
 

 

  
Abstract—We propose here a nonlinear mathematical model of 

bone formation and resorption process accounting for the 
concentration of calcitonin, the population of osteoclastic cells, and 
that of the osteoblastic cells. Singular perturbation technique is then 
applied to the model in order to obtain the conditions on the system 
parameters for which a periodic solution exists. Numerical simulation 
of the model is also carried out. The result shows that the model can 
exhibit a periodic behavior which has been observed in the secretion 
pattern of calcitonin in normal individuals. The model is then 
modified to investigate the effects of estrogen and calcitonin 
treatments in osteoporosis patients. 
 

Keywords—bone formation, bone resorption, calcitonin, 
mathematical model.  

I. INTRODUCTION 

ONE remodeling is a dynamic, life-long process in which 
mature bone tissue is removed from the skeleton by 

osteoclastic cells and new bone tissue is formed by 
osteoblastic cells. It can be viewed as a step by step process as 
follows: osteoclasts appear on a previously inactive surface of 
bone and then, they excavate a lacuna on the surface of 
cancellous bone or resorption tunnel in cortical bone. 
Osteoclasts are subsequently replaced by osteoblasts and 
finally, osteoblasts refill the resorption cavity [1]. After 
osteoblasts have laid down their protein-based matrix, known 
as osteoid, they bury themselves in bony matrix, becoming 
osteocytes, or revert to an inactive cell form and line the bone 
surfaces as surface osteocytes or resting osteoblasts [2]. Bone 
imbalance can result if the osteoclasts produce an excessively 
deep resorption space, if the osteoblasts fail to completely 
refill the resorption space, or if both events occur [1]-[2]. If a 
remodeling imbalance exists after the completion of a 
remodeling cycle, the degree of bone loss will be exacerbated 
which leads to osteoporosis [3]. 
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The purposes of bone remodeling are to regulate calcium 
homeostasis, to repair micro-damaged bones (from everyday 
stress) and also to shape and sculpture the skeleton during 
growth. As a result, bone is added where needed and removed 
where it is not required. In the first year of life, almost 100% 
of the skeleton is replaced [4]-[6]. In adults, remodeling 
proceeds at about 10% per year [4]-[6]. If a remodeling 
imbalance exists after the completion of a remodeling cycle, 
the degree of bone loss will be exacerbated and that leads to 
osteoporosis [4]-[6]. Therefore, the knowledge of how these 
cell types of bone are regulated and how their proliferation and 
differentiation are stimulated is most important to our 
understanding of factors regulating their number and activity 
in healthy or diseased human. 

Osteoporosis represents a major health disorder of bone 
remodeling, requiring costly medical treatments. It is a bone 
disease where bone mass decreases over time resulting from a 
net increase of bone resorption over bone deposition. A 
research by Rosenberg [6] indicated that in osteoporosis, the 
overall density of the skeleton decreases with thinning of the 
trabeculae and a loss of interconnections that lead to 
microfractures and eventually the collapse of the vertebral 
bodies. As a result, bones become brittle and fracture easily. 
Moreover, osteoporosis causes women die of hip fractures 
more than cancer of ovaries, cervix, and uterus combined 
because it is disease which occurs without symptoms [5].  

Several pharmacological treatments have been developed for 
osteoporosis such as calcium and/or vitamin D, estrogen, 
selective estrogen-receptor modulators (SERMs), 
bisphosphonates, calcitonin (CT) and parathyroid hormone 
(PTH) [7]. Considerations of safety and patient compliance are 
particularly important in the choice of drug therapy [7]. Since 
there are no major safety or compliance concerns with 
calcitonin (salmon calcitonin), calcitonin is then considered to 
be a potent therapy for osteoporosis. Although calcitonin has a 
relatively long duration of effect, its elimination half-life is 
short and its residence time in bone is limited [7]. No specific 
antidote is necessary and there is no known food or relevant 
drug interactions and no GI or renal issues that impose 
restrictions on its use [7].   

Prevention and reversal of bone loss require an in-depth 
understanding of the remodeling process in bone, the 
mechanism of bone formation and resorption, including 
hormonal action such as parathyroid hormone (PTH), 
calcitonin (CT), estrogen or interleukin-6 (IL-6).  
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Although there are several attempts to propose a suitable 
mathematical model to describe bone remodeling process, 
none of them concentrate on the effect of calcitonin on bone 
remodeling process. Therefore, we will develop a 
mathematical model to describe bone remodeling process 
based on the effect of calcitonin.  

II. MODEL DEVELOPMENT 

 We now proceed to construct a nonlinear mathematical 
model to describe bone remodeling process based on the effect 
of calcitonin as follows. Let us denote the level of CT above 
the basal level in blood at time t by X(t), the number of active 
osteoclasts at time t by Y(t), and the number of active 
osteoblasts at time t by Z(t). At first, we assume that the high 
levels of osteoclast and osteoblast precursors lead to the high 
levels of active osteoclastic and osteoblastic cells, 
respectively, which result from the differentiation, and 
activation of their precursors. 

