Recent Researches in Applied Mathematics, Simulation and Modelling

Proceedings of the 5th International Conference on Applied Mathematics, Simulation, Modelling (ASM '11)

Corfu Island, Greece, July 14-16, 2011

ISSN: 1792-4332
RECENT RESEARCHES in APPLIED MATHEMATICS, SIMULATION and MODELLING

Proceedings of the 5th International Conference on Applied Mathematics, Simulation, Modelling (ASM '11)

Corfu Island, Greece
July 14-16, 2011

Published by WSEAS Press
www.wseas.org

Copyright © 2011, by WSEAS Press

All the copyright of the present book belongs to the World Scientific and Engineering Academy and Society Press. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the Editor of World Scientific and Engineering Academy and Society Press.

All papers of the present volume were peer reviewed by two independent reviewers. Acceptance was granted when both reviewers' recommendations were positive.
See also: http://www.worldses.org/review/index.html

ISSN: 1792-4332

North Atlantic University Union
RECENT RESEARCHES in APPLIED MATHEMATICS, SIMULATION and MODELLING

Proceedings of the 5th International Conference on Applied Mathematics, Simulation, Modelling (ASM '11)

Corfu Island, Greece
July 14-16, 2011
Editors:
Prof. Nikos Mastorakis, Technical University of Sofia, Bulgaria
Prof. Valeri Mladenov, Technical University of Sofia, Bulgaria
Prof. Zoran Bojkovic, University of Belgrade, Serbia
Prof. Fragkiskos Topalis, National Technical University of Athens, Greece
Prof. Kleanthis Psarris, The University of Texas at San Antonio, USA
Prof. Alina Barbulescu, Ovidius University of Constanta, Romania
Prof. Hamid Reza Karimi, University of Adger, Norway
Prof. George J. Tsokouras, Hellenic Naval Academy, Greece
Prof. Abdel-Badeeh M. Salem, Ain Shams University, Egypt
Prof. Luige Vladareanu, Romanian Academy, Romania
Prof. Aleksandar Nikolic, University of Belgrade, Serbia
Prof. Dana Simian, University Lucian Blaga of Sibiu, Romania
Prof. Berenika Hausnerova, Tomas Bata University in Zlin, Czech Republic
Prof. Fadil Berber, The University of Auckland, New Zealand
Prof. Nikolaos Bardis, Hellenic Army Academy, Greece
Prof. Azami Zaharim, Universiti Kebangsaan, Malaysia
Prof. Chandrasekaran Subramaniam, Anna University of Technology, India

International Program Committee Members:
Hans Fernlund, UNITED STATES
Paolo Di Giamberardino, ITALY
Vincenzo Di Lecce, ITALY
Anne-Marie Di Sciullo, CANADA
Zeljko Djurovic, SERBIA
Valentin Dogaru Uliriu, ROMANIA
Tomas Dostal, CZECH REPUBLIC
Maitreyee Dutta, INDIA
Karl Edelmoser, AUSTRIA
Erki Eessaar, ESTONIA
Karim El Guemhioui, CANADA
Hamed Elsmary, EGYPT
Ehsan Esfandiary, IRAN
Mehrez Essafi, TUNISIA
Tchier Fairouz, SAUDI ARABIA
Qi Feng, CHINA
Marta Fernandez, SPAIN
Franco Frattolillo, ITALY
Juan Frausto-Solis, MEXICO
Richard Gallery, IRELAND
Gao Gang-yi, CHINA
Gloria Garcia, SPAIN
Ahmad Ghanbari, IRAN
Baluta Gheorghe, ROMANIA
Ryszard Golanski, POLAND
Alexander Grebennikov, MEXICO
Andrea Guerriero, ITALY
Oscar Gustafsson, SWEDEN
Ofer Hadar, ISRAEL
James Haralambides, UNITED STATES
Suhono Harso Supangkat, INDONESIA
Hafiz Md. Hasan Babu, BANGLADESH
Iraj Hassanzadeh, IRAN
Mohsen Hayati, IRAN
Maria Ines Herrero Platero, SPAIN
Tzung-Pei Hong, TAIWAN
Kuo-Hung Hou, TAIWAN
Michel Houtermans, NETHERLANDS,
Chung-Yuan Huang, TAIWAN
Zhou Huiwei, CHINA
Ren-junn Hwang, TAIWAN
Giuseppe Iazeolla, ITALY
Mohamed Ibrahim, EGYPT
Hirotaka Inoue, JAPAN
Naohiro Ishii, JAPAN
Yousuf Mahbubul Islam, BANGLADESH
Juri Jatskevich, CANADA
Cheng-chang Jeng, TAIWAN
Zhang Jilong, CHINA
C. Jittawiriyakuntho, THAILAND
HJ Kadim ,UNITED KINGDOM
Rihard Karba, SLOVENIA
Stephen Karunguru, JAPAN
Victor Kasyanov, RUSSIA
Osamu Kata, JAPAN
Demetrios Kazakos, UNITED STATES
Vladimir Kazakov, MEXICO
Ahad Kazemi, IRAN
Mohamad Kaldi, LEBANON
Peter Kokol, SLOVENIA
Samad Kolahi,NEW ZEALAND
Chorng-shiu Koong, TAIWAN
Guennadi Kouzaev, NORWAY
Deniss Kumlander, ESTONIA
Cheng-chien Kuo, TAIWAN
Dan Lascu, ROMANIA
Mihaela Lascu, ROMANIA
Ljubomir Lazic, YUGOSLAVIA
Minh Hung Le, AUSTRALIA
Shih-kai Lee, TAIWAN
Dong-liang Lee, TAIWAN
Seongkee Lee, KOREA
Huey-Ming Lee, TAIWAN
Sheng-Tun Li, TAIWAN
Table of Contents

