
 

 

  
Abstract—A mathematical model of bone remodeling process 

is modified here in order to incorporate the effect of time delay 
which has been observed clinically in such process. Hopf 
bifurcation theorem is then applied to the model so that the 
conditions on the system parameters for which a periodic solution 
exists are derived.  
 

Keywords—bone remodeling process, osteoblast, osteoclast, 
parathyroid hormone, time delay.  

I. INTRODUCTION 

ONE is a dynamic tissue which is constantly in a 
process of turnover or self-renewal, in response to 

mechanical stress and hormonal changes and to maintain 
mineral homeostasis [1], [2]. This process is known as bone 
remodeling process consisting of three stages: activation of 
the remodeling site, resorption of bone by osteoclasts, and 
bone formation by osteoblasts [3]. Bone imbalance can 
occur if the osteoclasts produce an excessively deep 
resorption space, if the osteoblasts fail to completely refill 
the resorption space, or if both events occur resulting in the 
increase of bone loss leading to  the osteoporosis [4]-[6]. 
Osteoporosis is a most common bone disease. It is a bone 
disease which is characterized by low bone mineral density, 
the structural deterioration of bone and an increased risk of 
fracture [7], [8]. There are several factors that involve bone 
remodeling process such as parathyroid hormone, 
calcitonin, vitamin D and estrogen [2], [4]-[6].  

There are many attempts to develop mathematical models 
to describe bone remodeling process [9]-[12]. There is only 
one attempt [10] to investigate the effect of time delay 
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observed clinically in [1], [10]. However, the model that 
proposed in [10] did not incorporate the effects of 
parathyroid and osteoblasts on the osteoclastic 
differentiation. Therefore, in this paper, we then investigate 
the effect of time de lay in bone remodeling process by 
modifying the model that has been proposed by Rattanakul 
et al. [9].  

II. MODEL MODIFICATION 

 We now modify the nonlinear mathematical model 
proposed by Rattanakul et al. [9] to incorporate the effect of 
time delay as follows. Let us denote the level of PTH above 
the basal level in blood at time t by X(t), the number of 
active osteoclasts at time t by Y(t), and the number of active 
osteoblasts at time t by Z(t). At first, we assume that the 
high levels of osteoclast and osteoblast precursors lead to 
the high levels of active osteoclastic and osteoblastic cells, 
respectively, which result from the differentiation, and 
activation of their precursors. 

 Osteoclasts resorb bone and liberate calcium, therefore 
the increase in the number of active osteoclastic cells results 
in the increase in the calcium level in blood. On the other 
hand, parathyroid hormone (PTH) secreted from the 
parathyroid gland plays an important role in maintaining the 
extracellular Ca2+ concentration within the very narrow 
range [13]. The decrease in the serum level of calcium leads 
to the increase in the secretion of PTH [13]. However, low 
levels of PTH are secreted even when blood calcium levels 
are high [13]. The equation for the rate of PTH secretion 
above the basal level is then assumed to take the form 

        1
1

1 2

udX
v X

dT w w Y
= -

+
          (1) 

where the first term on the right-hand side of (1) represents 
the secretion rate of PTH from the parathyroid gland which 
decreases with the increase in the number of active 
osteoclastic cells X(t) in order to counter balance the high 
level of calcium in blood resulted from the large number of 
active osteoclastic cells, while 1 1,u w  and 2w  are positive 

constants. The last term on the right-hand side is the 
removal rate of PTH from the system at the rate, which is 
proportional to its current level with the removal rate 
constant 1v . 
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Osteoclasts are derived from hemopoietic stem cells of 
the monocyte/macrophage lineage [2]. The differentiation 
and activation of osteoclasts are regulated principally by 
osteoblasts through the cell-to-cell interaction with 
osteoclasts [10], [14]. It has also been observed clinically 
that there is a time delay in bone formation and resorption 
process [1], [10]. On the other hand, PTH also plays an 
important role on the osteoclastic differentiation. It 
stimulates the differentiation of osteoclasts indirectly 
through the activation of osteoblasts since osteoclasts and 
their precursors do not possess PTH receptors while 
osteoblasts and their precursors possess those [10], [14], 
[15]. However, it has been observed that when the level of 
PTH increases further, the production of osteoclasts will be 
decreased [10]. Therefore, the dynamics of the active 
osteoclastic population can be described by the following 
equation 

