
 

 

  

Abstract— Modelling and simulations are necessary and useful 
in actuarial analysis in non-life insurance mainly in cases where we 
cannot find a sufficient number of real data. A typical example is the 
collective risk, where we know only one value for the calendar year. 
Using goodness of fit tests we can often find distributions of the 
number and of the amount of claims and Monte Carlo simulations 
enable us to simulate a sufficient number of total claims amount. 
Simulated values then we will use in determining the collective risk 
model, calculating the premium and risk measures. The article 
presents a theoretical approach of these probability models and 
simulations, together with examples of applications. 
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I. INTRODUCTION 

The insurance risk theory is the analysis of the stochastic 
features of non-life insurance business. The field of risk theory 
has grown rapidly. There are now many papers and textbooks, 
which study the foundations of risk processes along strictly 
theoretical lines. On the other hand there is a need to develop 
the theories into forms suitable for practical purposes and to 
demonstrate their application. Modern computer simulation 
techniques open up a wide field of practical applications for 
risk theory concepts, without requiring the restrictive 
assumptions and sophisticated mathematics, of many 
traditional aspect of insurance risk theory [5, xiii]. The 
analyses of insurance risks are an important part of the project 
Solvency II preparing by European Commission. 

While the risk assessment of insurance company in 
connection with its solvency is a rather complex and 
comprehensible problem, its solution starts with statistical 
modelling of number and amount of individual claims. 
Successful solution of these fundamental problems enables 
solving of curtail problems of insurance such as modelling and 
simulation of collective risk, premium and reinsurance 
premium calculation, estimation of probability of ruin etc.  

Application of Monte Carlo simulation allows finds the 
approximate probability model of the collective risk in non-life 
insurance portfolio. Simulation of the compound distribution 
function of the aggregate claim amount can be carried out, if 
the distribution functions of the claim number process and the 
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claim size are assumed given.  

II. MODELLING OF COLLECTIVE RISK 

We shall consider a short term insurance contract covering a 
risk. By a risk we mean either a single policy or a specified 
group of policies. The random variable S denotes the 
aggregate claims paid by the insurer in the year in respect of 
this risk. We are going to construct the models for the random 
variable S, so called the collective risk models as in [1], [3], [6 
or [11].] 

A first step in the construction of a collective risk model is 
to write S in terms of the number of claims arising in the year, 
denoted by the random variable N, and the amount of each 
individual claim. Let the random variable

 

iX denote the 

amount of the i-th claim. Then 
 

NXXXS +++= ...21                 (1) 

 
where NXXX ,...,, 21  are independent identically distributed 

variables, NXXXN ...,,,, 21  are mutually independent, and if  

N = 0 than S = 0 too. 
The problems we will be solving are the derivation of the 

moments and distribution of S in terms of the moments and 
distributions of N and the iX ’s. 

We will assume that the moments and the distributions of N 
and iX ’s known with certainty. In practice these would 

probably be estimated from some relevant data using methods 
of parameters’ estimation and goodness of fit tests.  

We shall denote by G(s) distribution function of S and F(x) 
the distribution function of ,iX  so that ( ) ( ) ( )sFsSPsG S=≤=  

and ( ) ( )xXPxF i ≤= . The k-th moment of iX  about zero, 

...,3,2,1=k , will be denoted as ( )k
ik XEm = . 

We will use approximate, not exact methods for valuating 
( ).sG  For the approximate methods we need to know the 

moments of S. Basic expressions, known in actuarial literature, 
for example in [6], [8], [10], [11], [12] [15], we can write as 

 
( ) ( ) 1mNESE =  

( ) ( ) ( ) ( ) 2
1

2
12 mNDmmNESD +−=                    (2) 

( ) ( )( )zMMzM XNS ln=  

 
The distribution of S is an example of a compound 

distribution. We consider the most important case when N is 
Poisson with parameter λ. We say that S is compound Poisson 
distribution with parameters λ and ( )xF . In this case results (2) 
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we can express in simple forms: 
 

( ) 1mSE λ=                      (3) 

( ) ( ) 2
2
1

2
12 mmmmSD λλλ =+−=               (4) 

( ) 33 mS λµ =                      (5) 

( )

( )[ ] ( )
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SD

S

λ

λµ
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The coefficient of skewness γ  shows that the distribution 

of S is positively skewed and for large values of λ the 
distribution of S is almost symmetric. 

