
 

 

  
Abstract—We develop a nonlinear mathematical model of bone 

remodeling process based on the effects of parathyroid hormone and 
calcitonin. The model is then analyzed by using the singular 
perturbation technique in order to obtain the conditions on the system 
parameters for which a periodic solution exists. Numerical 
investigation is also carried out to support our theoretical prediction. 
The result shows that the model can exhibit a periodic behavior 
which has been observed in the secretion pattern of calcitonin and 
parathyroid hormone in normal individuals.  
 

Keywords—bone remodeling process, calcitonin, mathematical 
model, parathyroid hormone.  

I. INTRODUCTION 

ONE is highly organized tissue. Its primary functions are 
to provide support and protection, and to provide the 

environment for hemopoiesis [1]. In adult, approximately 5-
10% of the existing bone is replaced every year. Bone 
remodeling is a dynamic, life-long process in which mature 
bone tissue is removed from the skeleton by osteoclastic cells 
and new bone tissue is formed by osteoblastic cells [1]. It is a 
largely a localized phenomenon that occurs at the level of a 
basic multicellular unit (BMU), consisting primarily of the 
action of osteoclasts and osteoblasts [2], [3]. Bone remodeling 
process consists of three stages: activation of the remodeling 
site, resorption of bone by osteoclasts, and bone formation by 
osteoblasts [3]. Bone imbalance can result if the osteoclasts 
produce an excessively deep resorption space, if the 
osteoblasts fail to completely refill the resorption space, or if 
both events occur [4], [5]. If a remodeling imbalance exists 
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after the completion of a remodeling cycle, the degree of bone 
loss will be exacerbated which leads to osteoporosis [6]. 
 Osteoporosis is now recognized as a major health disorder 
of bone remodeling, requiring costly medical treatment. It is a 
bone disease which is characterized by low bone mass, the 
structural deterioration of bone and an increased risk of 
fracture [7], [8]. Osteoporosis can affect both men and women 
of all ages, including children, but it occurs most frequently in 
the older population, particularly in postmenopausal women 
[7]. Therefore, an in-depth understanding of bone remodeling 
process including hormonal action such as parathyroid 
hormone (PTH), calcitonin (CT), estrogen or interleukin-6 (IL-
6) is then required.  

Several mathematical models have been proposed to 
describe bone remodeling process, but none of them 
concentrate on the effects of CT and PTH. Hence, we will 
develop a mathematical model to describe bone remodeling 
process based on the effects of CT and PTH by modifying the 
model that has been proposed by Rattanakul et al. [9].  

II. MODEL MODIFICATION 

 We now modify the nonlinear mathematical model proposed 
by Rattanakul et al. [9] to describe bone remodeling process 
based on the effects of CT and PTH as follows. Let us denote 
the level of PTH above the basal level in blood at time t by 
X(t),the level of CT above the basal level in blood at time t by 
Y(t), the number of active osteoclasts at time t by Z(t), and the 
number of active osteoblasts at time t by W(t). At first, we 
assume that the high levels of osteoclast and osteoblast 
precursors lead to the high levels of active osteoclastic and 
osteoblastic cells, respectively, which result from the 
differentiation, and activation of their precursors. 

 Since osteoclasts resorb bone and liberate calcium, then the 
increase in the number of active osteoclastic cells results in the 
increase in the calcium level in blood. Therefore, the level of 
calcium in blood varies directly with the number of active 
osteoclasts. It is widely accepted that parathyroid hormone 
(PTH) secreted from the parathyroid gland plays an important 
role in maintaining the extracellular Ca2+ concentration within 
the very narrow range usually observed in vivo (bodies of 
living organisms) [10]. PTH is released in response with 
rapidity as well as exquisite sensitivity to low extracellular 
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concentrations of free calcium. When the calcium 
concentration decreases, there is a steep increase in secretion 
of PTH [10]. Therefore, there is an inverse relationship 
between the concentration of Ca2+ and the secretion of PTH, 
which implies the inverse relationship between the number of 
active osteoclasts and the secretion of PTH [10], [11]. In 
addition, low levels of PTH are secreted even when blood 
calcium levels are high [10]. The equation for the rate of PTH 
secretion above the basal level is then assumed to take the 
form 

         

1
1

1

adX
b X

dt k Z
= -

+
           (1) 

where the first term on the right-hand side of (1) represents the 
secretion rate of PTH from the parathyroid gland which 
decreases with the increase in the number of active osteoclastic 
cells X(t) in order to counter balance the high level of calcium 
in blood resulted from the large number of active osteoclastic 
cells, while 1a  and 1k  are positive constants. The last term on 

the right-hand side is the removal rate of PTH from the system 
at the rate, which is proportional to its current level with the 
removal rate constant 1b . 