               ( ) ( )2

2
2

3 4

u XdY
Y t Z t v Y

dT w w X
t t

æ ö
= - - -ç ÷ç ÷+è ø

       (2)  

where the first term on the right-hand side of (2) represents 
the stimulating effect of PTH on the reproduction of active 
osteoclasts through the osteoclastic differentiation process 
which requires the presence of osteoblasts and bone marrow 
stromal cells since they respond to hormones and paracrine 
messengers which are necessary for the differentiation of 
osteoclasts [16]-[18]. The last term on the right-hand side is 
the removal rate of active osteoclasts from the system with 
the removal rate constant 2v . 2 3,u w  and 4w  are positive 

constants. 
 Osteoblasts are derived from the mesenchymal stem cells. 
The proliferation and differentiation of osteoblasts involve 
many factors such as FGF, IGF-I, TGF-beta and PTH [19]. 
Moreover, it has also been observed clinically that there is a 
time delay in bone formation and resorption process [1], 
[10]. On the other hand, PTH works by increasing the 
number of osteoblasts and by extending their working life 
by preventing their death through a suicidal process called 
apoptosis [20], [21]. However, it has been clinically 
observed that PTH exerts both stimulating and inhibiting 
effects on the osteoblastic differentiation process depending 
on the differentiation stages [7]. The dynamics of the 
osteoblastic population can be described by the following 
equation   

                ( )4
3 3

5 6

u XdZ
u X Z t v Z

dT w w X
t

æ ö
= - - -ç ÷+è ø

             (3) 

where the first term on the right-hand side of (3) represents 
the reproduction of active osteoblasts through the 
stimulating effect of PTH on osteoblastic cells, while the 
second term on the right-hand side of (3) accounts for the 
inhibition of osteoblastic differentiation due to PTH as 
observed clinically in [22]. The last term, it is assumed that 
osteoblasts is removed from the system with the removal 
rate constant 3.v  3 4 5, ,u u w  and 6w  are positive constants. 

III. HOPF BIFURCATION ANALYSIS 

In order to investigate the possibility of periodic 

dynamics in our system of (1)-(3), we let 
*
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the system (1)-(3) can then be written as follows 
 

                1
1

1

adP
d P

dt k C
= -

+
                                             (4) 

                 ( ) ( )2

2
2

2

a PdC
B t C t d C

dt k P
t t

æ ö
= - - -ç ÷ç ÷+è ø

           (5) 

                 ( )4
3 3

3

a PdB
a P B t d B

dt k P
t

æ ö
= - - -ç ÷+è ø

              (6) 

 
We now assume that ( ), ,S S SP C B  is a non washout steady 

of the system (4)-(6). Letting Sx P P= - , Sy C C= - , 

Sz B B= - , we will be led to the following linearized 

system of (4)-(6)  
 

                                   S

x x

y J y

z z

æ ö æ ö
ç ÷ ç ÷=ç ÷ ç ÷
ç ÷ ç ÷
è ø è ø

&
&
&

            (7) 

 

where  SJ  is the corresponding Jacobian matrix evaluated 

at ( ), ,S S SP C B , namely  
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    (8) 

 
For simplicity, we introduce new parameters by letting 
 

                               

a D E
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e EF

= - -
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Then, the characteristic equation of  SJ  can be written as 

 

           ( ) ( ) ( )3 2 2 0F a b d c e e ltl l l l l -º + + + + + =      (9) 