Plenary Lecture 1: Shock Reflection Problems and Gas Dynamics Equations
Katarina Jegdic

12

Plenary Lecture 2: Language for Exact Description of Systems with Complex Control
Eugene Kindler

13

Plenary Lecture 3: Stochastic Delay Lotka-Volterra System to Interacting Population Dynamics
Andre A. Keller

15

Investigation of Multiple-Attribute Decision Making Model Based on Uncertainty
Bai Hanbin, Wei Jicai

17

Study of Application of Reciprocal Scale in Quantitative Analysis
Bai Hanbin, Wei Jicai

21

The Design and Realization of Data Accessing Service in the Meta-Synthetic Integrated Environment of Stratagem Research
Wei Jicai, Bai Hanbin, Zhao Wei, Ren Tingguang, Li Junmei

24

The Design and Realization of Comprehensive Evaluation in the Meta-Synthetic Integrated Environment of Stratagem Research
Chu Juntian, Wei Jicai, Cui Hao, Lv Shao-Qing, Zhao Wei, Dong Jie

30

A Mathematical Model of Bone Formation and Resorption: Effect of Calcitonin
Chontita Rattanakul, Sahattaya Rattanamongkonkul

36

A Mathematical Model of Bone Remodeling Process: Effects of Parathyroid Hormone and Calcitonin
Inthira Chaiya, Sahattaya Rattanamongkonkul, Chontita Rattanakul

42

Effect of Vitamin D on Bone Formation and Resorption: Mathematical Modeling Approach
Sahattaya Rattanamongkonkul, Pakawadee Sripraphot, Chontita Rattanakul

48

Mathematical Modeling of Bone Formation and Resorption: Effects of Parathyroid Hormone and Vitamin D
Chontita Rattanakul, Sahattaya Rattanamongkonkul, Saowaros Srisuk

54

Offset C60 Fullerene Encapsulated inside Goldberg Type I Fullerenes
Duangkamon Baowan, Noraphon Bunkluarb

60

A Delay-Differential Equations Model of Bone Remodeling Process
Suchanan Thongmak, Wannapa Kunpasuruang, Chontita Rattanakul

64

Multi-Treatment Regression Analysis: The Unbalanced Case
Elsa Estevo Moreira, Joao Tiago Mexia