 Calcitonin (CT) is synthesized by parafollicular C cells of 
the thyroid gland [12]. The secretion of CT is stimulated by 
elevated serum calcium level. CT inhibits bone resorption by 
inhibiting osteoclastic activity resulting in decreasing serum 
calcium through the interaction of CT and its receptors on the 
surface of osteoclasts [12]. Therefore, the equation for the rate 
of calcitonin secretion is then assumed to have the form 

          ( )2 3 2

dY
a a Y YZ b Y

dt
= - -                                  (2) 

where the first term on the right-hand side of (2) represents the 
secretion rate of CT from parafollicular cells in the thyroid 
gland. The last term is the removal rate constant 2b . 2a  and 

3a  are positive constants.  

Osteoclasts originate from hemopoietic stem cells of the 
monocyte/macrophage lineage [1]. The differentiation and 
activation of osteoclasts are regulated principally by 
osteoblasts through the cell-to-cell interaction with osteoclasts 
[13], [14]. In addition, PTH also plays an important role on the 
osteoclastic differentiation. It stimulates the differentiation of 
osteoclasts indirectly through the activation of osteoblasts 
since osteoclasts and their precursors do not possess PTH 
receptors while osteoblasts and their precursors possess them 
[13]-[15]. However, it has been observed that when the level 
of PTH increases further, the production of osteoclasts will be 
decreased [13]. Therefore, the dynamics of the active 
osteoclastic population can be described by the following 
equation 

                    4 5
6 32

2

a a XdZ
a Y ZW b Z

dt k X

æ ö+
= - -ç ÷+è ø

                      (3)  

where the first term on the right-hand side of (3) represents the 
stimulating effect of PTH on the reproduction of active 

osteoclasts and the inhibiting effect of CT on active osteoclasts 
reproduction through the osteoclastic differentiation process 
which requires the presence of osteoblasts and bone marrow 
stromal cells since they respond to hormones and paracrine 
messengers which are necessary for the differentiation of 
osteoclasts [16]-[18]. The last term on the right-hand side is 
the removal rate of active osteoclasts from the system with the 
removal rate constant 3b . 4 5 6, ,a a a  and 2k  are positive 

constants. 
 Osteoblasts are derived from the mesenchymal stem cells. 
The proliferation and differentiation of osteoblasts involve 
many factors such as FGF, IGF-I, TGF-beta, including PTH 
[19]. PTH works by increasing the number of osteoblasts and 
by extending their working life by preventing their death 
through a suicidal process called apoptosis [20], [21]. 
However, it has been clinically observed that PTH exerts both 
stimulating and inhibiting effects on the osteoblastic 
differentiation process depending on the differentiation stages 
[7]. The dynamics of the osteoblastic population can be 
described by the following equation   

                           7 8
4

3 4

a X a XWdW
b W

dt k X k X
= - -

+ +
                     (4) 

where the first term on the right-hand side of (4) represents the 
reproduction of active osteoblasts through the stimulating 
effect of PTH on osteoblastic cells, while the second term on 
the right-hand side of (4) accounts for the inhibition of 
osteoblastic differentiation due to PTH as observed clinically 
in [22]. The last term, it is assumed that osteoblasts is removed 
from the system with the removal rate constant 3.b   

 Our model therefore consists of (1)-(4), possessing highly 
diversified nonlinear characteristics, upon which further 
analysis and investigation may be carried out in an attempt to 
explain the mystifying empirical observations previously 
mentioned. 