We suppose that all we know or can confidently estimate 
about S are its mean and variance. Bearing in mind the Central 
Limit Theorem, this suggests assuming S is approximately 
normally distributed. An important drawback of this 
approximation may be that normal density is symmetric, i.e. 
has zero skewness, and has a right hand tail which goes to zero 
very quickly. For many types of insurance the distribution of S 
is positively skewed with a fairly heavy right hand tail and so 
normal approximation will tend to underestimate ( )xSP >  for 

large values of x. 
Suppose we know or can estimate with reasonable 

confidence the first three moments of S. One way of avoiding 
or at least reducing the problem of underestimating tail 
probabilities is to approximate the distribution of S by a 

translated gamma distribution. Let ,µ  2σ  and γ  denote the 

mean, variance and coefficient of skewness of S. We assume S 
has approximately the same distribution as the random variable 

,Yk +  where k is a constant and Y has a gamma distribution 

G(α, β). The parameters k, α  and β  are chosen so that k+Y 

has the same first three moments as S. 
Equating the coefficients of skewness, variance and means 

of S with the same characteristics of k+Y gives the following 
three formulae 

 

 
α

γ
2

=    2
2

β

α
σ =     

β

α
µ += k         (7) 

 
from which α, β and k can be calculated. 

III.  MONTE CARLO SIMULATION OF COLLECTIVE RISK 

The Monte Carlo simulation of the values of S, presented 
for example in [8], [12] and [13], consists of the following 
steps: 

1. Generate the number of claims 1n  from the known 

distribution of variable N (Poisson, negative 
binomial) using the random number generator. 

2. Generate from the known distribution of the 
individual claim amount X just 1n  values of the 

individual losses .....,,,
121 nxxx  

3. The sum 
1

....211 nxxxs +++=  gives the first random 

number 1s of the aggregate claim amount (collective 

risk) S. 
4. The steps 1 to 3 repeat n-times to get generated 

random numbers nsss ....,,, 21  from unknown 

distribution of S. 
Simulated values nsss ....,,, 21  enable us to solve two 

important tasks:  
1. To verify suitability of probability models of S, those have 

been found by other actuarial methods. 
2. To find the probability model of S by application of 

Goodness of Fit Tests using sampling data generated by 
Monte Carlo simulation procedure. 

IV. USING COLLECTIVE RISK MODEL 

A. Premium Calculations  

Given a risk S, we refer its expected value E(S) as the pure 
premium. An insurance company must charge more than the 
pure premium to cover expenses, allow for variability in the 
number and amount of claims, and make a profit [3, p.99]. In 
a simple model for determining premiums, assume that we use 
a loading (safety or security) factor θ, whereby the risk 
premium RP is of the form  

 
( ) ( )SERP θ+= 1                    (8) 

 
Basic of premium calculation as we know of the collective 

risk S probability model is equitation 
 

( ) ( ) ( )( ) 95,0195,0 =+≤=≤ SESPsSP θ            (9) 

 
from which we can calculate loading factor θ as 

 
( )

( )SE

SEs −
=

95,0θ                  (10) 

 
where 95,0s  is 95th percentile of distribution of S, defined as 

value for which is valid ( ) ( ) .95,095,095,0 == sFsG S  

B. Determining the Value of Risk 

A risk measure, which summarizes the overall risk 
exposures of the company, helps the company evaluate if there 
is sufficient capital to overcome adverse events. Risk measures 
for blocks of policies can also be used to assess the adequacy 
of the premium charged [15, p. 115]. 

