
 
 

 

  

Abstract — The contribution is focused on a design of a control 
algorithm for a nonlinear servomotor with disturbance rejection 
using adaptive control strategy. It is obvious that for a rejection of 
the measurable disturbance is a suitable control strategy based on 
polynomial approach. The regression (output error) models are 
used in the identification part, the parameter estimates of the 
process and disturbance models were computed using the least 
squares method extended by a directional (adaptive) forgetting. 
The controller synthesis is based on polynomial theory – pole 
assignment method. The designed controller was applied to a 
laboratory servo system Amira DR300 in real-time conditions. 
 
Keywords— Disturbance rejection, Nonlinear system, Pole 
assignment, Real-time control, Self-tuning control, Servomotor.  

   

I. INTRODUCTION  
ERVOMOTOR is a typical equipment which is 
characterized by nonlinear behaviour (varying gain with 
dead zone and hysteresis). Therefore classical control 

approaches (e.g. PID with fixed parameters) does not 
produce optimal control. Laboratory servo system DR300 
can be successfully controlled by various adaptive control 
strategies including dual control [1]. Model Predictive 
Control (MPC) based on Generalized Predictive Control 
(GPC) method can also be used to control this laboratory 
equipment [2]. A comparison of the standard self-tuning LQ 
control and a predictive control was presented in [3]. 
Results of several identification methods and pole 
assignment non-adaptive control of DR300 laboratory 
model is designed in [4].  An explicit MPC for similar 
system using hybrid model was proposed by Herceg et al. 
[5]. A hybrid formulation and design of the MPC for similar 
servo system was used by Zabiri and Samyudia [6]. A 
measurable disturbance, which can influence output of the 
given laboratory equipment, was not considered in the 
above-mentioned contributions.  

One approach to adaptive control is based on recursive 
estimations of unknown system characteristics and 
controller synthesis. This kind of adaptive controller 
(adaptive control with recursive identification), is referred to 
as a self-tuning controller (STC) in the literature [7], [8], [9] 
and [10]. The self-tuning controllers use the combination of 
the recursive process identification based on a selected 
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model and the controller synthesis based on knowledge of 
parameter estimates of the controlled process. 

This approach was applied to control of the DR300 
servo system in this paper. The controller includes 
disturbance rejection of a sinusoidal disturbance signal. This 
type of disturbance can occur for example in electrical 
system where electromagnetic field of AC power lines is 
superimposed on electromagnetic field of control lines. The 
proposed algorithm is designed using polynomial theory 
developed for linear controlled systems. The adaptive 
algorithm respects nonlinear characteristics of controlled 
system. 

This paper is organized in the following way. 
Theoretical background is described in Section 2. The 
description of DR300 laboratory servo model and analysis 
of its steady state properties are introduced in Section 3. 
Section 4 contains process identification of the DR300 
laboratory model. The control algorithm is derived in 
Section 5. Real-time experimental results are presented in 
Section 6 and results are summed up in Section 7.  

II. THEORETICAL BACKROUND  
Controllers applied further in this paper were designed using 
a polynomial approach. Polynomial control theory is based 
on the apparatus and methods of a linear algebra (see e.g. 
[11], [12], [13]). The polynomials are the basic tool for a 
description of the transfer functions. They are expressed as 
the finite sequence of figures – the coefficients of a 
polynomial. Thus, the signals are expressed as infinite 
sequences of figures. The controller synthesis consists in 
solving of linear polynomial (Diophantine) equations in a 
general form [14].  
 

 
 

Fig. 1 Block diagram of a closed loop 2DOF control system 
 
The design of the controller algorithm is based on the 

general block scheme of a closed-loop with two degrees of 
freedom (2DOF) according to Fig. 1. 

The controlled process is given by the transfer function 
in the form of proper polynomial fractions 
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where A and B are coprime polynomials that fulfil the 
inequality deg degB A≤ . The controller contains the 
feedback part Gq and the feedforward part Gr, y is the 
controlled output, u is the control input, w is the reference 
signal and v is the load disturbance with transfer function 
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Then the digital controllers can be expressed in the form 

of a discrete transfer functions: 
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A polynomial approach to the design of a control system 
with the disturbance rejection is used in [15], [16], [17], 
[18]. 