III. MODEL ANALYSIS 

We assume that PTH has the fastest dynamics, CT has the 
fast dynamics. The osteoclastic population possesses the slow 
dynamics and the osteoblastic population has the slowest 
dynamics. Consequently, we scale the dynamics of the four 
components and parameters of the system in term of small 
positive parameters 0 1< e <<  and 0 1< d <<  as follows. 

Letting 32
1 1 2 3, , , , , , ,

aa
x X y Y z Z w W c a c c= = = = = = =

e e
 

5 6 7 84 2
4 5 6 7 8 1 1 2, , , , , , ,

a a a aa b
c c c c c d b d= = = = = = =

ed ed ed edh edh e

 3 4
3 4,

b b
d d= =

ed edh
, we are led to the following model 

equations: 

Recent Researches in Applied Mathematics, Simulation and Modelling

ISBN: 978-1-61804-016-9 43



 

 

( )1
1

1

, , ,
cdx

d x f x y z w
dt k z

= - º
+

                          (5) 

( )( ) ( )2 3 2 , , ,
dy

c c y yz d y g x y z w
dt

= - - ºe e                         (6) 

( )4 5
6 32

2

, , ,
c c xdz

a y zw d z h x y z w
dt k x

æ öæ ö+
ç ÷= - - =ç ÷ç ÷ç ÷+è øè ø

ed ed          (7)  

7 8
4

3 4

c x c xwdw
d w

dt k x k x
= - -

+ +
                (8) 

The system of (5)-(8), with the small parameters e , d  and 
h  can then be analyzed by using the geometric singular 

perturbation method.   
The manifold { }0=f  

This manifold is given by the equation                       

                         
( ) ( )1

1 1

c
x

d k
A z

z
=

+
º                                (9)   

We see that this manifold is independent of y  and w . Hence,  

it is parallel to the y-axis and w-axis. It intersects the x-axis at 
the point where   

                    1
1

1 1

c
x x

d k
= º                        (10) 

Moreover, ( )A z  is an decreasing function of z and 

( ) 0  as  A z z® ® ¥ . 

 
The manifold { }0g =                

This manifold consists of two submanifolds. One is the 
trivial manifold 0y = . The nontrivial one given by the 

equation  

                  ( )2 2

3

c z d
y B z

c z

-
= º                         (11) 

This nontrivial manifold is independent of the variable x and 
w. Hence, this submanifold is parallel to the x -axis and w-
axis. It intersects the z-axis at the point where   

                         2
1

2

d
z z

c
= º                    (12) 

Moreover, ( )B z  is an increasing function of z and ( )B z  is 

asymptotic to the line   

                                      
3

1
2c

y y
c

= º                                   (13)                                              

as z ® ¥ .  
On the other hand, the manifold { }0f =  intersects the 

manifold { }0g =  along the curve  

       
( )

1

1 1

, 0
c

x y
d k z

ì üï ï= =í ý
+ï ïî þ

 

and the curve 

      
( )

1 2 2

1 1 3

,
c c z d

x y
d k z c z

ì ü-ï ï= =í ý
+ï ïî þ

 

The manifold { }0h =   

 This manifold consists of two sub-manifolds. One is the 
trivial manifold 0z =  while the other one is the nontrivial 
manifold 

  ( )4 5 3
2

6 2

1 c c x d
y C x,w

c wk x

æ ö+
= - ºç ÷+è ø

     (14) 

which is independent of z and hence, it is parallel to the z-axis.  
( )C x,w  attains its maximum at the points where   

2 2
4 4 5 2

2
5

c c c k
x x

c

- + +
= º          (15) 

and        ( ) ( )4 5 2 3
22

6 2 2

1 c c x d
y w y w

c wk x

æ ö+
= - ºç ÷+è ø

           (16) 

Note that ( )2 0y w >  if and only if  

         
( )2

3 2 2

4 5 2

d k x
w

c c x

+
>

+
            (18) 

For a fixed value of w, the nontrivial manifold ( )y C x,w=  

intersects the y-axis at the point where 0x =  and     

         ( )34
3

6 2

1 dc
y y w

c k w

æ ö
= - ºç ÷

è ø
                 (17) 

 Note that ( )3 0y w >  if and only if  

         3 2

4

d k
w

c
>               (18) 

On the other hand, for a fixed value of w, the nontrivial 
manifold ( )y C x,w=  intersects the x-axis at the point where 

0y =  and     

     
( ) ( )

( )
2

5 5 3 4 3 2
3

3

4

2

c w c w d c w d k
x x w

d

+ + -
= º       (19) 

 Note that if ( )3 0y w >  then ( )3 0x w > .  