 Calcitonin (CT) is synthesized by parafollicular C cells of 
the thyroid gland [8]. The secretion of CT is stimulated by 
elevated serum calcium level. CT inhibits bone resorption by 
inhibiting osteoclastic activity resulting in decreasing serum 
calcium. The decrease in blood calcium produced by CT is 
greatest when osteoclastic bone resorption is most intense and 
is least evident when osteoclastic activity is minimal [8]. 
Interaction of CT with receptors on the osteoclast surface 
promptly increases cAMP formation, and within minutes the 
expanse and activity of the ruffled border diminishes [8]. 
Osteoclasts pull away from the bone surface and begin to 
dedifferentiate. Synthesis and secretion of lysosomal enzymes 
are inhibited. In less than an hour fewer osteoclasts are 
present, and those that remain have decreased bone-resorbing 
activity [8]. Although osteoclasts express very high numbers of 
receptors for CT, they quickly become insensitive to the 
hormone because continued stimulation results in massive 
down-regulation of receptors [8]. Therefore, the equation for 
the rate of calcitonin secretion is then assumed to have the 
form 

               1 2
1

1

a a YdX
b X

dt k Y

æ ö+
= -ç ÷+è ø

                              (1) 

where the first term on the right-hand side of (1) represents the 
secretion rate of CT from parafollicular cells in the thyroid 
gland. The last term is the removal rate constant 1b . 1 2,a a  and 

1k  are positive constants.  

Osteoclasts are multinucleated giant cells that originate from 
hemopoietic stem cells of the monocyte/macrophage lineage 
[9]. Osteoclastic differentiation and activation are regulated 
principally by osteoblasts [10],[11]. There are several factors 
that regulate osteoclast formation and differentiation such as 
osteoclast differentiation factor (ODF) which was found to be 
identical to osteoprotegerin ligand (OPGL), TNF-related 
activation induces cytokine (TRANCE), receptor activator NF-
kB ligand (RANKL) [10],[12],[13]. Therefore, the dynamics 

of the active osteoclastic population can be described by the 
following equation 

                      4
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                       (2)  

where the first term on the right-hand side of (2) represents the 
reproduction of active osteoclasts and the inhibitory effect of 
calcitonin on active osteoclasts reproduction through the 
osteoclastic differentiation process which requires the presence 
of osteoblasts and bone marrow stromal cells since they 
respond to hormones and paracrine messengers which are 
necessary for the differentiation of osteoclasts. Also, the 
responsiveness of osteoblasts and their precursors to these 
necessary factors regulates the responsiveness of 
preosteoclasts and osteoclasts [14]-[16]. The last term, it is 
assumed that osteoclasts is removed from the system with the 
removal rate constant 2 .b  3 4,a a  and 2k  are positive constants. 

Osteoblasts are derived from the mesenchymal stem cells. 
The proliferation and differentiation of osteoblasts involve 
many factors such as FGF, IGF-I, TGF-beta. Moreover, 
calcitonin has been found to enhance osteoblastic bone 
formation [17],[18]. The dynamics of the osteoblastic 
population can be described by the following equation   

                           5 6
3
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Z b Z

dt k X
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                         (3) 

The first term on the right-hand side of (3) represents the 
reproduction of active osteoblasts through the stimulating 
effect of CT on osteoblastic cells. The last term, it is assumed 
that osteoblasts is removed from the system with the removal 
rate constant 3.b   

 Our model therefore consists of (1)-(3), possessing highly 
diversified nonlinear characteristics, upon which further 
analysis and investigation may be carried out in an attempt to 
explain the mystifying empirical observations previously 
mentioned. 

III. MODEL ANALYSIS 

We assume that CT has the fast dynamics. The osteoclastic 
population possesses the intermediate dynamics and the 
osteoblastic population has the slow dynamics. Consequently, 
we scale the dynamics of the four components and parameters 
of the system in term of small positive parameters 0 1< e <<  
and 0 1< d <<  as follows.  

Letting 3
1 1 2 2 3,   ,   ,   ,   ,   ,

a
x X y Y z Z c a c a c

e
= = = = = =  

5 6 34 2
4 5 6 1 1 2 3, , , , ,

a a ba b
c c c d b d d

e ed ed e ed
= = = = = = , we are 

led to the following model equations: 
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The system of (4)-(6), with the small parameters e  and d  
can then be analyzed by using the geometric singular 
perturbation method which, under suitable regularity 
conditions, allows approximating the solution of the system 
with a sequence of simple dynamic transitions occurring at 
different speeds.  

The shapes and relative positions of the 
manifolds{ }0f = ,{ }0g =  and { }0h =  determine the shapes, 

directions and speeds of the solution trajectories. We now 
analyze each of the equilibrium manifolds in detail. The 
delineating conditions of the limit cycle are described below.  
  
The manifold { }0=f  

This manifold is given by the equation                       

                         ( )1 2

1 1

1 c c y
x U y

d k y

æ ö+
= ºç ÷+è ø

                           (7)   

which is parallel to the z-axis. It intersects the ( )x,z - plane 

along the line  

                    1
1

1 1

c
x x

d k
= º                          (8) 

Moreover, ( )U y  is an increasing function of x and 

( ) 2
2

1

  as  
c

U y x y
d

® º ® ¥ . 