The control algorithm is used for reference signal 
tracking and rejection of sinusoidal disturbance whose 
frequency must be known. Step changes of the reference 
signal are usually used in practice and the sinusoidal 
disturbance is supposed in this case. Then the step of height 
w1 can be expressed as 
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and harmonic disturbance signal can be expressed as 
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where Av is amplitude of sinusoidal signal, 0sin Tβ ω=  and 

02cos Tα ω= ; ω and T0 are angular frequency and sampling 
period respectively. 

According to the scheme presented in Fig. 1, the output 
y can be expressed as: 
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 By combining (1), (2), (3) and (6), expression for the 
control error can be derived 
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To ensure disturbance rejection, all poles of 

( )1V z− which are not stable must be included in polynomial 

( )P z . Thus P contains second order polynomial 

( )1 1 21vD z z zα− − −= − + and then 
 

( ) ( )( )1 1 1 21P z P z z zα− − − −= − +  (8) 

 
The procedure leading to determination of polynomials 

Q, R and P  in (7) and (8) can be briefly described as 
follows. The feedback part of the controller is given by a 
solution of the polynomial Diophantine equation 

  
( )1 1 1 1 1 1( ) ( ) ( ) ( ) ( )vA z D z P z B z Q z D z− − − − − −+ =  (9) 

 
 A stable polynomial on the right side along with stable 
polynomial P  ensures the control stability and load 
disturbance attenuation. An asymptotic tracking is provided 
by a feedforward part of the controller given by a solution 
of the polynomial Diophantine equation 
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where S is an auxiliary polynomial which does not affect 
controller design but which is necessary for calculation of 
(10). The degrees of individual controller polynomials must 
fulfil following equalities: 
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 The controller parameters then result from solutions of 
the polynomial equations (9) and (10) and depend upon 
coefficients of polynomial D that enables to obtain the 
acceptable stabilizing and stable controllers. 

III. DESCRIPTION OF LABORATORY MODEL DR300 
 The pole assignment algorithms were designed for a real-time 
control of the laboratory model DR300 (see Fig. 2). A block 
scheme of the DR300 system is presented in Fig. 3. The plant is 
represented by a permanently exited DC motor (M1) whose input 
signal (armature current) is provided by a current control loop. Its 
servo amplifier operates in 4 quadrant mode, so that the orientation 
of the current and correspondingly the orientation of the rotation of 
the motor is arbitrarily adjustable.  

 

 
 

Fig. 2 Laboratory model Amira DR300 
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 The sensors for the output signal (speed) are a tachogenerator 
(T) and an incremental encoder (I). The free end of the motor shaft 
is fixedly coupled (K) to the shaft of a second, identical motor 
(M2). This motor is used as a generator. Its output current is freely 
adjustable. The rotation speed of the motor M1 is driven by 
voltage u. The motor shaft rotations per minute (rpm) are measured 
by tachogenerator T. The aim of the control process is to control 
the rotation speed of the shaft ω by the control voltage u.  
 

 
 
Fig. 3 Block scheme of Amira DR300 servomotor 
 
 From the control point of view, the Amira DR300 is a non-
linear system. Its nonlinear steady state characteristics (varying 
gain, dead zone, and hysteresis) are shown in Fig. 4. The figure 
presents dependence of shaft rotations on control voltage of motor 
M1 while second motor is not controlled – its control voltage was 
zero. The steady state characteristics were measured by applying a 
sequence of increasing and decreasing steps to control signal. 
 Even in the parts of steady state characteristics where the plant 
output changes (approximately -2V to -1V and 1V to 2V) the gain 
of the system is not constant. The gain of the plant varies 
approximately from 3600 rpm/V to 6900 rpm/V. 
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Fig. 4 Steady state characteristics of Amira DR300 servomotor 

IV. PROCESS IDENTIFICATION 
 The block schema of an adaptive controller with disturbance 
rejection is shown in Fig. 5, where PE is the process parameters 
estimator, CD is block for the controller design, n is the term 
describing stochastic influences. 

ARX model in the following form was used for 
identification of the laboratory equipment DR300 
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is the regression vector, ( )n k  is the white noise and ay  is 
absolute term, which corresponds to a dead zone of the system. 
The dead zone of the DR300 plant is caused by friction which can 
be observed from Fig. 4. 
  

 
 

Fig. 5 Block diagram of an adaptive control-loop  
 
The ARX model (12) – (14) can be expressed by 

stochastic difference equation 
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The DR300 plant was modelled by a linear second order 

system with disturbance rejection. Recursive identification 
was performed and the parameter estimates (13) were 
computed using the least squares method extended by 
exponential forgetting or directional (adaptive) forgetting 
techniques [19].  

