
 

 

 
Abstract—The use of nanotechnology in pharmaceutical is 
an important topic in order to transport drugs to the 
targeted cells. However, there are a few studies for the 
mechanics of encapsulated tiny drug molecules into a 
nano-size capsule. In this paper, we determine the 
encapsulation of an assumed spherical drug molecule 
inside a spherical capsule using mathematical model, 
where both molecules are assumed to be carbon fullerenes 
with different sizes. Moreover, Lennard-Jones potential 
function together with the continuous approximation is 
employed to determine the energy of the system which 
gives rise to the equilibrium position of the drug molecule 
in the capsule. Further, an analytical solution is obtained 
as a function of the molecule radii. This research might be 
considered as a first step to investigate the encapsulation 
of drug molecule in a nanocapsule for the medical 
research.  
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I. INTRODUCTION 
Carbon nanostructures including fullerenes, carbon 

nanotubes, and carbon onions have received much attention 
because of their unique properties, such as their high 
flexibility, their high thermal conductivity and they are 
presently the strongest material known [1]. Their special 
properties have not only led to proposals for many potential 
nano-devices [2] – [4] but also to the desire to create further 
new carbon nanostructures and the spherical carbon onions 
are examples of such structures. The major issue in this regard 
is the determination of the interspacing layer of C60 fullerene 
encapsulated inside Goldberg type I fullerenes, namely C240, 
C540, C960 and C1500, as a potential application for drug 
delivery system. In other words, the C60 fullerene is assumed 
as a drug molecule and the Goldberg type I fullerenes are 
assumed as a nanocapsule.  

In this paper rather than undertake such large scale 
calculations, we employ elementary mechanical principles and 
classical mathematical modelling to investigate the interaction 
energies between adjacent shells of fullerenes, which leads to 
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the determination of the equilibrium spacing of such 
structures. The Lennard–Jones potential and the continuous 
approach are employed throughout this paper, where the 
continuous model assumes that the atoms at discrete locations 
can be approximated by an averaged surface density of atoms 
which is smeared across the entire surface.  

Fullerenes are an extensively studied nanomaterial because 
of their unique free radical chemistry and antioxidant 
properties [5]. Moreover, the structure of a C60 fullerene is 
simple, being a spherical surface of radius 3.55 Å and 
comprising 60 evenly spaced carbon atoms. Further, the 
ability of a fullerene to induce toxicity may require ultraviolet 
light and a water environment [6], and they might become 
dangerous to the environment and biological systems. 

Goldberg type I fullerenes of Ih symmetry are suggested by 
Kroto and McKay [7] as a plausible model for carbon onions. 
The first five shells of the carbon onion of this type comprise 
C60, C240, C540, C960 and C1500, and thus the intershell spacing 
is approximately 0.34 nm, which is very close to the interlayer 
spacing in graphite and to the spacing obtained experimentally 
and theoretically (see for example Kroto and McKay [7]; 
Banhart et al. [8] and Lu and Yang [9]). Further, the number 
of carbon atoms on each shell of Goldberg type I is N = 60n2 
where n is an integer. 

In the following section, we introduce the Lennard–Jones 
potential for non-bonded atoms. Using the continuous 
approximation, the analytical expression of the potential 
energy is determined in Section III. Further, numberical 
calculations for the preference position of the C60 molecule 
inside four sizes of nanocapsules are presented in Section IV, 
and finally, summary of the paper is given in Section V. 

II. LENNARD-JONES FUNCTION 
We employ the Lennard-Jones potential function and the 

continuous approximation to calculate the molecular 
interatomic energy between a C60 fullerene and a single-shell 
of Goldberg type I fullerene. The 6-12 Lennard-Jones function 
is given by 
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where   denotes the distance between two typical points, and 
A and B are attractive and repulsive Lennard-Jones constants, 
respectively. Equation (1) can also be written as 
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where   denotes a well depth and   is the van der Waals 
diameter, and from which we may deduce that 64A   and 

124B  . 
To determine the non-bonded interaction energy between 

two molecular structures, using the discrete approach we sum 
the energy for each atom pair, namely 
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i j ij ij

A BE
 

 
    

 
 , 

where ij is the distance for atoms i to j. Using the continuous 
approach, where the atoms at discrete locations on the 
molecule are averaged over a surface, the molecular 
interatomic energy is obtained by calculating integrals over 
the surfaces of each molecule, given by 
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where 1  and 2  represent the mean surface density of atoms 
on each molecule, and dS1 and dS2 are two surface elements. 

The Lennard-Jones parameters used for nonbonding 
interaction between two fullerenes are taken from the work of 
Girifalco et al. [10], which are A = 17.4 eV Å6 and B = 29103 
eV Å12. 

We assume that fullerene molecules can be modelled as a 
sphere, and the mean surface density for the spherical 
molecule can be evaluated by 2/(4 )N r  where N is a 
number of atoms on the molecule which is given by N = 60n2 
where n is an integer, and r is the radius of the molecule. The 
numerical values of the constants used in our model are as 

given in Table I. 
 