Value at Risk (VaR) is probably one of the most widely used 
measures of risk in financial sector. Simply speaking, the VaR 

of a loss variable X is the minimum value of the distribution 
such that the probability of the loss larger than this value is not 
more than a given probability [15, p. 120-121]. 

Let X be a continuous random variable with distribution 
function ( )xFX  (df) and probability density function (pdf) 
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( )xfX
 defined as ( )

( )
.

dx

xdF
xf X

X =  The quantile function (qf) is 

the inverse of the df. Thus if ( ) δδ =xFX

 
then ( ).1 δδ

−= XFx  

In statistical terms, VaR at probability level δ, denoted by 
VaRδ(X), is a quantile as defined formally as follows 
 

( ) ( ) δδ δ xFXVaR X == −1

                                 

(11)

 

      99((

 
The quantile δx  indicates the loss which will be exceeded 

with probability 1-δ, but does not provide information about 
how bad the loss might be if loss exceeds this threshold. To 
address this issue, we may compute the conditional tail 
expectation (CTE) with tolerance 1-δ, which is defined as in 
(15, p. 123) 

 

( ) ( )( )XVaRXXEXCTE δδ >=              (12) 

 
We put the risk premium RP equal to the quantile 

 and we will define loss function X as 

. We will calculate VaRδ for this loss function in 
case that  

According to the above assumptions we can write: 
 

δδ =><− )( RPSVaRRPSP  

δδ =>+< )( RPSVaRRPSP  

 
The above equation can be written as  
 

δδ =
>

+<<

)(

)(

RPSP

VaRRPSRPP
 

 
Using df of S it can be expressed as follows: 
 

δ
α

αδ =
−−+ )1()( VaRRPFS              (13) 

 
Results from (13): 
 

ϑαδα =−+⋅=+ )1()( VaRRPFS  

 
where we have put  

 
)1( αδαϑ −+⋅=                  (14) 

 
Then 
 

ϑδ =+< )( VaRRPSP  

ϑδ SVaRRP =+  

RPSVaR −= ϑδ                  (15) 

V. EXAMPLE OF APPLICATION 

Suppose that the number of claims N incurred in time period 
of one year follows a Poisson distribution with parameter 

λ=10 000. We know the values of 91 individual claims made 
on an insurance portfolio. We will assume that these individual 
claim amounts are drawn from a particular distribution, called 
a loss distribution. Using maximum likelihood estimation and 
goodness of fit tests in statistical analytical system 
Statgraphics Centurion XV we have verified that lognormal 
distribution with parameters µ=9,741 and σ2=2,165 give a very 
good fit to the empirical data of individual claims amounts. 

The first three moments of lognormal distribution can be 
calculated by the formula  

 

( )
2

2

2
kk

k eXE

σ
µ +

=  
 

Then ;2,171501 =m  ;21936132 =m  
16

3 1035827,8 ⋅=m
 

Using formulas (3) to (6) we have calculated the descriptive 
measures of the collective risk S: 

E(S) = 501 712 000, D(S) = 2,19361E+14, γ(S) = 0,257. 
Except of the normal approximation of S with parameters 
µ = 501 712 00 and σ2 = 2,19361E+14 we can approximate the 
distribution of S by a translated gamma with parameters 

α = 60,4376; β = 5,24896E-07 and k = 386 570 080,3, 
calculated by (7). 
 Using the own computer program of Monte Carlo 
simulation in SAS system we have generated 10 000 values of 
aggregate claim amount S. 

We use these simulated values of S to verify the suitability 
of translated gamma distribution with above calculated 
parameters by goodness of fit tests in SAS Enterprise Guide 
3.0. Because of p-value > 0, 05, all three tests in these system 
confirm the translated gamma distribution gives a good fit to 
collective risk model of S. 