 
Moreover, ( )y C x,w=  is an increasing function of w and for 

a fixed value of x, 4 5
2

6 2

1 c c x
y

c k x

æ ö+
® ç ÷+è ø

 as w ® ¥ . 

In addition, the manifold { }0f =  intersects the manifold 

{ }0h =  along the line  

         { }1, 0x x z= =  

and the curve 

    
( )

4 5 31
2

1 1 6 2

1
,

c c x dc
x y

d k z c wk x

ì üæ ö+ï ï= = -í ç ÷ ý
+ +ï ïè øî þ

 

which attains its relative maximum at the points where  

    
( )2 2

4 4 5 2

5

2 2 4
0

2 M

c c c k
x x

c

- ± +
= º >  

       ( )4 5 3
2

6 2

1 M
M

M

c c x d
y y w

c wk x

æ ö+
= - ºç ÷
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1

1
M
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c
z d k z

d x

æ ö
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è ø
 

Note that ( ) 0My w >  if and only if 
( )2

3 2

4 5

M

M

d k x
w

c c x

+
>

+
 and 

0Mz >  if and only if 1

1 1
M

c
x

d k
< . 

Moreover, the manifold { }0f =  intersects the manifold 

{ }0g =  and the manifold { }0h =  at the point where 

     { }1, 0, 0x x y z= = = , 

     ( ) ( ){ }
1 1

, 0,S Sx x w y z z w= = = , 

and     ( ) ( ) ( ){ }
2 2 2

, ,S S Sx x w y y w z z w= = =  

where  ( )
( ) ( )

1

2

5 5 3 4 3 2

3

4

2S

c w c w d c w d k
x w

d

± + -
= ,           

             ( )
1

1

1
1 1

1

1
S

S

c
z w d k

d x

æ ö
= -ç ÷ç ÷

è ø
.  

( )
2Sx w  is a positive solution of  

  ( ) ( ) ( ) ( )3 2
1 2 3 4 0A w x A w x A w x A w+ + + =    

where    

( ) ( )1
1 2 6 1 6 2 3 3

1

d
A w c c k w c d w c d

c
= + +  

( ) 3 5 1
2 3 2 6

1

c c d w
A w c c c w

c
= - -  

( ) ( )1
3 2 6 1 2 3 4 3 3 2 6 2 2 3 5

1

d
A w c c k k w c c w c d k c d k w c c w

c
= - + + +  

( )4 3 4 2 6 2 3 3 2 3 4A w c c w c c k w c d k c c w= - - -  

and ( )
2

2

1
1 1

1

1
S

S

c
z w d k

d x
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è ø
, ( ) 2

2

2
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3
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y w

c z
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The manifold { k = 0 }    

This manifold is given by the equation 

( ) ( ) ( )
2

7 7 4
2

8 4 8 3 4 3 4 4 4 3 4

c x c k x
w x

c d x c k d k d k x d k k

+
= º Y

+ + + + +
  (20) 

This manifold is independent of y  and z . It intersects the x-

axis at the point where 0w =  and 0x =  or 4x k= - , while it 

intersects the w-axis at the point where 0x =  and 0w = . 

Moreover, 7

8 4

c
w

c d
®

+
 as x ® ¥ . On the other hand, 

w ® ¥  as 4x x®  where 

( )
( )

( ) ( )
( )

8 3 4 3 4 4
4

8 4

2

8 3 4 3 4 4 4 3 4 8 4

8 4

2

4
      0

2

c k d k d k
x

c d

c k d k d k d k k c d

c d

- + +
º

+

+ + - +
± <

+

          (21)  

 

Theorem 1 If ,e d  and h  are sufficiently small, and 

  ( )2 1 30 x x x w< < <            (22) 

  ( )
2

0 S Mz w z< <         (23) 

    ( )3 0y w >             (24) 

      ( ) ( ) ( )
2 2 2

0 0 0S S Sx w , y w ,z w> > >     (25) 

where all parametric values are defined as above, then a limit 
cycle exists for the system of (5)-(8).  

