strong theoretical background and 
usability for such kind of processes. 
The Adaptive control is based on the quality of real organisms 
which can change behavior according to environmental 
conditions. This process is usually called “adaptation”. There 
are several ways of use of the adaptation. It can be done for 
example by the modification of the controller's parameters by 
the change of the controller’s structure or by generating an 
appropriate input signal, which is called “adaptation by the 
input signal”.  
The adaptive approach in this work is based on choosing an 
external linear model (ELM) of the original nonlinear system 
whose parameters are recursively identified during the control. 
Parameters of the resulted continuous controller are 
recomputed in every step from the estimated parameters of the 
ELM. The advantage of this method is that we do not care 
about the system nonlinearity. First we do the dynamic 
analysis that shows us the dynamic behavior of the output 
variable which is then used for the choice of the ELM which 
describes the output in the most accurate way. The possible 
change of the ELM parameters is taken into account by the 
recursive identification of ELM during the control. 
 

A. External Linear Model (ELM) 

 
The ELM could be generally described by the transfer 
function: 
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The presence of the variable s in the Equation (8) indicates 
continuous-time (CT) model. The online identification of such 
processes which is necessary in this case is not very easy.  
One way, how we can overcome this problem is the use of so 
called δ–model. These special types of models formally belong 
to discrete models but it was proofed for example in [10] that 
their parameters are close to the continuous ones for very 
small sampling period. 
The δ–model introduces a new complex variable γ ([11]):  
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Where β is a parameter from the interval  
0 ≤ β ≤ 1 and Tv means a sampling period. It is clear that we 
can obtain infinite number of δ-models for various β.  A so 
called forward δ-model for β = 0 was used and γ operator is 
then  

1

v
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T
γ −=  (10) 

The continuous model (8) is then rewritten to the form 

( ) ( ) ( ) ( )a y t b u tδ δδ δ′ ′=  (11) 

where polynomials aδ(δ) and b δ(δ) are discrete polynomials 
and their coefficients are different, but for the small sampling 
period very close to those of the CT model a(s) and b(s).  
These parameters identified recursively, which means that they 
are computed by the Recursive Least Squares (RLS) method 
from differential equation 

( ) ( ) ( ) ( )1Ty k k k e kδ δ δ= ⋅ − +θ ϕθ ϕθ ϕθ ϕ  (12) 

Where φφφφδδδδ  stands for known regression (data) vector, θθθθδδδδ  
represents vector of parameters and  e(k) is a general random 
immeasurable component.  
 

B. Recursive Identification 

 
As it is written above, the well known and easily 
programmable Recursive Least-Squares (RLS) method is used 
for the on-line identification. This method is usually modified 
with some kind of forgetting; exponential or directional [12] 
mainly due to specific features of the identified system like 
nonlinearity etc.  
The basic RLS method is described by the set of equations: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

1 1

ˆ 1

1 1

1

1 11
1

1 1 1

ˆ ˆ 1

T

T

T

T

k y k k k

k k k k

k k k k

k k k k
k k

k k k k k

k k k k

P

P

P P
P P

P

L

L

ε

γ

γ

λ λ

ε

−

= − ⋅ −

 = + ⋅ − ⋅ 

= ⋅ − ⋅

− ⋅ ⋅ ⋅ −
= − − − − + ⋅ − ⋅ 

= − +

ϕ θϕ θϕ θϕ θ

ϕ ϕϕ ϕϕ ϕϕ ϕ

ϕϕϕϕ

ϕ ϕϕ ϕϕ ϕϕ ϕ
ϕ ϕϕ ϕϕ ϕϕ ϕ

θ θθ θθ θθ θ

 (13) 

Where the “forgetting” could be affected by the choice of the 
forgetting factor λ1. 
The identification methods used in the program are: 

Without forgetting, e.g. no forgetting factor is inserted. 
Constant exponential forgetting is for λ1 < 1 and  
λ2 = 1. The values of forgetting factor λ1 are from the range 
<0.95; 0.99>.  Parameter λ1 influences gradual forgetting of 
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the old values and the most weight is put on the last values. 
This relation can be described by criterion 
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This algorithm can be used for systems with changing 
parameters. 
Increasing exponential forgetting has forgetting parameters  
λ2 = 1 and λ1 is computed from  

( ) ( )1 0 1 01 1k kλ λ λ λ= − + −  (15) 

Typical values of the forgetting parameters are 

( )1 00 0.95,0.99λ λ= ∈ . The value of this forgetting factor is 

asymptotically approaching to 1, which means that the old data 
is forgotten.  
Changing exponential forgetting has again the value of 
forgetting parameter    λ2 = 1 and exponential forgetting λ1 is 
recomputed in every step as 
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1 1k K k kλ γ ε= − ⋅ ⋅  (16) 

where K is a very small value (e.g. 0.001).   
Directional forgetting. This algorithm forgets information only 
in the direction from which it comes. General description of 
this method can be formulated by the following equations: 
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where λ1 can be chosen similarly as in exponential forgetting. 
-  

C. Control System Synthesis 

The control system configuration with one degree-of-freedom 
(1DOF) was used this work – see  Fig. 3. 
 

v 

- 

e u w y 
G Q 

 

Fig. 3 1DOF control configuration 

G in Fig. 3 denotes transfer function (8) of controlled plant, w 
is the reference signal (wanted value), v is disturbance, e is 
used for control error, u is control variable and y is a 
controlled output. 
The feedback part of the controller are designed with the use 
of polynomial synthesis: 
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where parameters of the polynomials p(s) and q(s) are 
computed by the Method of uncertain coefficients which 

compares coefficients of individual s-powers from 
Diophantine equation [6]: 