Using sampling data generated by Monte Carlo simulation 
we have found 3-parameters lognormal distribution using 
Distribution Fitting procedure of statistical system 
Statgraphics Centurion XV (Table 1) with parameters 
estimated by maximum likelihood method (Table 2) as 
a model that give a good fit to simulated data of S. 

 
TABLE 1 

RESULTS OF KOLMOGOROV-SMIRNOV TEST 

 Lognormal (3-Parameter) 

DPLUS 0,00589260 
DMINUS 0,00776702 

DN 0,00776702 
P-Value              0,58247 

Source: Own calculation, Statgraphics Centurion XV 
 

 
TABLE 2 

PARAMETERS OF FITTED DISTRIBUTIONS 

Lognormal (3-Parameter) 
mean = 5,01935E8 
standard deviation = 1,47275E7 
lower threshold = 3,02948E8 

Source: Own calculation, Statgraphics Centurion XV 

 

Histogram of the simulated values of S and pdf of lognormal 
distribution with parameters from Table 2 we can see at Fig 1. 
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Fig 1 Histogram and fitted 3-parameters lognormal model 
 
Procedure Critical values of Statgraphics Centurion XV 

allows finding quantiles Sp of lognormal distribution of S for 
any probability p. Table 3 includes selected quantiles that we 
will use in the following. 

 
TABLA 3 

QUANTILES FOR S 

Lower Tail Area (<=) Lognormal (3-Parameter) 
0,95 5,2703E8 
0,995 5,42993E8 
0,99975 5,59599E8 

Source: Own calculation, Statgraphics Centurion XV 
 

If we put the risk premium RP equal to the quantile 
S0,95=5,2703E8 (Table 3) and we define the loss function X as 
X=S-RP, we can calculate  for this loss 

function in case that  
According to (14) we can calculate value: 

99975,095,0995,005,0)1( =+⋅=−+⋅= αδαϑ  

Using Statgraphics Centurion XV, procedure Critical value 
(Table 3) refer to (15) we get result 

0005693282703,5859599,5

99975,0995,0

=−=

=−==

EE

RPSVaRVaRδ  

The minimum value that exceed the difference between 
aggregate claim amount S and risk premium RP with 
probability 0,995 (if collective risk S is greater than RP) is 
32 569 000 monetary units.  

Using procedure Distribution Fitting of statistical package 
Statgraphics Centurion XV we can find 2-parameters Pareto 
distribution that is fit on simulated values of collective risk S 

which are higher than .82703,595,0 ESRP ==   

Probability density function of this distribution has the form 
 

( ) 0,0,1 ≥>= −− abxbaxf bB               (16) 

 
Mean value is expressed as follows: 
 

( ) 1,
1

>
−

⋅
= b

b

ba
XE a                 (17) 

 

Table 4 includes the parameters of the Pareto distribution 
with density function (16) estimated by maximum likelihood 
method and table 5 includes the results of Kolmogorov-
Smirnov test, that verified good fit with Pareto probability 
model. 
 

TABLE 4 
MAXIMUM LIKELIHOOD PARAMETER ESTIMATION 

Pareto (2-Parameter) 
shape = 74,8166 
lower threshold = 5,27027E8 

Source: Own calculation, Statgraphics Centurion XV 
 

TABLE 5 
RESULTS OF KOLMOGOROV-SMIRNOV TEST 

 Pareto (2-Parameter) 
DPLUS 0,0143693 
DMINUS 0,0278264 
DN 0,0278264 
P-Value 0,837141 

Source: Own calculation, Statgraphics Centurion XV 
 

If we denote the shape of 2-paremetres Pareto model as b 
and the lower threshold as a, we can calculate the mean of the 
values of collective risk S that exceed of the RP refer to (17) as 
follow: 

 

( ) 3,681166534
1

=
−

⋅
=>

c

c
RPSSE

θ
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