 
According to the Hopf bifurcation theory, for a periodic 

solution to exist, it is necessary that (9) has a pair of purely 
imaginary complex roots il w= ±  for some value of t . In 
order that such a pair can be found, one must have 

( ) 0F iw = , that is, 

    

 ( ) ( ) ( ) ( )( ) ( )3 2 2 0ii a i b i d c i e e w tw w w w -+ + + + + =     (10) 

 
Equating real and imaginary parts on the left of (10) to 

zero, we obtain the following equations: 
 
                  ( ) ( )2 cos 2 sin 2a d e cw wt w wt- = +          (11) 

                  ( ) ( )3 cos 2 sin 2b c ew w w wt wt- = -           (12) 

 
By squaring both sides of (11) and (12), and then adding, 

we obtain 
 

( ) ( ) ( ) ( )6 2 4 2 2 2 2 22 2 0a b b ad c d ef w w w wº + - + - - + - =

            (13) 
Letting  2b w= , (13) can be written as 

 
                    ( ) 3 2 0U V Ws b b b bº + + + =            (14) 

 
where 2 2 2 2 22 , 2 ,U a b V b ad c W d e= - = - - = - . 

Hence, (9) will have a pair of complex solutions, 
il w= ±  provided that (14) has a positive real solution 
2 0b w= > . 

According to the work of Ruan and Wei [23], for a 
polynomial in the form of (14), the following lemmas are 
obtained and so we state them without proofs. 

 
Lemma 1 If 0W < , then (14) has at least one positive root. 
 
Lemma 2 If 0W ³ , then the necessary condition for (14)  

to have a positive real root is that 2 3 0.U VQ º - >  
 
Lemma 3 If  
                             0W ³   and    0Q ³           (15) 
 
then (14) has a positive root if and only if 
  
                             1 0b >   and    ( )1 0s b £                    (16) 

 

where  1 3
U

b
- + Q

º . 

Therefore, by the above lemmas, we assume that either  
0W <  or (15) and (16) hold so that (14) has positive roots. 

Without loss of generality, we assume that it has three 
positive roots denoted 1b , 2b  and 3b . Then, (13) has three 

positive roots 
 

                                   ,    1,2,3.k k kw b= =  

 
Now, let 0 0t >  be the smallest of such t  for which  ̧

.il w= ±  Substituting kw  into (11)-(12) and solving for t , 

one obtains 
 

( ) ( ) ( ) ( )3

2 2 2

1 21
arcsin

2
j k k

k
k kk

ac e be cd j

c e

w w p
t

w ww
æ ö- + - -

= +ç ÷ç ÷+è ø
 

         (17) 
where 1,2,3,k =  and 1,2,...j =    

 
Theorem 1 Suppose that 
 
        0,  0a d e> + >       and      ( ) ( )a b c d e+ > +          (18) 

 
(a) If  0W ³  and 0Q < , then all roots of (9) have nonzero 
real parts for all 0.t ³  
 
(b) If either 
                                0W <           (19) 

or      10,  0, 0W b³ Q ³ >    and    ( )1 0s b £          (20) 

then all roots of (9) have negative real parts when 

[ )00, ,t tÎ  where 

                            ( ) ( ){ }0 1 3, 1
min , 0j j

k kk j
t t t

£ £ ³
= >           (21) 

with ( )j
kt  defined in (17). 
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Proof 
(a) By contradiction, if (9) has a root with zero real part for 
some 0t ³  which implies that (14) has a positive real root. 
By Lemma 2, the necessary condition of this is that 0Q ³  
which contradicts the fact that 0Q < . Therefore, all roots of 
(9) have nonzero real parts for all 0t ³ . 
 