69
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>On Markovian Extensions and Reductions of a Family of Hilbert Spaces</td>
<td>75</td>
</tr>
<tr>
<td>Ljiljana Petrovic</td>
<td></td>
</tr>
<tr>
<td>Emulation Models for Testing of Process Control Systems</td>
<td>80</td>
</tr>
<tr>
<td>Victor Okolnishnikov</td>
<td></td>
</tr>
<tr>
<td>Orthogonal Fixed Effects ANOVA with Random Sample Sizes</td>
<td>84</td>
</tr>
<tr>
<td>Joao T. Mexia, Celia Nunes, Dario Ferreira, Sandra S. Ferreira, Elsa</td>
<td></td>
</tr>
<tr>
<td>Moreira</td>
<td></td>
</tr>
<tr>
<td>The Efficient Frontier for a Portfolio that Includes One Risk-Free</td>
<td>91</td>
</tr>
<tr>
<td>Asset</td>
<td></td>
</tr>
<tr>
<td>Florentin Serban, Maria Viorica Stefanescu, Silvia Dedu</td>
<td></td>
</tr>
<tr>
<td>The Role of Labor Productivity in the Evolution of Romanian Employment</td>
<td>96</td>
</tr>
<tr>
<td>Larisa Aparaschivei, Denisa Vasilescu, Speranta Pirciog</td>
<td></td>
</tr>
<tr>
<td>The Causal Relationship between Unemployment Rate and U.S. Shadow</td>
<td>100</td>
</tr>
<tr>
<td>Economy, A Toda-Yamamoto Approach</td>
<td></td>
</tr>
<tr>
<td>Adriana AnaMaria Alexandru, Ion Dobre, Catalin Corneliu Ghinararu</td>
<td></td>
</tr>
<tr>
<td>Earnings Analysis: A Panel Data Approach for the E.U. Members</td>
<td>106</td>
</tr>
<tr>
<td>Denisa Vasilescu, Madalina E. Andreica, Larisa Aparaschivei, Nicolae</td>
<td></td>
</tr>
<tr>
<td>Cataniciu</td>
<td></td>
</tr>
<tr>
<td>Modeling of the Interaction between a Turbulent Flow and an Ablatable</td>
<td>110</td>
</tr>
<tr>
<td>Material</td>
<td></td>
</tr>
<tr>
<td>T. Harribey, N-T-H. Nguyen-Bui, P. Chassaing</td>
<td></td>
</tr>
<tr>
<td>Analysis of Environment - DFB-FL Sensors Interaction by Using</td>
<td>116</td>
</tr>
<tr>
<td>Coupled-Mode Equations</td>
<td></td>
</tr>
<tr>
<td>Dan Savastru, Ion Lancranjan, Sorin Miclos</td>
<td></td>
</tr>
<tr>
<td>Theoretical Analysis of a High Power Fiber Laser</td>
<td>121</td>
</tr>
<tr>
<td>Sorin Miclos, Dan Savastru, Ion Lancranjan</td>
<td></td>
</tr>
<tr>
<td>Expansion of the Basic EOQ Model with Inclusion of Trim-Loss Costs</td>
<td>126</td>
</tr>
<tr>
<td>Jure Erjavec, Luka Tomat, Miro Gradisar</td>
<td></td>
</tr>
<tr>
<td>Modelling and Simulation in Non-Life Insurance</td>
<td>129</td>
</tr>
<tr>
<td>Viera Pacakova</td>
<td></td>
</tr>
<tr>
<td>A Liquidity-Weighted GARCH Model for Empirical Equity Series</td>
<td>134</td>
</tr>
<tr>
<td>Cristiana Tudor</td>
<td></td>
</tr>
<tr>
<td>On Spatial Estimation of Wind Energy Potential in Malaysia</td>
<td>140</td>
</tr>
<tr>
<td>Nurulkamal Masseran, Ahmad Mahir Razali, Kamarulzaman Ibrahim, Wan</td>
<td></td>
</tr>
<tr>
<td>Zawiah Wan Zin, Azami Zaharim</td>
<td></td>
</tr>
<tr>
<td>Daily Rainfall Disaggregation Using HYETOS Model for Peninsular</td>
<td>146</td>
</tr>
<tr>
<td>Malaysia</td>
<td></td>
</tr>
<tr>
<td>Ibrahim Suliman Hanaish, Kamarulzaman Ibrahim, Abdul Aziz Jemain</td>
<td></td>
</tr>
</tbody>
</table>
Estimating Wind Energy Using Extrapolated Data of Cameron Highlands
Siti Khadijah Najid, Ahmad Mahir Razali, Kamaruzaman Ibrahim, Kamaruzzaman Sopian, Azami Zaharim

Optimization of Renewable Power System for Small Scale Seawater Reverse Osmosis Desalination Unit in Mrair-Gabis Village, Libya
Kh. Abulqasem, M. A. Alghoul, M. N. Mohammed, Alshrif Mustafa, Kh. Glaisa, Nowshad Amin, A.Zaharim, K. Sopian