V. DESIGN OF CONTROLLER ALGORITHM  
 Design of the controller consists of two parts. First, linear 
controller for the second order discrete system is derived. 
The considered system does not include compensation of 
friction. Therefore absolute term (ya) of ARX models (15) is 
not considered in this part. Derivation of the linear 
controller is described in subsection 5.1. 

The second part of controller design introduces friction 
compensation. The compensation is carried out by additive 
constant which is added to the output of linear controller 
derived in the first part. This compensation is introduced in 
subsection 5.2. 

A. Design of the Linear Controller 
 It results from identification experiments that both motor and 
generator can be modelled by second order systems: 
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It is obvious from equations (11) that degrees of 

polynomials in the control circuit are as follows: 
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 Consequently, individual polynomials are in the 
following form: 
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Substituting polynomials (19) into Diophantine equation 

(9) leads to a system of linear equations obtained by 
uncertain coefficients method 
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Similar approach can be used for Diophantine equation 

(10) to obtain parameter r0  
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 The control law, which ensues from Fig. 1 and transfer 
functions (3), is then given as 
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B.  Compensation and Friction 
 Friction of the controlled system can be observed in 
Fig. 4. Absolute term ya of difference equations (15) 
corresponds to the friction. The value of ya is negative for 
the positive part of the steady state characteristics (u > 0, y > 
0) and it is positive for the negative part of steady state 
characteristics (u < 0, y < 0). Since the absolute term was 
not considered in the design of linear controller (section V. 
A.), the compensation of the friction is provided separately. 

 

 
  
Fig. 6 Controller for positive or negative rotation speed 
   

The friction can be compensated by additive constant u0 
which is summed with output of the controller uc 

 
( ) ( ) 0cu k u k u= +  (23) 

The value of u0 is the steady input of the ARX model 
while no disturbance v is present and the steady output is 0. 
The computation of u0 is obvious from (15) 
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The structure of the resulting controller is presented in 

Fig. 6. 

VI. EXPERIMENTAL RESULTS 
 Even though presented control design is based on relatively 
complex methods, resulting control algorithm is relatively simple. 
Whole control algorithm is represented by equations (22) and (23). 
Computation of control output consists of just a small number of 
multiplication and additions. If on-line parameters estimation is 
used then the demands to computing power are higher. A personal 
computer equipped with the MATLAB/Simulink system was used 
for laboratory testing of proposed control algorithm. 

Sinusoidal disturbance was used in real-time 
experiments described in this section. Sinusoid of angular 
frequency ω π=  (frequency 0.5 Hz) and amplitude 

2 VvA = was applied to the motor M2 of the DR300 plant 
(Fig. 3) in time range 45 s; 85 s . 

Poles of the characteristics polynomial are defined by 
( )1D z− in equation (9). A sole multiple pole of z0=0.65 was 

used in all subsequent experiments. Control signal in range 
10 V;10 Vu ∈ − is admissible for the DR300 plant. 

Sampling period of T0=0.05 s was used in the identification 
part and all subsequent control experiments. 

Initial estimates of parameters of the controlled system 
were computed off-line using data obtained by exciting the 
system by pseudorandom signal. 

A.  Control without Adaptation 
 Initial experiments were performed without incorporating 
on-line identification of the controlled system to obtain 
nominal courses for comparison with adaptive controllers. 

The first controller referenced as no_adapt was designed 
according to the theory presented in the previous chapters. 
As the absolute term ya has approximately opposite values 
for positive and negative outputs, the value of u0=0 was 
used. Resulting courses are presented in Fig. 7. 

It can be seen that the controller copes very well with the 
sinusoidal disturbance. However, a steady state error is 
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present. This behaviour is caused by a difference between 
the controlled nonlinear DR300 plant and the linear ARX 
model used to derive the controller. The main difference 
consists in presence of friction. The effect of friction is the 
same as presence of step disturbance.  