III. MATHEMATICAL DETERMINATION 
We aim to determine the equilibrium position of the C60 

spherical molecule located in the Goldberg type I fullerenes, 
as shown in Fig. 1, where both molecules are assumed to be 
sphere. We note that further in the text, the C60 molecule 

might be referred as a drug and the Goldberg type I fullerene 
will be referred as a capsule. We begin by considering the 
molecular interaction energy for a point on the capsule and a 
spherical C60 molecule of radius a, which is given by 
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and the derivation of the above equation can be found in Cox 
et al. [12]. We note that 1  represents the mean atomic surface 
density of the C60 molecule. By placing fractions over 
common denominators, expanding and reducing to fractions in 
terms of powers of (2 - a2), it can be shown that 
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Fig. 1 Model formation for a C60 molecule inside a capsule of 
Goldberg type I fullerene 

 
The total interaction energy between the carbon capsule and 

the C60 molecule is obtained by performing surface integrals 
for (2) over the other spherical molecule, capsule. Further, we 
define 
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where n is a positive integer corresponding to the power of the 
polynomials appearing in (3) and (4), and S is the surface 
element of a capsule. The total interaction energy between the 

TABLE I 
CONSTANTS USED IN THIS MODEL 

 

Quantity Values 

Radius of C60 3.5481 Å 
Radius of C240 7.0728 Å 

Radius of C540 10.5528 Å 

Radius of C960
 14.0342 Å 

Radius of C1500 17.5225 Å 

Mean surface density of C60 0.3793 Å-2 

Mean surface density of C240 0.3818 Å-2 

Mean surface density of C540 0.3859 Å-2 

Mean surface density of C960 0.3879 Å-2 

Mean surface density of C1500 0.3888 Å-2 

 
Radii of fullerene taken from the work of Dunlap and Zope [11]. 
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C60 molecule and a spherical capsule is given by 
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Next, we consider the interaction energy between two 
spheres. The distance from the centre of the C60 molecule to a 
surface of the capsule is denoted by  and is given by 

     2 2 22

2 2

cos sin sin sin cos

2 cos

b b b Z

b bZ Z

     



   

  
, 

where Z is the distance between their centres and b is a radius 
of a capsule. In Cartesian coordinate system, we may deduce 
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where 2  denotes the mean atomic surface density for the 
capsule. We make a substitution for cosu  , and we may 
deduce 

 
1

2
2 2 2 2

1

12
2

n nJ b du
b a Z bZu

 



  

 . 

Straightforwardly, the above integral can be determined which 
is given by 
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Finally, the interaction energy between a C60 molecule 
located inside a spherical capsule can be obtained by 
substituting Jn, which is given by (7), into (6). 

IV. RESULT 
By using the algebraic computer package MAPLE, we 

show graphically the relation between the potential energy and 
the distance Z between the centre of the C60 molecule and the 
centre of a capsule, as shown in Fig.2. The preference position 
of the C60 inside the capsule is at the minimum energy 
location, and since a symmetric property of a sphere, positive 
and negative values of Z indicate the same position. In the 
case of C60@C240, we observe that the C60 molecule is most 
likely to be located at the centre of the capsule which is Z = 0 
and it corresponds to  = 3.524 Å which is an interspacing 
distance between two adjacent carbon spherical layers [7].  

Further, the C60 molecule moves away from the centre of 
the capsule as the radius of the capsule increases. The 
numerical values of Z and  for the capsule of Goldberg type I 
fullerenes are given in Table II. We observe that the distance 
 of all cases slightly decrease as the radius of the capsule 
increases. This is due to two reasons (i) the increasing of a 
number of carbon atoms for a larger capsule which in turn 
increasing an attractive force between the two spheres, and (ii) 
a curvature of the capsule reduced for a larger one. 
Nevertheless, the spacing  is approximately equilibrium 
spacing between two layers of carbon onions [7]. 

In comparison for the four capsules, C240, C540, C960 and 
C1500, the C60 molecule is most likely to be encapsulated inside 
the C240 molecule because of the lowest energy level as shown 
in Fig. 2.  However, there is only one C60 molecule which can 
be located inside the C240 molecule. For the other three cases, 
we may encapsulate more than one molecule of C60 into such 
capsules.  

  

 
Fig. 2 Interaction energy between C60 molecule and the Goldberg 

type I fullerene, C240, C540, C960 and C1500.  
 
 
 
 
 
 
 
 
 
 
 

V. SUMMARY 
In this paper, we determine the position of the C60 molecule 

inside the Goldberg type I fullerenes, namely C240, C540, C960 
and C1500. The Lennard-Jones potential function together with 
the continuous approximation, where we assume that the 
carbon atoms are uniformly distributed over the surface of the 
molecule, is employed to determine the preferred position for 
the molecule of C60. The analysis gives rise to the possible 
location for each capsule size. We find that in the case of 
C60@C240, the C60 is most likely to be located at the centre of 
the C240 molecule and gives the lowest energy. Further, the C60 
molecule moves away from the centre where the radius of the 
capsule increases. The distances between the wall of C60 
molecule to the closest wall of the capsules slightly decrease 
when the capsule radii increase, due to the decreasing of the 
curvature and the increasing of the number of carbon atoms 
for a larger capsule. However, these values are comparable 
where they are approximately 3 Å.  

TABLE II 
EQUILIBRIUM DISTANCES Z AND  AT THE MINIMUM 

INTERACTION ENERGY  
 

Capsule 
Z  (Å)  (Å) 

C240 0 3.5247 

C540 3.9504 3.0543 

C960 7.4798 3.0063 

C1500 10.9840 2.9904 
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In comparison to other methods used to study nanoscience 
and nanotechnology, such as first principle calculations, 
molecular dynamics or Monte Carlo simulations, our applied 
mathematical modeling approach is not been widely used in 
this field. The understanding obtained from our model could 
contribute to considerable insight into the basic concepts of 
the problem. Our work thus could be viewed as a first 
experimental step toward designing new nanodevices, such as 
a nanocapsule to control drug delivery, improve circulatory 
persistence, and allow the targeting of drugs to specific cells.  
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