 
The manifold { }0g =                

This manifold consists of two submanifolds. One is the 
trivial manifold 0y = . The nontrivial one given by the 

equation  

          
( )

( ) ( )
2

2 2

2
3 2 4

d k x
z V x

c k x c x

+
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+ -
                      (9) 

this nontrivial manifold is independent of the variable y and 
thus this submanifold is parallel to the y -axis with asymptotic 

line   

                                      
3

2
2d

z z
c

= º                                   (10)                                              

Furthermore, the nontrivial manifold { }0g =  attains its 

maximum at the point where 

     2 3x k x= º      and    2 2
1

3 2 4 2

2

2
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       (11) 

 
The manifold { }0h =               

This consists of the trivial manifold 0z =  and the nontrivial 
one given by the equation              

                     3 3 5
4

6 3

d k c
x x

c d

-
= º

-
                            (12)     

Theorem 1  (Existence of a limit cycle) 
If e  and d  are sufficiently small and   

 1 4 20 x x x< < < ,                      (13) 

               2 1z z< ,                           (14) 

                    4 3 22c c k< ,                      (15) 

       6 3c d< ,                           (16) 

 and                                  3 3 5d k c<                                (17) 
where all the parametric values are given as before, then the 
system of (4)-(6) has a global attractor, in the positive octant 
of the phase space which is a limit cycle. The limit cycle can 
be constructed by concatenation of catastrophic various 
transitions occurring at three different speeds.  

The proof of the theorem is based on geometric singular 
perturbation method. This method is a useful tool in the 
analysis of the different types of flows that clear separation in 
time scales: the fast flow, the intermediate flow, the slow flow, 
and the very slow flow. The limit cycle can consist of various 
parts. The fast, intermediate, and slow parts are indicated, 
respectively, by three, two, and one arrows.  

 Under the conditions in Theorem 1, without loss of 
generality we start from point I and we assume that the 
position of I is as in Fig. 1 with { }0f ¹ . A fast transition will 

tend to point J on the manifold { }0 .f = Here, { }0g <  and a 

transition at intermediate speed will be made in the direction 
of decreasing y  until point K on the curve { }0f g= =  is 

reached. A slow transition then follows along this curve to 
some point L where the stability of submanifold will be lost. A 
jump to point M on the other stable part of { }0f g= =  

followed by a slow transition in the direction of decreasing z 
until the point N is reached since { }0h <  here. Once the point 

N is reached the stability of submanifold will be lost. A jump 
to point O on the other stable part of { }0f g= =  followed by 

a slow transition in the direction of increasing z since { }0h >  

here. Consequently, a slow transition will bring the system 
back to the point L, followed by flows along the same path 
repeatedly, resulting in the closed orbit LMNOL. Thus, limit 
cycle in the system for e  and d  are sufficiently small exists.  

IV. NUMERICAL RESULT  

 A numerical result of the system (4)-(6) is presented in Fig. 
2, with parametric values chosen to satisfy the condition in 
Theorem 1. The solution trajectory, shown in Fig. 2a project 
onto the ( ),x z -plane, tends to a limit cycle as theoretically 

predicted. The corresponding time courses of the calcitonin 
concentration and the number of active osteoblasts are as 
shown in Fig. 2b and 2c, respectively. 
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Fig. 1 The three equilibrium manifolds { } { }0 , 0f g= =  and { }0h =  in the ( ), ,x y z - space in the case of limit cycle exists. Segments of the 

trajectories with one, two, and three arrows represent slow, intermediate, and fast transitions, respectively. 
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Fig. 2 A computer simulation of the model systems (4)-(6) with 1 2 3 4 5 6 1 20.1, 0.5, 0.4, 0.7, 0.7,  0.085, 3,  5,c c c c c c k k= = = = = = = =  

3 1 2 32,  0.1,  0.2,  0.2,  0.1,  0.2,  (0) 0.5, (0) 0.5,k d d d x ye d= = = = = = = = (0) 0.5.z =  (a) The solution trajectory projected onto the (x,z)-plane. 

(b) The corresponding time courses of calcitonin concentration (x), and (c)  number of active osteoblastic cells (z). 
 

V. CONCLUSION 

Many different mathematical models have been proposed 
to describe bone remodeling process [19]-[22]. In this paper 
we have proposed a nonlinear mathematical model of bone 
remodeling process based on the effect of calcitonin, the 
population of osteoclastics cells, and osteoblastic cells and 
we have proved that our model can exhibit limit cycle when 
the parametric values satisfy the condition in Theorem 1. 
Moreover, the numerical result demonstrated that the limit 
cycle behavior of the system (4)-(6) with parametric values 
chosen to satisfy Theorem 1 close to the construction and 
analysis of our model. 

We have demonstrated, through the development and 
analysis of a model for bone formation and resorption based 
on the effect of calcitonin that the nonlinear dynamic 

behavior can be deduced which closely resembles clinical 
data [23], even though the model is kept relatively simple. 
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