Resulting equation for computation of controller output 
has the following form 

 
( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )

0

0 1 2 3 4

1 1 1

1 1 1

1 2 3 4

1 1 1 2

1 3 4

c

c c

c c

u k r w k

q y k q y k q y k q y k q y k

p u k p p u k

p p u k pu k

α α α

α

= −

− − − − − − − − − −

− + − − − + − − − −

− − − − + −

 (26) 

 
As can be seen from Fig. 8, steady state control error 

was suppressed. However oscillations occur when changing 
the sign of reference signal (i.e. changing the direction of 
shaft rotation). 
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Fig. 7 Control without adaptation and without compensation of 
friction (no_adapt controller) 
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Fig. 8 Control without adaptation and with compensation of 
friction by step disturbance rejection (no_adapt_step) 

B. Control with Adaptation 
 Another possibility for compensation of system 

nonlinearities is incorporation of on-line identification of 
controlled system. A controller designed according to 
chapter 5 with on-line identification with forgetting was 
applied to the system. This controller is referenced as adapt 

and resulting courses are presented in Fig. 9, and courses of 
parameter estimates in Fig. 10. 

 
To reach zero steady state error, the controller algorithm 

was revised to have integral behaviour – i.e. to be able to 
suppress steady state control error. Then (8) is superseded 
by 

 
( ) ( )( )( )1 1 1 2 11 1P z P z z z zα− − − − −= − + −  (25) 

 
and degree of polynomials Q, S and D in (11) increases by one. 
Further derivation of the control law is similar to the one presented 
in section V. A. This controller is referenced as no_adapt_step and 
resulting control courses are presented in Fig. 8. 

A good reference tracking can be observed, but still 
some oscillations occur when reference signal is crossing 
zero. As can be seen in Fig. 10, changes of parameter 
estimates correspond to changes of reference signal. 
Compensation of friction has similar effect to all estimates 
while the value of ya should be affected more than other 
parameters. 
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Fig 9. Control with adaptation (adapt controller) 
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Fig. 10 Courses of parameter estimates (adapt controller) 

 The control performance can be further improved by 
using a posteriori information from measurement of the 
steady state characteristics (Fig. 4). If the direction of the 
rotation changes the value of absolute term ya changes more 
dramatically than the values of the other terms (a1, a2, b1, b2, 
c1, c2). The identification algorithm was enhanced by 
increasing the values in its covariance matrix when 
reference signal changes its sign. This results in greater 
change of ya comparing to other parameter estimates. 
Controller using this modification is referenced as 
adapt_cov and the control and parameter courses are 
presented in Fig. 11 and Fig. 12 respectively. 
 Changes of parameters are smoother when comparing Fig. 12 
and Fig. 10 because friction is compensated by changes of ya. This 
also leads to smoother courses of control and controlled signals. 
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 I can be also observed from Fig. 12 that behaviour of motors 
M1 and M2 is not the same. Although the initial estimations of 
their transfer functions were the same (i.e. ( ) ( )1 1

ˆ ˆ0 0b c=  and 

( ) ( )2 2
ˆ ˆ0 0b c= ) the final estimations are quite distant.  
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Fig. 11 Control with enhanced adaptation (adapt_cov 
controller) 
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Fig. 12 Courses of parameter estimates (adap_cov 
controller) 

 Control quality criteria obtained by individual controllers are 
summed up in Table I. 

 
TABLE I 

CRITERIA OF CONTROL QUALITY 
 ( )2e k∑  ( )e k∑  ( )2u k∑  ( )u k∑  

Controller 8 210 rpm⎡ ⎤⎣ ⎦  510 rpm⎡ ⎤⎣ ⎦  2V⎡ ⎤⎣ ⎦  [ ]V  
no_adapt  11.76 11.35 48.30 151.87 
no_adapt_step 11.22 4.49 67.94 183.74 
adapt 9.78 4.62 299.39 324.14 
adapt_cov 9.59 4.26 79.66 168.34 

VII. CONCLUSION 
 A controller algorithm based on polynomial design was 
proposed for control of the nonlinear servo system Amira 
DR300. The controller is able to cope with sinusoidal 
disturbance of known frequency. Several methods of 
reaching zero steady state control error was proposed and 
tested in real-time experiments. Obtained control courses 
were compared both graphically and using summing 
criteria. Although enhanced version on non-adaptive 
controller (no_adapt_step) was able to reach zero 
steady-state control error and reject sinusoidal disturbance 
better results were achieved using proposed adaptive control 
strategy. The best results correspond to adaptive control 
where a greater change of absolute term was allowed to 
compensate crossing of dead zone. 

In spite of statement of DR300 manufacturer that motors 
M1 and M2 are the same, differences in their transfer 
functions were discovered by adaptive controllers. This led 
to smaller control error as can be seen in Table 1. Designed 
controllers were successfully tested in real-time laboratory 
conditions. 
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