Simulation Model and the Dynamics of Relative Poverty Rates in the Presence of Some Social Benefits in Romania
Cristina Stroe, Andreea Cambir, Cornelia Barti, Eva Militaru, Silvia Cojanu, Eliza Lungu, Codruta Dragoiu, Isadora Lazar

The Value of Demand Postponement under Demand Uncertainty
Rawee Suwandechochai

Kinematic Analysis of Howitzer Feeding Device
Jiri Balla, Van Yen Duong

Localized Resonant States and Transmission in a Two-Dimensional Photonic Quasicrystal
Yair Neve-Oz, Therese Pollok, Sven Burger, Michael Golosovsky, Dan Davidov

An Investigation of DEA Estimators Performance
Monica Mihaela Matei

Econometric Modeling of Return Migration Intentions
Gabriela Predosanu, Ana Maria Zamfir, Eva Militaru, Cristina Mocanu, Gabriela Vasile

Stochastic Delay Lotka-Volterra System to Interacting Population Dynamics
Andre A. Keller

Autoregressive Models with Stochastic Design Variables and Nonnormal Innovations
Ozlem Turker Bayrak, Aysen Dener Akkaya

Authors Index
Plenary Lecture 1

Shock Reflection Problems and Gas Dynamics Equations

Assistant Professor Katarina Jegdic
Computer and Mathematical Sciences
University of Houston – Downtown
USA
E-mail: JegdicK@uhd.edu

Abstract: We present mathematical analysis of shock reflection phenomenon using two-dimensional systems of conservation laws. Depending on the initial data, various types of shock reflection are possible, such as regular reflection (either supersonic or transonic) or Mach. We present proof of existence of regular reflection for the system of isentropic gas dynamics equations. The main idea in our approach is to rewrite the system using the self-similar coordinates. This leads to a free boundary problem for the subsonic state and the reflected shock. Existence of a solution is proved using the Holder estimates for the second order elliptic equations and various fixed point arguments. This work is joint with Barbara Lee Keyfitz (Ohio State University) and Suncica Canic (University of Houston).

Brief Biography of the Speaker:
Katarina Jegdic received B. Sc. degree in Mathematics from the University of Novi Sad, Serbia, in 1997. She obtained M.S. degree and Ph.D. degree in Mathematics from the University of Illinois at Urbana-Champaign, USA, in 2000 and 2004, respectively, after which she held a postdoctoral position at the University of Houston, USA. She is an assistant professor at the University of Houston - Downtown since 2006. Her research interests are in mathematical and numerical analysis of systems of conservation laws with applications to aerodynamics.
Abstract: To have a language for an exact description of systems is an advantage not only for a communication among people (systems designers, investigators, reviewers, implementers, users etc.) but also among an investigator and computer (for modeling, tests of completeness and/or consistency of the description etc.). The start point how to realize that way consisted in some process-oriented simulation languages designed and implemented in the 60-ies of the last century. Note that the process orientation covers an offer to use so called quasi-parallel sequencing (further QPS) that permits a separate formulation of "lives" of system elements, that mutually switch in the common time flow. Nevertheless, beside the limits of each of those languages (implying that descriptions of some systems in a given language were either very difficult or even impossible), another difficulty rose during the development of our civilization: the inner control and relating communication in the systems became more and more complex and sometimes even rather contradictory (in the systems influenced by antagonistic and/or mutually competing entities) decisions rise and are implemented inside the systems.

The first obstacle (limitation) was surmounted by advent of the object-oriented programming (classes, subclasses and procedures/methods/functions), but, unfortunately, soon after the spread of that programming method further from its original simulation stimulus incorporated in Simula, QPS disappeared from may be every object-oriented programming language designed since 1980, although that sort of sequencing existed even in some simulation languages designed before 1960.

The second obstacle can be illustrated as follows: when one starts to describe a system he needs to prepare and order general notions used then by the description, but when one exists as a component in the system (a human or a computer) and influences it he needs to express something similar – namely general notions semantically ordered – and than to use them. The antagonistic views practiced by influencing components show that may express general notions mutually in a different way but also differently from the way in that they were considered by the author of the description of the system, i.e. by a person existing outside the system. More exactly, such an author, describing the system, must express not only the contents of the general notions how he recognizes them, but also that of notions how the inner components of the described system consider them. Moreover, he has to separate different interpretations of the notions, although they carry the same names and often pay role in a common way.