The proof of the theorem is based on geometric singular 
perturbation method [23]-[25]. The limit cycle can consist of 
various parts. The fast, intermediate, and slow parts are 
indicated, respectively, by three, two, and one arrows.  

 Under the conditions in Theorem 1, without loss of 
generality we start from point A and we assume that the 
position of A is as in Fig. 1 with { }0f ¹ . A fast transition will 

tend to point B on the manifold { }0 .f = Here, { }0g <  and a 

transition at intermediate speed will be made in the direction 
of decreasing y  until point C on the curve { }0f h= =  is 

reached. An intermediate transition then follows along this 
curve to some point D on the other stable part of { }0f h= =  

followed by an intermediate transition in the direction of 
decreasing z until the point E is reached since { }0h <  here. 

Once the point E is reached the stability of submanifold will be 
lost. A jump to point F on the other stable part of { }0f h= =  

followed by an intermediate transition in the direction of 
increasing z since { }0h >  here. Once the point G is reached 

the stability of submanifold will be lost. A jump to point H on 
the other stable part of { }0f h= = . Consequently, an 

intermediate transition will bring the system back to the point 
E, followed by flows along the same path repeatedly, resulting 
in the closed orbit EFGHE. Thus, limit cycle in the system for 

,e d  and h  are sufficiently small exists.  

IV. NUMERICAL RESULT  

 A computer simulation of the system (5)-(8) is presented in 
Fig. 2, with parametric values chosen to satisfy the condition 
in Theorem 1. The solution trajectory, shown in Fig. 2(a) 
project onto the ( ),x y -plane, tends to a limit cycle as 

theoretically predicted. The corresponding time courses of the 
concentration of parathyroid hormone and calcitonin above the 
basal levels are as shown in Fig. 2(b) and 2(c), respectively. 

V. CONCLUSION 

We have proposed a mathematical model to study bone 
remodeling process based on the effects of parathyroid 
hormone and calcitonin. The conditions on the system 
parameters for which a periodic solution exists are then 
derived. Moreover, the numerical result demonstrated that the 
limit cycle behavior of the system (5)-(8) with parametric 
values chosen to satisfy Theorem 1 close to the construction 
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and analysis of our model. In addition, the periodic behaviors 
which have been observed in the time courses of parathyroid 

hormone and calcitonin are closely resemble to the pulsatile 
secretion patterns observed in the clinical data [26]. 
 

0f =

0h =

0f h= =

0f g= =

0f g= =

0f h= =

1x

2x

( )3x w

0

( )3y w

( )2y w

( ), ,M M Mx y z

 
Fig. 1 The three equilibrium manifolds { } { }0 , 0f g= =  and { }0h =  in the ( ), ,x y z - space in the case of limit cycle exists. Segments of the 

trajectories with one, two, and three arrows represent slow, intermediate, and fast transitions, respectively. 
 
 
 
 
 
 
 
 

Recent Researches in Applied Mathematics, Simulation and Modelling

ISBN: 978-1-61804-016-9 46



 

 

 
 
 
 
 
     (a) 
 
 
 
 
 
  
  
  
  
                 
                      
 
 
 
     (b) 
 
 
 
 
 
 
         
 
 
 
 
 
    (c)                     
 
 
 
 
 
 
 
 

 
Fig. 2 A computer simulation of the model systems (5)-(8) with  

2 3 4 = 0.9,   = 0.5,   = 0.3,   = 0.3,   = 0.3,   = 0.1,   = 0.4,1c c c ce d h  

5 6 7 8 1 2 3 = 0.9,  = 0.3,  = 0.5,  = 0.2,  = 0.5,  = 0.03,  = 0.25,c c c c d d d

( ) ( )4 1 2 3 40.2, 0.4, 0.6, 0.5, 0.03, 0 0.5, 0 0.01,d k k k k x y= = = = = = =

(0)=0.05z and (0)=3.5.w (a) The solution trajectory projected onto 
the (x,y)-plane. (b) The corresponding time courses of PTH (x), 
and (c)  CT level (y). 
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