(b) For 0t = , equation (9) is reduced to 
 
                     ( ) ( )3 2 0a b c d el l l+ + + + + =          (22) 

 
Since the conditions in (18) hold, the Routh-Hurwitz 
criterion then implies that all roots of (9) have negative real 
parts and hence, all roots¸ ( )l t  of (9) have negative real 

parts at the point 0t = . From the continuity of  ( )l t , all 

roots of (9) will have negative real parts for values of t  in 
some open interval containing 0t = . Therefore, all roots of 

(9) have negative real parts for positive values of [ )0, ct tÎ  

for some 0.ct >  

However, ct  is defined by (21) to be the minimum of all 

the positive ( )j
kt t=  where ( )j

kt  is defined as in (17). Hence, 

0t  is the minimum of such positive t 's for which the real 

parts of some roots of (9) vanish, provided that (19) or (20) 
holds. Thus, 0ct t= , which completes the proof. 

Theorem 1 implies that if either (19) or (20) are satisfied 
and (18) holds, the steady state ( ), ,S S SP C B  of our system 

of (4)-(6) is stable for some values of [ )00,t tÎ . At 0t t= , 

( )( )Re 0l t =  by the definition of  0t  and hence the 

stability of the steady state ( ), ,S S SP C B  is lost at 0t t= . In 

order for a Hopf bifurcation to occur, and hence a periodic 
solution of our system of (4)-(6) may be expected, we still 
need to show that  

                              
( )( )

( )
0

Re
0

d

d
t t

l t

t
=

¹  

which is done in the next theorem. 
 
Theorem 2 Suppose that conditions (19) or (20) in 
Theorem 1 hold, then il w= ±  is a pair of purely imaginary 
roots of equation (9). Moreover, 
 

                              
( )( )

( )
0

Re
0

d

d
t t

l t

t
=

¹          (23) 

provided that 
                                      ( )0 0s b¢ ¹           (24) 

where  
0

2
0 0 0,  .k t tb w w w == =  

 

Proof 
The first part of this theorem is an immediate consequence 
of Theorem 1 and the definition of 0t . In order to prove that 

( )( )
( )

0

Re
0

d

d
t t

l t

t
=

¹ , let us consider (9), 

  
          ( ) ( )3 2 2 0F a b d c e e ltl l l l l -= + + + + + =  

 
Then, 
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3 2 2
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and hence,  

 

( ) ( )

1 2

2

3 2
22

d a b c
d c ec e e lt

l l l t
t l l ll l

-

-

+ +æ ö = - +ç ÷ ++è ø
 

 

Since ( ) ( )2 3 2c e e a b dltl l l l-+ = - + + + , then 
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1 2

3 2

3 2
22

d a b c
d c ea b d

l l l t
t l l ll l l l

- + +æ ö = - +ç ÷ +- + + +è ø
 

 
At 0 0,  =it t l w=  and thus, 
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( ) ( )
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0

21
0 0

4 2 3
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2
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3 2
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2
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c
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-
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Therefore, 
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( ) ( )

( )

0

4 2 2 21
0 0

6 2 4 2 2 2
0 0 0

2

2 2 2
0

3 2 4 2
Re

2 2 2

                         
2

a b b add
d a b b ad d

c

c e

t t

w wl
t w w w

w

-

=

+ - + -æ ö =ç ÷ é ùè ø + - + - +ë û
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(13) implies that 
 

           ( ) ( )6 2 4 2 2 2 2 2 2
0 0 0 02 2a b b ad d c ew w w w+ - + - + = +
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then, 
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Hence, 
0

1

Re 0
d
d

t t

l
t

-

=

æ ö ¹ç ÷
è ø

 and the proof is complete. We 

thus have the following result. 
 
Theorem 3 If either (19) or (20) holds, then a periodic 
solution occurs in our model equations (4)-(6) for a positive 
time delay 0t t=  given by (21) provided that (19) and (24) 

are satisfied.  

IV. CONCLUSION 

We modify the model proposed by Rattanakul et al. [9] to 
incorporate the time delay which has been observed in the 
clinical evidences [1], [10]. The conditions on the system 
parameters for which a periodic behavior observed in the 
pulsatile secretion of PTH  [24] exists are then derived. 
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