The obstacles may be surmounted very well by using programming languages that are not only object-oriented and, naturally, process-oriented (permitting QPS) but permit local classes, too. The number of such languages is very small and, unfortunately, with the exception of the above mentioned "old" Simula, they do not allow QPS. The users of some of them (like Java) offer subrogating QPS with help of threads, i.e. by something that does not concern the described system but only its computer model. It should be respected that the suitable language should strictly separate between what should exist in the described systems and what in its computer model. The presentation will contain some existing applications in transport, machine production, health care and computer systems.

Brief Biography of the Speaker:
Eugene Kindler was born in 1935, studied mathematics at Charles University in Prague, (Czechoslovakia) and then computer science at the Research Institute of Mathematical Machines in Prague. He is the author of the first Czechoslovak ALGOL 60 compiler and the first Czechoslovak simulation language and compiler (COSMO, Compartmental System Modeling). Charles University granted him PhDr in logic and RNDr (Rerum Naturalium Doctor) in the theory of programming, Czechoslovak Academy of Science granted him CSc (Candidate of Sciences) in mathematics and physics. During 1958-1966 he worked with the Research Institute of Mathematical Machines, then with the Institute of Biophysics of the Faculty of General Medicine of Charles University (until 1973) and then with the Faculty of Mathematics and Physics of the same University (until 2006). In parallel, he engaged as professor of applied mathematics at a new University of Ostrava (Czech Republic) and was guest professor at the universities of Italian Pisa, American Morgantown and French Clermont-Ferrand and Lorient. Since 2006 he has been pensioned,
collaborating with the same Ostrava University as external specialist in various research projects, in doctoral studies and with a rather new Faculty of art. Beside his official work in computer science, he applied exact techniques (applied in programming language analysis) to formulate the rhythmical laws of music in free rhythm and is a director and soloist of singing group Musica Poetica specialized to the chant originated during the first millennium A.D. in Europe and certain Near East Asian countries.
Plenary Lecture 3

Stochastic Delay Lotka-Volterra System to Interacting Population Dynamics

Professor Andre A. Keller
Universite de Lille 1 Science et Technologies
CLERSE UMR 8019 (CNRS)
59655 Villeneuve d'Ascq FRANCE
E-mail: andre-keller@orange.fr

Abstract: This presentation introduces to the modeling process and reviews the essential features of the well-known Lotka-Volterra multispecies system in ecological modelling. The interacting population dynamics may be competitive or cooperative in the noisy environment of real world situations. In this stochastic context, the conditions for positive non exploding solutions are given. The computations have been carried out by using the software Wolfram Mathematica® 8.

Brief Biography of the Speaker:
Andre A. Keller (Prof.) is at present an associated researcher in mathematical economics at CLERSE a research unit UMR8019 of the French Centre National de la Recherche Scientifique (CNRS) by the Universite de Lille 1, Sciences et Technologies. He is also participating to the group 'Dynamique et Complexite' which is supported by the Federation de Physique et Interfaces. He received a PhD in Economics (Operations Research) in 1977 from the Universite de Paris Pantheon-Sorbonne. He is a WSEAS Member since 2010 and a Reviewer for the journals Ecological Modelling (Elsevier) and WSEAS Transactions on Information Science and Applications.
He taught applied mathematics (optimization techniques) and econometric modelling, microeconomics, theory of games and dynamic macroeconomic analysis. His experience centers are on building and analyzing large scale macro-economic models, as well as forecasting. His research interest has concentrated on: high frequency time-series modeling with application to the foreign exchange market, on discrete mathematics (graph theory), stochastic differential games and tournaments, circuit analysis, optimal control under uncertainties. His publications consist in writing articles, books and book chapters. The book chapters are e.g. on semi-reduced forms (Martinus Nijhoff, 1984), econometrics of technical change (Springer and IISA, 1989), advanced time-series analysis (Woodhead Faulkner, 1989), stochastic differential games (Nova Science, 2009), optimal fuzzy control (InTech, 2009). One book is on time-delay systems (LAP, 2010). One another book is on nonconvex optimization techniques (WSEAS Press, forthcoming 2011).