( ) ( ) ( ) ( ) ( )a s s p s b s q s d s⋅ ⋅ + ⋅ =  (19) 

The resulted, so called “hybrid”, controller works in the 
continuous time but parameters of the polynomials a(s) and 
b(s) are identified recursively in the sampling period Tv.  
The feedback controller Q(s) ensures stability, load 
disturbance attenuation for both configurations and asymptotic 
tracking. 
The polynomial d(s) on the right side of (19) is an optional 
stable polynomial. Roots of this polynomial are called poles of 
the closed-loop and their position affects quality of the control.  
This polynomial could be designed for example with the use of 
Pole-placement method. The degree of the polynomial d(s) is 
in this case 

( ) ( ) ( )deg deg deg 1d s a s p sɶ= + +  (20) 

A choice of the roots needs some a priory information about 
the system’s behaviour. It is good to connect poles with the 
parameters of the system via spectral factorization. The 
polynomial d(s) then for our ELM (8) can be rewritten for 
aperiodical processes to the form 

( ) ( ) ( )deg degd n
d s n s s α −= ⋅ +  (21) 

where α > 0 is an optional coefficient reflecting closed-loop 
poles and stable polynomial n(s) is obtained from the spectral 
factorization of the polynomial a(s) 

( ) ( ) ( ) ( )* *n s n s a s a s⋅ = ⋅  (22) 

V. SIMULATION PROGRAM 

The simulation program which deals with the simulation of the 
steady-state, dynamics and of course adaptive control of the 
CSTR was made in mathematical software MATLAB 
(MATrix LABoratory), version 7.0.1 from Mathworks [7] 
using Graphical User Interface (GUI). The use of this tools 
enable programmer to make program user-friendly and close to 
the users who do not know or do not like programming. They 
can use all features of Matlab as a simulation tool by just 
changing of the most important variables and pressing buttons 
for computing. 
The program can be start by the typing the command go in the 
program’s directory. It is divided into two main windows 
mainly because of the space. The first window (Fig. 4) 
involves simulation of the steady-state and dynamics of the 
system. The user can set the working point of the reactor 
which is defined by volumetric flow rates of the reactant and 
the cooling, qr and qc, input temperatures of the reactant and 
the cooling, Tr0 and Tc0, and input concentration of the 
reactant, c0. The next part gives user choice between two 
stable states S1 or S2 which closely described in chapter III.  
The third part is dedicated to the steady-state analysis where 
two analyses could be done – the steady-state analysis for 
different volumetric flow rate of the reactant qr and different 
volumetric flow rate of the coolant qc where the starting and 
end values could be set in the edit boxes. The steady-state 
analysis for both input variables together is represented by the 
push-button “Compute 3D” and results in 3D graphs. The 
sample results of the steady-state analysis are shown in Fig. 5. 
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Fig. 4 GUI for the simulation of the steady-state and dynamics 
of CSTR 
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Fig. 5 Sample results of the steady-state analysis 

The last part is focused on the dynamic analysis which could 
be done for step changes of both input variables qr and qc. 
Both dynamic analyses can be done for more step changes 
(e.g. six step changes -60, -40, -20, 20, 40 and 60 as it can be 
seen in Fig. 4). The simulation time and the integration step in 
Runge-Kutta’s method could be set via appropriate edit boxes. 
Again, the sample results of the dynamic analysis are shown in 
Fig. 6.  
The buttons in the bottom of the window used for opening the 
next window for control (push-button “Control”), displaying 

the help to the program (push-button “Help”) and closing of 
this window and all graphs (push-button “Close”). 
The second sub-program called by the pressing of the push-
button “Control” or by the command go_control from the 
Matlab’s command window deals with the simulation of the 
adaptive control. The window is displayed in Fig. 7. 
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Fig. 6 Sample results of the dynamic analysis 

The first two parts related to the working point and the choice 
of the steady-state are the same as in previous case. The new 
part here is the choice of the external linear model and settings 
for the control where the user could set the position of the root 
α, sampling period Tv, definition of step changes of the 
reference signal w(t) which represents wanted value and time 
when they occur.  
 

 

Fig. 7 GUI for the simulation of the adaptive control of CSTR 
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The final simulation time is recomputed according to the 
number of steps and time for each step. The last part in this 
sub-window is dedicated to the choice of recursive methods 
(see Fig. 8) for identification. 
 

 

Fig. 8 The choice of the identification method 

The buttons below has the same functions as in previous case 
except the first push-button on the left which will call the 
program for simulating of the steady-state and dynamics in this 
case. Simulation results of the adaptive control can be seen in 
Fig. 9. 
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Fig. 9 Sample results of the adaptive control 

As a result of the simulation, program shows the final value 
which indicates what computation was done and in which 
MAT-file are data saved in. The name of this file differs with 
the computation – see Fig. 10. 
 

 

Fig. 10 GUI with the results of the computation 

VI.  CONCLUSION 

The main goal of this contribution is to show usability of the 
mathematical software MATLAB for creating simulation 
programs which could help users to investigate the behaviour 
of the nonlinear system represented by the CSTR. The 
resulting program has two main windows – the first provides 
the simulation of the steady-state and dynamics of the system 

for different values of input quantities. Results are displayed in 
the separate figures and the data were also saved in the MAT-
files. The second program deals with adaptive control of this 
system and user can again set different input variables and 
choose various computations. The benefit of this program can 
be found in the GUI which provides changing of the most 
important values by the edit windows instead of the change of 
the program code. The program is available also for free at the 
author email. 
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